:: The Divisibility of Integers and Integer Relatively Primes :: by Rafa{\l} Kwiatek and Grzegorz Zwara :: :: Received July 10, 1990 :: Copyright (c) 1990-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, INT_1, ORDINAL1, COMPLEX1, SUBSET_1, XXREAL_0, CARD_1, ARYTM_3, ARYTM_1, RELAT_1, NAT_1, XCMPLX_0, INT_2; notations SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, INT_1, NAT_1, COMPLEX1, XXREAL_0; constructors XXREAL_0, REAL_1, NAT_1, COMPLEX1, INT_1, CARD_1; registrations XREAL_0, NAT_1, INT_1, ORDINAL1, CARD_1; requirements REAL, NUMERALS, SUBSET, ARITHM; begin definition let a be Integer; redefine func |.a.| -> Element of NAT; end; reserve a,b,c for Integer; theorem :: INT_2:1 a divides b & a divides b + c implies a divides c; theorem :: INT_2:2 :: NAT_D:9 a divides b implies a divides b * c; theorem :: INT_2:3 0 divides a iff a = 0; reserve i,j,k,l for Nat; definition let a,b be Integer; func a lcm b -> Nat means :: INT_2:def 1 a divides it & b divides it & for m being Integer st a divides m & b divides m holds it divides m; commutativity; end; theorem :: INT_2:4 a = 0 or b = 0 iff a lcm b = 0; definition let a,b be Integer; func a gcd b -> Nat means :: INT_2:def 2 it divides a & it divides b & for m being Integer st m divides a & m divides b holds m divides it; commutativity; end; theorem :: INT_2:5 a = 0 & b = 0 iff a gcd b = 0; reserve n for Nat; reserve a,b,c,d,a1,b1,a2,b2,k,l for Integer; theorem :: INT_2:6 -n is Element of NAT iff n = 0; registration let n be non zero Nat; cluster -n -> non natural; end; theorem :: INT_2:7 not -1 is Element of NAT; theorem :: INT_2:8 a divides -a & -a divides a; theorem :: INT_2:9 a divides b & b divides c implies a divides c; theorem :: INT_2:10 (a divides b iff a divides -b) & (a divides b iff -a divides b) & (a divides b iff -a divides -b) & (a divides -b iff -a divides b); theorem :: INT_2:11 a divides b & b divides a implies a = b or a = -b; theorem :: INT_2:12 a divides 0 & 1 divides a & -1 divides a; theorem :: INT_2:13 a divides 1 or a divides -1 implies a = 1 or a = -1; theorem :: INT_2:14 a = 1 or a = -1 implies a divides 1 & a divides -1; theorem :: INT_2:15 a,b are_congruent_mod c iff c divides (a-b); theorem :: INT_2:16 a divides b iff (|.a.|) divides (|.b.|); theorem :: INT_2:17 a lcm b is Element of NAT; theorem :: INT_2:18 a divides a lcm b; theorem :: INT_2:19 for c st a divides c & b divides c holds a lcm b divides c; theorem :: INT_2:20 a gcd b is Element of NAT; theorem :: INT_2:21 a gcd b divides a; theorem :: INT_2:22 for c st c divides a & c divides b holds c divides (a gcd b); :: Relative Prime Numbers definition let a,b be Integer; pred a,b are_coprime means :: INT_2:def 3 a gcd b = 1; symmetry; end; theorem :: INT_2:23 a<>0 or b<>0 implies ex a1,b1 st a = (a gcd b)*a1 & b = (a gcd b)*b1 & a1,b1 are_coprime; theorem :: INT_2:24 a,b are_coprime implies (c*a gcd c*b) = |.c.| & c*a gcd b*c = |.c.| & a*c gcd c*b = |.c.| & a*c gcd b*c = |.c.|; theorem :: INT_2:25 c divides a*b & a,c are_coprime implies c divides b; theorem :: INT_2:26 a,c are_coprime & b,c are_coprime implies a*b,c are_coprime; ::***************************************************************************:: :: PRIME NUMBERS :: ::***************************************************************************:: reserve p,p1,q,l for Nat; definition let p be integer Number; attr p is prime means :: INT_2:def 4 p > 1 & for n being Nat st n divides p holds n = 1 or n = p; end; registration cluster prime -> natural for integer Number; end; theorem :: INT_2:27 0 < b & a divides b implies a <= b; theorem :: INT_2:28 2 is prime; theorem :: INT_2:29 not 4 is prime; registration cluster prime for Nat; cluster non zero non prime for Nat; end; theorem :: INT_2:30 p is prime & q is prime implies p,q are_coprime or p = q; theorem :: INT_2:31 l>=2 implies ex p being Element of NAT st p is prime & p divides l; begin :: Addenda :: from AMI_4, 2007.06.14, A.T. theorem :: INT_2:32 for i,j being Integer st i >= 0 & j >= 0 holds |.i.| mod |.j.| = i mod j & |.i.| div |.j.| = i div j; :: old definitions, 2007.11.07, A.T theorem :: INT_2:33 a lcm b = |.a.| lcm |.b.|; theorem :: INT_2:34 a gcd b = |.a.| gcd |.b.|;