Diophantine Sets. Part II

Karol Pąk
Institute of Informatics
University of Białystok
Poland

Summary. The article is the next in a series aiming to formalize the MDPR-theorem using the Mizar proof assistant [3, [6, [4. We analyze four equations from the Diophantine standpoint that are crucial in the bounded quantifier theorem, that is used in one of the approaches to solve the problem.

Based on our previous work [1, we prove that the value of a given binomial coefficient and factorial can be determined by its arguments in a Diophantine way. Then we prove that two products

$$
\begin{equation*}
z=\prod_{i=1}^{x}(1+i \cdot y), \quad z=\prod_{i=1}^{x}(y+1-j) \tag{0.1}
\end{equation*}
$$

where $y>x$ are Diophantine.
The formalization follows [10, Z. Adamowicz, P. Zbierski 2 as well as M. Davis [5].

MSC: 11D45 68T99 03B35
Keywords: Hilbert's 10th problem; Diophantine relations
MML identifier: HILB10_4, version: 8.1.09 5.57.1355

1. Product of Zero Based Finite Sequences

From now on $i, j, n, n_{1}, n_{2}, m, k, l, u$ denote natural numbers, r, r_{1}, r_{2} denote real numbers, x, y denote integers, a, b denote non trivial natural numbers, F denotes a finite 0 -sequence, $\mathcal{F}, \mathcal{F}_{1}, \mathcal{F}_{2}$ denote complex-valued finite 0 -sequences, and c, c_{1}, c_{2} denote complex numbers.

Let us consider c_{1} and c_{2}. Let us note that $\left\langle c_{1}, c_{2}\right\rangle$ is complex-valued.

Let \mathcal{F} be a finite 0 -sequence. The functor $\prod \mathcal{F}$ yielding an element of \mathbb{C} is defined by the term
(Def. 1) $\cdot \mathbb{C} \odot \mathcal{F}$.
Now we state the propositions:
(1) If \mathcal{F} is real-valued, then $\prod \mathcal{F}=\cdot \mathbb{R} \odot \mathcal{F}$.
(2) If \mathcal{F} is \mathbb{Z} valued, then $\prod \mathcal{F}=\cdot \mathbb{Z} \odot \mathcal{F}$.
(3) If \mathcal{F} is natural-valued, then $\prod \mathcal{F}=\cdot \mathbb{N} \odot \mathcal{F}$.

Let F be a real-valued finite 0 -sequence. One can check that ΠF is real.
Let F be a natural-valued finite 0 -sequence. One can verify that ΠF is natural.

Now we state the propositions:
(4) If $\mathcal{F}=\emptyset$, then $\prod \mathcal{F}=1$.
(5) $\Pi\langle c\rangle=c$.
(6) $\Pi\left\langle c_{1}, c_{2}\right\rangle=c_{1} \cdot c_{2}$.
(7) $\Pi\left(\mathcal{F}_{1} \frown \mathcal{F}_{2}\right)=\left(\prod \mathcal{F}_{1}\right) \cdot\left(\prod \mathcal{F}_{2}\right)$.
(8) $c+\mathcal{F}_{1} \frown \mathcal{F}_{2}=\left(c+\mathcal{F}_{1}\right) \frown\left(c+\mathcal{F}_{2}\right)$.

Proof: For every object x such that $x \in \operatorname{dom}\left(c+\mathcal{F}_{1} \frown \mathcal{F}_{2}\right)$ holds $\left(c+\mathcal{F}_{1}{ }^{\wedge}\right.$ $\left.\mathcal{F}_{2}\right)(x)=\left(\left(c+\mathcal{F}_{1}\right)^{\frown}\left(c+\mathcal{F}_{2}\right)\right)(x)$.
(9) $c_{1}+\left\langle c_{2}\right\rangle=\left\langle c_{1}+c_{2}\right\rangle$.
(10) Let us consider finite 0 -sequences f_{1}, f_{2}, and n. Suppose $n \leqslant \operatorname{len} f_{1}$. Then $\left(f_{1} \frown f_{2}\right)_{\downarrow n}=f_{1 \backslash n} \frown f_{2}$.
Let us consider n. One can verify that there exists a finite 0 -sequence which is n-element and natural-valued and there exists a finite 0 -sequence which is natural-valued and positive yielding.

Let R be a positive yielding binary relation and X be a set. Observe that $R \upharpoonright X$ is positive yielding.

Let X be a positive yielding, real-valued finite 0 -sequence. One can verify that ΠX is positive.

Now we state the proposition:
(11) Let us consider a natural-valued, positive yielding finite 0 -sequence X. If $i \in \operatorname{dom} X$, then $X(i) \leqslant \Pi X$.
Proof: Define \mathcal{P} [natural number] \equiv for every natural-valued, positive yielding finite 0 -sequence X for every natural number i such that len $X=$ $\$_{1}$ and $i \in \operatorname{dom} X$ holds $X(i) \leqslant \Pi X$. If $\mathcal{P}[n]$, then $\mathcal{P}[n+1]$. $\mathcal{P}[n]$.
Let X be a natural-valued finite 0 -sequence and n be a positive natural number. Let us observe that $n+X$ is positive yielding.

Now we state the proposition:
(12) Let us consider natural-valued finite 0-sequences X_{1}, X_{2}. Suppose len X_{1} $=$ len X_{2} and for every n such that $n \in \operatorname{dom} X_{1}$ holds $X_{1}(n) \leqslant X_{2}(n)$. Then $\Pi X_{1} \leqslant \prod X_{2}$.
Proof: Define \mathcal{P} [natural number] \equiv for every natural-valued finite 0 sequences X_{1}, X_{2} such that len $X_{1}=\$_{1}=\operatorname{len} X_{2}$ and for every n such that $n \in \operatorname{dom} X_{1}$ holds $X_{1}(n) \leqslant X_{2}(n)$ holds $\Pi X_{1} \leqslant \prod X_{2}$. $\mathcal{P}[0]$. If $\mathcal{P}[n]$, then $\mathcal{P}[n+1] . \mathcal{P}[n]$.

2. Binomial is Diophantine

Now we state the propositions:
(13) If $k \leqslant n$, then $\binom{n}{k} \leqslant n^{k}$.

Proof: Define \mathcal{P} [natural number] \equiv if $\$_{1} \leqslant n$, then $\binom{n}{\$_{1}} \leqslant n^{\$_{1}}$. If $\mathcal{P}[m]$, then $\mathcal{P}[m+1] . \mathcal{P}[m]$.
(14) If $u>n^{k}$ and $n \geqslant k>i$, then $\binom{n}{i} \cdot\left(u^{i}\right)<\frac{u^{k}}{n}$. The theorem is a consequence of (13).
(15) If $u>n^{k}$ and $n \geqslant k$, then $\left\lfloor\frac{(u+1)^{n}}{u^{k}}\right\rfloor \bmod u=\binom{n}{k}$.

Proof: Set $I=\left\langle\binom{ n}{0} 1^{0} u^{n}, \ldots,\binom{n}{n} 1^{n} u^{0}\right\rangle$. Set $k_{1}=k+1$. Consider q being a finite sequence such that $I=\left(I \upharpoonright k_{1}\right)^{\wedge} q$. Reconsider $I_{1}=I$ as a finite sequence of elements of \mathbb{N}. Set $k_{2}=k \mapsto \frac{u^{k}}{n}$. For every natural number i such that $i \in \operatorname{Seg} k$ holds $\left(I_{1} \upharpoonright k\right)(i)<k_{2}(i)$. Define \mathcal{P} [natural number, object $] \equiv \$_{2} \in \mathbb{N}$ and for every natural number i such that $i=\$_{2}$ holds $q\left(\$_{1}\right)=u^{k} \cdot u \cdot i$. For every natural number j such that $j \in \operatorname{Seg} \operatorname{len} q$ there exists an object x such that $\mathcal{P}[j, x]$. Consider Q being a finite sequence such that dom $Q=\operatorname{Seg} \operatorname{len} q$ and for every natural number j such that $j \in \operatorname{Seg}$ len q holds $\mathcal{P}[j, Q(j)]$. rng $Q \subseteq \mathbb{N}$. For every natural number i such that $1 \leqslant i \leqslant \operatorname{len} q$ holds $q(i)=\left(u^{k} \cdot u \cdot Q\right)(i) .\left\lfloor\frac{\sum I_{1}}{u^{k}}\right\rfloor=\binom{n}{k}+u \cdot\left(\sum Q\right)$. $\binom{n}{k} \leqslant n^{k}$.
(16) Let us consider natural numbers x, y, z. Then $x \geqslant z$ and $y=\binom{x}{z}$ if and only if there exist natural numbers $u, v, y_{1}, y_{2}, y_{3}$ such that $y_{1}=x^{z}$ and $y_{2}=(u+1)^{x}$ and $y_{3}=u^{z}$ and $u>y_{1}$ and $v=\left\lfloor\frac{y_{2}}{y_{3}}\right\rfloor$ and $y \equiv v(\bmod u)$ and $y<u$ and $x \geqslant z$.
Proof: If $x \geqslant z$ and $y=\binom{x}{z}$, then there exist natural numbers u, v, y_{1}, y_{2}, y_{3} such that $y_{1}=x^{z}$ and $y_{2}=(u+1)^{x}$ and $y_{3}=u^{z}$ and $u>y_{1}$ and $v=\left\lfloor\frac{y_{2}}{y_{3}}\right\rfloor$ and $y \equiv v(\bmod u)$ and $y<u$ and $x \geqslant z . y \bmod u=\binom{x}{z}$.

3. Factorial is Diophantine

Now we state the propositions:
(17) If $k>0$ and $n>2 \cdot k^{k+1}$, then $k!=\left\lfloor\frac{n^{k}}{\binom{n}{k}}\right\rfloor$.
(18) Let us consider natural numbers x, y. Then $y=x$! if and only if there exist natural numbers n, y_{1}, y_{2}, y_{3} such that $y_{1}=2 \cdot x^{x+1}$ and $y_{2}=n^{x}$ and $y_{3}=\binom{n}{x}$ and $n>y_{1}$ and $y=\left\lfloor\frac{y_{2}}{y_{3}}\right\rfloor$.
Proof: If $y=x$!, then there exist natural numbers n, y_{1}, y_{2}, y_{3} such that $y_{1}=2 \cdot x^{x+1}$ and $y_{2}=n^{x}$ and $y_{3}=\binom{n}{x}$ and $n>y_{1}$ and $y=\left\lfloor\frac{y_{2}}{y_{3}}\right\rfloor$.

4. Diophanticity of Selected Products

In the sequel x, y, x_{1}, u, w denote natural numbers.
Now we state the propositions:
(19) Let us consider natural numbers x_{1}, w, u. Suppose $x_{1} \cdot w \equiv 1(\bmod u)$. Let us consider a natural number x. Then $\prod\left(1+x_{1} \cdot(\operatorname{idseq}(x))\right) \equiv x_{1}{ }^{x}$. $(x!) \cdot\binom{w+x}{x}(\bmod u)$.
Proof: Consider b being an integer such that $u \cdot b=x_{1} \cdot w-1$. Define \mathcal{P} [natural number $] \equiv \prod\left(1+x_{1} \cdot\left(\operatorname{idseq}\left(\$_{1}\right)\right)\right) \equiv x_{1}{ }^{\$_{1}} \cdot\left(\$_{1}!\right) \cdot\binom{w+\$_{1}}{\$_{1}}(\bmod u)$. If $\mathcal{P}[n]$, then $\mathcal{P}[n+1]$ by [12, (43)]. $\mathcal{P}[n]$.
(20) Let us consider natural numbers x, y, x_{1}. Suppose $x_{1} \geqslant 1$. Then $y=$ $\Pi\left(1+x_{1} \cdot(\operatorname{idseq}(x))\right)$ if and only if there exist natural numbers u, w, y_{1}, $y_{2}, y_{3}, y_{4}, y_{5}$ such that $u>y$ and $x_{1} \cdot w \equiv 1(\bmod u)$ and $y_{1}=x_{1}{ }^{x}$ and $y_{2}=x!$ and $y_{3}=\binom{w+x}{x}$ and $y_{1} \cdot y_{2} \cdot y_{3} \equiv y(\bmod u)$ and $y_{4}=1+x_{1} \cdot x$ and $y_{5}=y_{4}{ }^{x}$ and $u>y_{5}$.
Proof: Define \mathcal{P} [natural number] $\equiv\left(1+x_{1} \cdot \$_{1}\right)^{\$_{1}} \geqslant \Pi\left(1+x_{1} \cdot\left(\operatorname{idseq}\left(\$_{1}\right)\right)\right)$. If $\mathcal{P}[n]$, then $\mathcal{P}[n+1]$. $\mathcal{P}[n]$. If $y=\Pi\left(1+x_{1} \cdot(\operatorname{idseq}(x))\right)$, then there exist natural numbers $u, w, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$ such that $u>y$ and $x_{1} \cdot w \equiv 1(\bmod u)$ and $y_{1}=x_{1}^{x}$ and $y_{2}=x$! and $y_{3}=\binom{w+x}{x}$ and $y_{1} \cdot y_{2} \cdot y_{3} \equiv y(\bmod u)$ and $y_{4}=1+x_{1} \cdot x$ and $y_{5}=y_{4}^{x}$ and $u>y_{5}$ by [8, (16)]. Set $U=x_{1}^{x} \cdot(x!) \cdot\binom{w+x}{x}$. $\Pi\left(1+x_{1} \cdot(\operatorname{idseq}(x))\right) \equiv U(\bmod u)$.
(21) $c_{1}+n \mapsto c_{2}=n \mapsto\left(c_{1}+c_{2}\right)$.
(22) Let us consider natural numbers x, y, x_{1}. If $x_{1}=0$, then $y=\Pi\left(1+x_{1}\right.$. $(\operatorname{idseq}(x)))$ iff $y=1$. The theorem is a consequence of (21).
(23) If $n \geqslant k$, then $\Pi(n+1+-\operatorname{idseq}(k))=k!\cdot\binom{n}{k}$.

Proof: Define \mathcal{P} [natural number] \equiv if $\$_{1} \leqslant n$, then $\Pi\left(n+1+\right.$ idseq $\left.\left(\${ }_{1}\right)\right)$ $=\$_{1}!\cdot\binom{n}{\$_{1}}$. If $\mathcal{P}[i]$, then $\mathcal{P}[i+1]$ by [7, (3), (2)]. $\mathcal{P}[i]$.
(24) Let us consider natural numbers y, x_{1}, x_{2}. Then $y=\prod\left(x_{2}+1+\right.$ $\left.-\operatorname{idseq}\left(x_{1}\right)\right)$ and $x_{2}>x_{1}$ if and only if $y=x_{1}!\cdot\binom{x_{2}}{x_{1}}$ and $x_{2}>x_{1}$.

5. Selected Subsets of Zero Based Finite Sequences of \mathbb{N} as Diophantine Sets

From now on n, m, k denote natural numbers, p, q denote n-element finite 0 -sequences of $\mathbb{N}, i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}$ denote elements of n, and a, b, d, f denote integers.

Now we state the propositions:
(25) Let us consider natural numbers a, b, i_{1}, i_{2}, and i_{3}. Then $\left\{p: p\left(i_{1}\right)=\right.$ $\left.\left(a \cdot p\left(i_{2}\right)+b\right) \cdot p\left(i_{3}\right)\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}.
Proof: Define \mathcal{R} (natural number, natural number, natural number) $=a$. $\$_{1}+b$. Define \mathcal{P}_{1} [natural number, natural number, natural object, natural number, natural number, natural number $] \equiv 1 \cdot \$_{1}=1 \cdot \$_{3} \cdot \$_{2}$. For every n, i_{1}, i_{2}, i_{3}, i_{4}, and $i_{5},\left\{p: \mathcal{P}_{1}\left[p\left(i_{1}\right), p\left(i_{2}\right), \mathcal{R}\left(p\left(i_{3}\right), p\left(i_{4}\right), p\left(i_{5}\right)\right), p\left(i_{3}\right), p\left(i_{4}\right), p\left(i_{5}\right)\right]\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}. Define \mathcal{Q}_{1} [finite 0 -sequence of $\mathbb{N}] \equiv \mathcal{P}_{1}\left[\$_{1}\left(i_{1}\right), \$_{1}\left(i_{3}\right), a \cdot \$_{1}\left(i_{2}\right)+b, \$_{1}\left(i_{3}\right), \$_{1}\left(i_{3}\right), \$_{1}\left(i_{3}\right)\right]$. Define \mathcal{Q}_{2} [finite 0 -sequence of $\mathbb{N}] \equiv \$_{1}\left(i_{1}\right)=\left(a \cdot \$_{1}\left(i_{2}\right)+b\right) \cdot \$_{1}\left(i_{3}\right) .\left\{p: \mathcal{Q}_{1}[p]\right\}=\left\{q: \mathcal{Q}_{2}[q]\right\}$.
(26) $\quad\left\{p: p\left(i_{1}\right)=a \cdot p\left(i_{2}\right) \cdot p\left(i_{3}\right)\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}.
Proof: Define $\mathcal{Q}_{1}[$ finite 0 -sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}\left(i_{1}\right)=a \cdot \$_{1}\left(i_{2}\right) \cdot \$_{1}\left(i_{3}\right)$. Define $\mathcal{Q}_{2}[$ finite 0-sequence of $\mathbb{N}] \equiv \$_{1}\left(i_{1}\right)=a \cdot \$_{1}\left(i_{2}\right) \cdot \$_{1}\left(i_{3}\right) .\left\{p: \mathcal{Q}_{1}[p]\right\}=$ $\left\{q: \mathcal{Q}_{2}[q]\right\}$.
(27) Let us consider a Diophantine subset A of the n-xtuples of \mathbb{N}, and natural numbers k, n_{4}. Suppose $k+n_{4}=n$. Then $\left\{p_{\mid n_{4}}: p \in A\right\}$ is a Diophantine subset of the k-xtuples of \mathbb{N}.
Proof: Consider n_{3} being a natural number, p_{1} being a \mathbb{Z} valued polynomial of $n+n_{3}, \mathbb{R}_{F}$ such that for every object $s, s \in A$ iff there exists an n-element finite 0 -sequence x of \mathbb{N} and there exists an n_{3}-element finite 0 -sequence y of \mathbb{N} such that $s=x$ and $\operatorname{eval}\left(p_{1},{ }^{@}\left(x^{\frown} y\right)\right)=0$. Reconsider $I=\mathrm{id}_{n+n_{3}}$ as a finite 0-sequence. Set $I_{1}=I \upharpoonright n_{4}$. Set $I_{2}=(I \upharpoonright n)_{{ }_{{ }_{n}^{4}}}$. Set $I_{3}=I_{\mid n}$. Reconsider $J=\left(I_{2}{ }^{\wedge} I_{1}\right)^{\wedge} I_{3}$ as a function from $n+n_{3}$ into $n+n_{3}$. Set $h=$ the p_{1} permuted by J^{-1}. Reconsider $H=h$ as a polynomial of $k+\left(n_{4}+n_{3}\right), \mathbb{R}_{F}$. Set $Y=\left\{p_{\text {n }_{4}}: p \in A\right\} . Y \subseteq$ the k-xtuples of \mathbb{N}. For every object $s, s \in Y$ iff there exists a k-element finite 0 -sequence x of \mathbb{N} and there exists an $\left(n_{4}+n_{3}\right)$-element finite 0 -sequence y of \mathbb{N} such that $s=x$ and $\operatorname{eval}\left(H,{ }^{@}\left(x^{\frown} y\right)\right)=0$ by [9, (25)], [11, (27)].
(28) Let us consider integers a, b, a natural number c, i_{1}, i_{2}, and i_{3}. Then $\left\{p: a \cdot p\left(i_{1}\right)=\left\lfloor\frac{b \cdot p\left(i_{2}\right)}{c \cdot p\left(i_{3}\right)}\right\rfloor\right.$ and $\left.c \cdot p\left(i_{3}\right) \neq 0\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}.
Proof: Define \mathcal{F}_{2} (natural number, natural number, natural number) $=$ $c \cdot \$_{3}+a \cdot c \cdot \$_{1} \cdot \$_{3}$. For every $n, i_{1}, i_{2}, i_{3}, i_{4}$, and $d,\left\{p: \mathcal{F}_{2}\left(p\left(i_{1}\right), p\left(i_{2}\right), p\left(i_{3}\right)\right)=\right.$ $\left.d \cdot p\left(i_{4}\right)\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}. Define \mathcal{P}_{2} [natural number, natural number, integer $] \equiv b \cdot \$_{1}+0<\$_{3}$. For every n, i_{1}, i_{2}, i_{3}, i_{4}, and $i_{5},\left\{p: \mathcal{P}_{2}\left[p\left(i_{1}\right), p\left(i_{2}\right), \mathcal{F}_{2}\left(p\left(i_{3}\right), p\left(i_{4}\right), p\left(i_{5}\right)\right)\right]\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}. Define \mathcal{P}_{3} [natural number, natural number, integer] $\equiv b \cdot \$_{1} \geqslant \$_{3}+0$. Define \mathcal{F}_{3} (natural number, natural number, natural number) $=a \cdot c \cdot \$_{1} \cdot \$_{3}$. For every $n, i_{1}, i_{2}, i_{3}, i_{4}$, and $i_{5},\left\{p: \mathcal{P}_{3}\left[p\left(i_{1}\right), p\left(i_{2}\right), \mathcal{F}_{3}\left(p\left(i_{3}\right), p\left(i_{4}\right), p\left(i_{5}\right)\right)\right]\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}.

Define $\mathcal{Q}_{1}[$ finite 0 -sequence of $\mathbb{N}] \equiv \mathcal{P}_{2}\left[\$_{1}\left(i_{2}\right), \$_{1}\left(i_{2}\right), \mathcal{F}_{2}\left(\$_{1}\left(i_{1}\right), \$_{1}\left(i_{1}\right)\right.\right.$, $\left.\left.\$_{1}\left(i_{3}\right)\right)\right]$. Define $\mathcal{Q}_{2}[$ finite 0 -sequence of $\mathbb{N}] \equiv \mathcal{P}_{3}\left[\$_{1}\left(i_{2}\right), \$_{1}\left(i_{2}\right), \mathcal{F}_{3}\left(\$_{1}\left(i_{1}\right)\right.\right.$, $\left.\left.\$_{1}\left(i_{1}\right), \$_{1}\left(i_{3}\right)\right)\right]$. Define \mathcal{Q}_{12} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \mathcal{Q}_{1}\left[\$_{1}\right]$ and $\mathcal{Q}_{2}\left[\$_{1}\right]$. Define \mathcal{Q}_{3} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv c \cdot \$_{1}\left(i_{3}\right) \neq 0 \cdot \$_{1}\left(i_{3}\right)+0$. Define \mathcal{Q}_{123} [finite 0 -sequence of $\mathbb{N}] \equiv \mathcal{Q}_{12}\left[\$_{1}\right]$ and $\mathcal{Q}_{3}\left[\$_{1}\right]$. Define \mathcal{T} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv$ $a \cdot \$_{1}\left(i_{1}\right)=\left\lfloor\frac{b \cdot \$_{1}\left(i_{2}\right)}{c \cdot \Phi_{1}\left(i_{3}\right)}\right\rfloor$ and $c \cdot \$_{1}\left(i_{3}\right) \neq 0 .\left\{p: \mathcal{Q}_{1}[p]\right.$ and $\left.\mathcal{Q}_{2}[p]\right\}$ is a Diophantine subset of the n-xtuples of $\mathbb{N} .\left\{p: \mathcal{Q}_{12}[p]\right.$ and $\left.\mathcal{Q}_{3}[p]\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}. For every $p, \mathcal{T}[p]$ iff $\mathcal{Q}_{123}[p] .\{p: \mathcal{T}[p]\}=\{q$: $\left.\mathcal{Q}_{123}[q]\right\}$.
Let us consider i_{1}, i_{2}, and i_{3}. Now we state the propositions:
(29) If $n \neq 0$, then $\left\{p: p\left(i_{1}\right) \geqslant p\left(i_{3}\right)\right.$ and $\left.p\left(i_{2}\right)=\binom{p\left(i_{1}\right)}{p\left(i_{3}\right)}\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}.
Proof: Set $n_{6}=n+6$. Define \mathcal{R} [finite 0 -sequence of \mathbb{N}] $\equiv \$_{1}\left(i_{1}\right) \geqslant \$_{1}\left(i_{3}\right)$ and $\$_{1}\left(i_{2}\right)=\binom{\$_{1}\left(i_{1}\right)}{\$_{1}\left(i_{3}\right)}$. Set $R R=\{p: \mathcal{R}[p]\}$. Reconsider $X=i_{1}, Y=i_{2}$, $Z=i_{3}, U=n, V=n+1, Y_{1}=n+2, Y_{2}=n+3, Y_{3}=n+4, U_{1}=n+5$ as an element of $n+6$. Define \mathcal{P}_{1} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \$_{1}\left(Y_{1}\right)=$ $\$_{1}(X)^{\$_{1}(Z)}$. Define \mathcal{P}_{2} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \$_{1}\left(Y_{2}\right)=\$_{1}\left(U_{1}\right)^{\$_{1}(X)}$. Define \mathcal{P}_{3} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \$_{1}\left(Y_{3}\right)=\$_{1}(U)^{\$_{1}(Z)}$. Define \mathcal{P}_{4} [finite 0 -sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}(U)>1 \cdot \$_{1}\left(Y_{1}\right)+0$. Define \mathcal{P}_{5} [finite 0 -sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}(V)=\left\lfloor\frac{1 \cdot \$_{1}\left(Y_{2}\right)}{1 \cdot \$_{1}\left(Y_{3}\right)}\right\rfloor$ and $1 \cdot \$_{1}\left(Y_{3}\right) \neq 0 .\left\{p\right.$, where p is an n_{6}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{5}[p]\right\}$ is a Diophantine subset of the n_{6}-xtuples of \mathbb{N}.

Define $\mathcal{P}_{6}[$ finite 0 -sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}(Y) \equiv 1 \cdot \$_{1}(V)\left(\bmod 1 \cdot \$_{1}(U)\right)$. Define $\mathcal{P}_{7}[$ finite 0 -sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}(U)>1 \cdot \$_{1}(Y)+0$. Define \mathcal{P}_{8} [finite 0 -sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}(X) \geqslant 1 \cdot \$_{1}(Z)+0$. Define \mathcal{P}_{9} [finite 0 -sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}\left(U_{1}\right)=1 \cdot \$_{1}(U)+1$. Define $\mathcal{P}_{12}[$ finite 0 -sequence of $\mathbb{N}] \equiv$
$\mathcal{P}_{1}\left[\$_{1}\right]$ and $\mathcal{P}_{2}\left[\$_{1}\right] .\left\{p\right.$, where p is an n_{6}-element finite 0 -sequence of \mathbb{N} : $\left.\mathcal{P}_{12}[p]\right\}$ is a Diophantine subset of the n_{6}-xtuples of \mathbb{N}. Define \mathcal{P}_{123} [finite 0 -sequence of $\mathbb{N}] \equiv \mathcal{P}_{12}\left[\$_{1}\right]$ and $\mathcal{P}_{3}\left[\$_{1}\right] .\left\{p\right.$, where p is an n_{6}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{123}[p]\right\}$ is a Diophantine subset of the n_{6}-xtuples of \mathbb{N}. Define \mathcal{P}_{1234} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \mathcal{P}_{123}\left[\$ \$_{1}\right]$ and $\mathcal{P}_{4}[\$ 1]$. $\{p$, where p is an n_{6}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{1234}[p]\right\}$ is a Diophantine subset of the n_{6}-xtuples of \mathbb{N}. Define \mathcal{P}_{12345} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \mathcal{P}_{1234}\left[\$_{1}\right]$ and $\mathcal{P}_{5}\left[\$_{1}\right]$. $\left\{p\right.$, where p is an n_{6}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{12345}[p]\right\}$ is a Diophantine subset of the n_{6}-xtuples of \mathbb{N}.

Define \mathcal{P}_{123456} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \mathcal{P}_{12345}\left[\$_{1}\right]$ and $\mathcal{P}_{6}\left[\$_{1}\right]$. $\{p$, where p is an n_{6}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{123456}[p]\right\}$ is a Diophantine subset of the n_{6}-xtuples of \mathbb{N}. Define $\mathcal{P}_{1234567}$ [finite 0 -sequence of \mathbb{N}] \equiv $\mathcal{P}_{123456}\left[\$_{1}\right]$ and $\mathcal{P}_{7}\left[\$_{1}\right]$. $\left\{p\right.$, where p is an n_{6}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{1234567}[p]\right\}$ is a Diophantine subset of the n_{6}-xtuples of \mathbb{N}. Define $\mathcal{P}_{12345678}$ [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \mathcal{P}_{1234567}\left[\$_{1}\right]$ and $\mathcal{P}_{8}\left[\$ \$_{1}\right]$. $\{p$, where p is an n_{6}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{12345678}[p]\right\}$ is a Diophantine subset of the n_{6}-xtuples of \mathbb{N}. Define $\mathcal{P}_{123456789}$ [finite 0 -sequence of \mathbb{N}] \equiv $\mathcal{P}_{12345678}\left[\$_{1}\right]$ and $\mathcal{P}_{9}\left[\$_{1}\right]$. Set $P P=\left\{p\right.$, where p is an n_{6}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{123456789}[p]\right\} . P P$ is a Diophantine subset of the $n_{6}{ }^{-}$ xtuples of \mathbb{N}. Reconsider $P P_{n}=\left\{p \upharpoonright n\right.$, where p is an n_{6}-element finite 0 -sequence of $\mathbb{N}: p \in P P\}$ as a Diophantine subset of the n-xtuples of \mathbb{N}. $P P_{n} \subseteq R R . R R \subseteq P P_{n}$.
(30) $\quad\left\{p: p\left(i_{1}\right) \geqslant p\left(i_{3}\right)\right.$ and $\left.p\left(i_{2}\right)=\binom{p\left(i_{1}\right)}{p\left(i_{3}\right)}\right\}$ is a Diophantine subset of the n xtuples of \mathbb{N}. The theorem is a consequence of (29).
Let us consider i_{1} and i_{2}. Now we state the propositions:
(31) If $n \neq 0$, then $\left\{p: p\left(i_{1}\right)=p\left(i_{2}\right)!\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}.
Proof: Set $n_{6}=n+6$. Define \mathcal{R} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \$_{1}\left(i_{1}\right)=\$_{1}\left(i_{2}\right)$!. Set $R R=\{p: \mathcal{R}[p]\}$. Reconsider $Y=i_{1}, X=i_{2}, N=n, Y_{1}=n+1$, $Y_{2}=n+2, Y_{3}=n+3, X_{1}=n+4, X_{2}=n+5$ as an element of $n+6$. Define \mathcal{P}_{1} [finite 0-sequence of $\left.\mathbb{N}\right] \equiv \$_{1}\left(Y_{1}\right)=\$_{1}\left(X_{2}\right)^{\$_{1}\left(X_{1}\right)}$. Define \mathcal{P}_{2} [finite 0 -sequence of $\mathbb{N}] \equiv \$_{1}\left(Y_{2}\right)=\$_{1}(N)^{\$_{1}(X)}$. Define \mathcal{P}_{3} [finite 0 -sequence of $\mathbb{N}] \equiv \$_{1}(N) \geqslant \$_{1}(X)$ and $\$_{1}\left(Y_{3}\right)=\binom{\$_{1}(N)}{\$_{1}(X)} .\left\{p\right.$, where p is an n_{6}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{3}[p]\right\}$ is a Diophantine subset of the n_{6}-xtuples of \mathbb{N}. Define $\mathcal{P}_{4}[$ finite 0 -sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}(Y)=\left\lfloor\frac{1 \cdot \$_{1}\left(Y_{2}\right)}{1 \cdot \$_{1}\left(Y_{3}\right)}\right\rfloor$ and 1 . $\$_{1}\left(Y_{3}\right) \neq 0$. $\left\{p\right.$, where p is an n_{6}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{4}[p]\right\}$ is a Diophantine subset of the n_{6}-xtuples of \mathbb{N}. Define \mathcal{P}_{5} [finite 0 -sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}\left(X_{2}\right)=2 \cdot \$_{1}(X)+0$. Define $\mathcal{P}_{6}[$ finite 0 -sequence of $\mathbb{N}] \equiv$ $1 \cdot \$_{1}\left(X_{1}\right)=1 \cdot \$_{1}(X)+1$. Define $\mathcal{P}_{7}[$ finite 0 -sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}(N)>$
$1 \cdot \$_{1}\left(Y_{1}\right)+0$. Define \mathcal{P}_{12} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \mathcal{P}_{1}\left[\$_{1}\right]$ and $\mathcal{P}_{2}\left[\$_{1}\right] .\{p$, where p is an n_{6}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{12}[p]\right\}$ is a Diophantine subset of the n_{6}-xtuples of \mathbb{N}.

Define \mathcal{P}_{123} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \mathcal{P}_{12}\left[\$_{1}\right]$ and $\mathcal{P}_{3}\left[\$_{1}\right]$. $\{p$, where p is an n_{6}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{123}[p]\right\}$ is a Diophantine subset of the n_{6}-xtuples of \mathbb{N}. Define \mathcal{P}_{1234} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \mathcal{P}_{123}\left[\$_{1}\right]$ and $\mathcal{P}_{4}\left[\$_{1}\right]$. $\left\{p\right.$, where p is an n_{6}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{1234}[p]\right\}$ is a Diophantine subset of the n_{6}-xtuples of \mathbb{N}. Define \mathcal{P}_{12345} [finite 0 -sequence of $\mathbb{N}] \equiv \mathcal{P}_{1234}\left[\$_{1}\right]$ and $\mathcal{P}_{5}\left[\$_{1}\right] .\left\{p\right.$, where p is an n_{6}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{12345}[p]\right\}$ is a Diophantine subset of the n_{6}-xtuples of \mathbb{N}. Define \mathcal{P}_{123456} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \mathcal{P}_{12345}\left[\$_{1}\right]$ and $\mathcal{P}_{6}\left[\${ }_{1}\right]$. $\{p$, where p is an n_{6}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{123456}[p]\right\}$ is a Diophantine subset of the n_{6}-xtuples of \mathbb{N}. Define $\mathcal{P}_{1234567}$ [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \mathcal{P}_{123456}\left[\${ }_{\$}\right]$ and $\mathcal{P}_{7}\left[\$ \$_{1}\right]$. Set $P P=\left\{p\right.$, where p is an n_{6}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{1234567}[p]\right\} . P P$ is a Diophantine subset of the n_{6}-xtuples of \mathbb{N}. Reconsider $P P_{n}=\left\{p \upharpoonright n\right.$, where p is an n_{6}-element finite 0 -sequence of $\mathbb{N}: p \in P P\}$ as a Diophantine subset of the n-xtuples of $\mathbb{N} . P P_{n} \subseteq R R$. $R R \subseteq P P_{n}$.
(32) $\quad\left\{p: p\left(i_{1}\right)=p\left(i_{2}\right)!\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}. The theorem is a consequence of (31).
(33) $\quad\left\{p: 1+\left(p\left(i_{1}\right)+1\right) \cdot\left(p\left(i_{2}\right)!\right)=p\left(i_{3}\right)\right\}$ is a Diophantine subset of the n xtuples of \mathbb{N}.
Proof: Define \mathcal{R} (natural number, natural number, natural number) $=1$. $\$_{1}+-1$. Define \mathcal{P}_{1} [natural number, natural number, integer] $\equiv 1 \cdot \$_{1} \cdot \$_{2}=$ $\$_{3}$. For every $i_{1}, i_{2}, i_{3}, i_{4}$, and $i_{5},\left\{p: \mathcal{P}_{1}\left[p\left(i_{1}\right), p\left(i_{2}\right), \mathcal{R}\left(p\left(i_{3}\right), p\left(i_{4}\right), p\left(i_{5}\right)\right)\right]\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}. Define \mathcal{F}_{2} (natural number, natural number, natural number) $=\$_{1}!$. For every i_{1}, i_{2}, i_{3}, and $i_{4},\{p$: $\left.\mathcal{F}_{2}\left(p\left(i_{1}\right), p\left(i_{2}\right), p\left(i_{3}\right)\right)=p\left(i_{4}\right)\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}. Define \mathcal{P}_{2} [natural number, natural number, natural object, natural number, natural number, natural number $] \equiv 1 \cdot \$_{1} \cdot \$_{3}=1 \cdot \$_{2}-1$.

For every $i_{1}, i_{2}, i_{3}, i_{4}$, and $i_{5},\left\{p: \mathcal{P}_{2}\left[p\left(i_{1}\right), p\left(i_{2}\right), \mathcal{F}_{2}\left(p\left(i_{3}\right), p\left(i_{4}\right), p\left(i_{5}\right)\right)\right.\right.$, $\left.\left.p\left(i_{3}\right), p\left(i_{4}\right), p\left(i_{5}\right)\right]\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}. Define \mathcal{P}_{3} [natural number, natural number, natural object, natural number, natural number, natural number] $\equiv 1 \cdot \$_{3} \cdot\left(\$_{1}!\right)=1 \cdot \$_{2}-1$. Define \mathcal{F}_{3} (natural number, natural number, natural number) $=1 \cdot \$_{1}+1$. For every n, i_{1}, i_{2}, i_{3}, i_{4}, and $i_{5},\left\{p: \mathcal{P}_{3}\left[p\left(i_{1}\right), p\left(i_{2}\right), \mathcal{F}_{3}\left(p\left(i_{3}\right), p\left(i_{4}\right), p\left(i_{5}\right)\right), p\left(i_{3}\right), p\left(i_{4}\right), p\left(i_{5}\right)\right]\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}. Define \mathcal{Q}_{1} [finite 0 -sequence of $\mathbb{N}] \equiv \mathcal{P}_{3}\left[\$_{1}\left(i_{2}\right), \$_{1}\left(i_{3}\right), 1 \cdot \$_{1}\left(i_{1}\right)+1, \$_{1}\left(i_{3}\right), \$_{1}\left(i_{3}\right), \$_{1}\left(i_{3}\right)\right]$. Define \mathcal{Q}_{2} [finite 0 -sequence of $\mathbb{N}] \equiv 1+\left(\$_{1}\left(i_{1}\right)+1\right) \cdot\left(\$_{1}\left(i_{2}\right)!\right)=\$_{1}\left(i_{3}\right) .\left\{p: \mathcal{Q}_{1}[p]\right\}=\{q$: $\left.\mathcal{Q}_{2}[q]\right\}$.

Let us consider i_{1}, i_{2}, and i_{3}. Now we state the propositions:
(34) If $n \neq 0$, then $\left\{p: p\left(i_{3}\right)=\prod\left(1+p\left(i_{1}\right) \cdot\left(\operatorname{idseq}\left(p\left(i_{2}\right)\right)\right)\right)\right.$ and $\left.p\left(i_{1}\right) \geqslant 1\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}.
Proof: Set $n_{12}=n+13$. Define \mathcal{R} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \$_{1}\left(i_{3}\right)=\Pi(1+$ $\left.\$_{1}\left(i_{1}\right) \cdot\left(\operatorname{idseq}\left(\$_{1}\left(i_{2}\right)\right)\right)\right)$ and $\$_{1}\left(i_{1}\right) \geqslant 1$. Set $R R=\{p: \mathcal{R}[p]\}$. Reconsider $X_{1}=i_{1}, X=i_{2}, Y=i_{3}, U=n, W=n+1, Y_{1}=n+2, Y_{2}=n+3$, $Y_{3}=n+4, Y_{4}=n+5, Y_{5}=n+6, X_{3}=n+7, W_{1}=n+8, Y_{6}=n+9$, $Y_{7}=n+10, X_{4}=n+11, O=n+12$ as an element of n_{12}. Define \mathcal{Q} [finite 0 -sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}\left(X_{1}\right) \geqslant 0 \cdot \$_{1}(Y)+1$. Define \mathcal{P}_{1} [finite 0 -sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}(U)>1 \cdot \$_{1}(Y)+0$. Define \mathcal{P}_{2} [finite 0 -sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}\left(X_{3}\right)=1 \cdot \$_{1}\left(X_{1}\right) \cdot \$_{1}(W)$.

Define \mathcal{P}_{3} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \$_{1}(O)=1$. Define $\mathcal{P}_{4}[$ finite 0 -sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}\left(X_{3}\right) \equiv 1 \cdot \$_{1}(O)\left(\bmod 1 \cdot \$_{1}(U)\right)$. Define \mathcal{P}_{5} [finite 0 -sequence of $\mathbb{N}] \equiv \$_{1}\left(Y_{1}\right)=\$_{1}\left(X_{1}\right)^{\$_{1}(X)}$. Define \mathcal{P}_{6} [finite 0-sequence of $\mathbb{N}] \equiv \$_{1}\left(Y_{2}\right)=\$_{1}(X)!$. $\left\{p\right.$, where p is an n_{12}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{6}[p]\right\}$ is a Diophantine subset of the n_{12}-xtuples of \mathbb{N}. Define $\mathcal{P}_{7}[$ finite 0 -sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}\left(W_{1}\right)=1 \cdot \$_{1}(W)+1 \cdot \$_{1}(X)+0$. Define \mathcal{P}_{8} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \$_{1}\left(W_{1}\right) \geqslant \$_{1}(X)$ and $\$_{1}\left(Y_{3}\right)=\binom{\$_{1}\left(W_{1}\right)}{\$_{1}(X)}$. $\left\{p\right.$, where p is an n_{12}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{8}[p]\right\}$ is a Diophantine subset of the n_{12}-xtuples of \mathbb{N}. Define \mathcal{P}_{9} [finite 0 -sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}\left(Y_{6}\right)=1 \cdot \$_{1}\left(Y_{1}\right) \cdot \$_{1}\left(Y_{2}\right)$. Define $\mathcal{P} \mathcal{A}$ [finite 0 -sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}\left(Y_{7}\right)=1 \cdot \$_{1}\left(Y_{6}\right) \cdot \$_{1}\left(Y_{3}\right)$. Define $\mathcal{P B}$ [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv$ $1 \cdot \$_{1}\left(Y_{7}\right) \equiv 1 \cdot \$_{1}(Y)\left(\bmod 1 \cdot \$_{1}(U)\right)$. Define $\mathcal{P C}[$ finite 0 -sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}\left(X_{4}\right)=1 \cdot \$_{1}\left(X_{1}\right) \cdot \$_{1}(X)$. Define $\mathcal{P D}$ [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv$ $1 \cdot \$_{1}\left(Y_{4}\right)=1 \cdot \$_{1}\left(X_{4}\right)+1$. Define $\mathcal{P E}$ [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \$_{1}\left(Y_{5}\right)=$ $\$_{1}\left(Y_{4}\right)^{\$_{1}(X)}$. Define $\mathcal{P F}[$ finite 0-sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}(U)>1 \cdot \$_{1}\left(Y_{5}\right)+0$.

Define $\mathcal{C}_{1}[$ finite 0 -sequence of $\mathbb{N}] \equiv \mathcal{Q}\left[\$_{1}\right]$ and $\mathcal{P}_{1}[\$ 1]$. $\{p$, where p is an n_{12}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{C}_{1}[p]\right\}$ is a Diophantine subset of the n_{12}-xtuples of \mathbb{N}. Define \mathcal{C}_{2} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \mathcal{C}_{1}\left[\$_{1}\right]$ and $\mathcal{P}_{2}\left[\$_{1}\right]$. $\left\{p\right.$, where p is an n_{12}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{C}_{2}[p]\right\}$ is a Diophantine subset of the n_{12}-xtuples of \mathbb{N}. Define \mathcal{C}_{3} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \mathcal{C}_{2}\left[\$_{1}\right]$ and $\mathcal{P}_{3}\left[\$_{1}\right]$. $\left\{p\right.$, where p is an n_{12}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{C}_{3}[p]\right\}$ is a Diophantine subset of the n_{12}-xtuples of \mathbb{N}. Define \mathcal{C}_{4} [finite 0 -sequence of $\mathbb{N}] \equiv \mathcal{C}_{3}\left[\$_{1}\right]$ and $\mathcal{P}_{4}\left[\$_{1}\right]$. $\left\{p\right.$, where p is an n_{12}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{C}_{4}[p]\right\}$ is a Diophantine subset of the n_{12}-xtuples of \mathbb{N}. Define \mathcal{C}_{5} [finite 0 -sequence of $\mathbb{N}] \equiv \mathcal{C}_{4}\left[\$_{1}\right]$ and $\mathcal{P}_{5}\left[\$_{1}\right] .\left\{p\right.$, where p is an n_{12}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{C}_{5}[p]\right\}$ is a Diophantine subset of the n_{12}-xtuples of \mathbb{N}. Define $\mathcal{C}_{6}[$ finite 0 -sequence of $\mathbb{N}] \equiv \mathcal{C}_{5}\left[\$ \$_{1}\right]$ and $\mathcal{P}_{6}[\$ 1]$. $\left\{p\right.$, where p is an $n_{12^{-}}$ element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{C}_{6}[p]\right\}$ is a Diophantine subset of the $n_{12^{-}}$ xtuples of \mathbb{N}. Define \mathcal{C}_{7} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \mathcal{C}_{6}\left[\$_{1}\right]$ and $\mathcal{P}_{7}\left[\$_{1}\right]$. $\{p$,
where p is an n_{12}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{C}_{7}[p]\right\}$ is a Diophantine subset of the n_{12}-xtuples of \mathbb{N}. Define \mathcal{C}_{8} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \mathcal{C}_{7}\left[\$_{1}\right]$ and $\mathcal{P}_{8}\left[\$_{1}\right]$. $\left\{p\right.$, where p is an n_{12}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{C}_{8}[p]\right\}$ is a Diophantine subset of the n_{12}-xtuples of \mathbb{N}. Define \mathcal{C}_{9} [finite 0 -sequence of $\mathbb{N}] \equiv \mathcal{C}_{8}\left[\$_{1}\right]$ and $\mathcal{P}_{9}\left[\$_{1}\right] .\left\{p\right.$, where p is an n_{12}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{C}_{9}[p]\right\}$ is a Diophantine subset of the n_{12}-xtuples of \mathbb{N}.

Define $\mathcal{C A}$ [finite 0 -sequence of $\mathbb{N}] \equiv \mathcal{C}_{9}\left[\$_{1}\right]$ and $\mathcal{P A}\left[\${ }_{1}\right]$. $\{p$, where p is an n_{12}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{C A}[p]\right\}$ is a Diophantine subset of the n_{12}-xtuples of \mathbb{N}. Define $\mathcal{C B}$ [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \mathcal{C A}\left[\$_{1}\right]$ and $\mathcal{P B}\left[\$_{1}\right] .\left\{p\right.$, where p is an n_{12}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{C B}[p]\right\}$ is a Diophantine subset of the n_{12}-xtuples of \mathbb{N}. Define $\mathcal{C C}[$ finite 0 -sequence of $\mathbb{N}] \equiv \mathcal{C B}\left[\$_{1}\right]$ and $\mathcal{P C}\left[\$_{1}\right]$. $\left\{p\right.$, where p is an n_{12}-element finite 0 -sequence of $\mathbb{N}: \mathcal{C C}[p]\}$ is a Diophantine subset of the n_{12}-xtuples of \mathbb{N}. Define $\mathcal{C D}$ [finite 0 -sequence of $\mathbb{N}] \equiv \mathcal{C C}\left[\$_{1}\right]$ and $\mathcal{P D}\left[\$_{1}\right]$. $\left\{p\right.$, where p is an n_{12}-element finite 0 -sequence of $\mathbb{N}: \mathcal{C D}[p]\}$ is a Diophantine subset of the n_{12}-xtuples of \mathbb{N}. Define $\mathcal{C E}$ [finite 0 -sequence of $\mathbb{N}] \equiv \mathcal{C D}\left[\$_{1}\right]$ and $\mathcal{P E}\left[\$_{1}\right]$. $\{p$, where p is an n_{12}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{C E}[p]\right\}$ is a Diophantine subset of the n_{12}-xtuples of \mathbb{N}. Define $\mathcal{C F}$ [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \mathcal{C E}\left[\$_{1}\right]$ and $\mathcal{P F}\left[\$_{1}\right]$. Set $P P=\left\{p\right.$, where p is an n_{12}-element finite 0 -sequence of \mathbb{N} : $\mathcal{C F}[p]\} . P P$ is a Diophantine subset of the n_{12}-xtuples of \mathbb{N}. Reconsider $P P_{n}=\left\{p \upharpoonright n\right.$, where p is an n_{12}-element finite 0 -sequence of $\left.\mathbb{N}: p \in P P\right\}$ as a Diophantine subset of the n-xtuples of $\mathbb{N} . P P_{n} \subseteq R R . R R \subseteq P P_{n} . \square$
(35) $\quad\left\{p: p\left(i_{3}\right)=\Pi\left(1+p\left(i_{1}\right) \cdot\left(\operatorname{idseq}\left(p\left(i_{2}\right)\right)\right)\right)\right.$ and $\left.p\left(i_{1}\right) \geqslant 1\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}. The theorem is a consequence of (34).
(36) $\quad\left\{p: p\left(i_{3}\right)=\Pi\left(1+p\left(i_{1}\right)!\cdot\left(\operatorname{idseq}\left(1+p\left(i_{2}\right)\right)\right)\right)\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}.
Proof: Define \mathcal{R} (natural number, natural number, natural number) $=\$_{1}$!. For every i_{1}, i_{2}, i_{3}, and $i_{4},\left\{p: \mathcal{R}\left(p\left(i_{1}\right), p\left(i_{2}\right), p\left(i_{3}\right)\right)=p\left(i_{4}\right)\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}. Define \mathcal{P}_{1} [natural number, natural number, natural object, natural number, natural number, natural number] $\equiv \$_{1}=\Pi\left(1+\$_{3} \cdot\left(\operatorname{idseq}\left(\$_{2}\right)\right)\right)$ and $\$_{3} \geqslant 1$. For every $i_{1}, i_{2}, i_{3}, i_{4}, i_{5}$, and $i_{6},\left\{p: \mathcal{P}_{1}\left[p\left(i_{1}\right), p\left(i_{2}\right), p\left(i_{3}\right), p\left(i_{4}\right), p\left(i_{5}\right), p\left(i_{6}\right)\right]\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}.

For every $i_{1}, i_{2}, i_{3}, i_{4}$, and $i_{5},\left\{p: \mathcal{P}_{1}\left[p\left(i_{1}\right), p\left(i_{2}\right), \mathcal{R}\left(p\left(i_{3}\right), p\left(i_{4}\right), p\left(i_{5}\right)\right)\right.\right.$, $\left.\left.p\left(i_{3}\right), p\left(i_{4}\right), p\left(i_{5}\right)\right]\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}. Define \mathcal{F}_{2} (natural number, natural number, natural number) $=1 \cdot \$_{1}+1$. Define \mathcal{P}_{2} [natural number, natural number, natural object, natural number, natural number, natural number $] \equiv \$_{1}=\Pi\left(1+\$_{2}!\cdot\left(\mathrm{idseq}\left(\$_{3}\right)\right)\right)$ and $\$_{2}!\geqslant 1$. For every $i_{1}, i_{2}, i_{3}, i_{4}$, and $i_{5},\left\{p: \mathcal{P}_{2}\left[p\left(i_{1}\right), p\left(i_{2}\right), \mathcal{F}_{2}\left(p\left(i_{3}\right), p\left(i_{4}\right), p\left(i_{5}\right)\right), p\left(i_{3}\right)\right.\right.$, $\left.\left.p\left(i_{4}\right), p\left(i_{5}\right)\right]\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}. Define \mathcal{Q}_{1} [finite

0 -sequence of $\mathbb{N}] \equiv \mathcal{P}_{2}\left[\$_{1}\left(i_{3}\right), \$_{1}\left(i_{1}\right), 1 \cdot \$_{1}\left(i_{2}\right)+1,1 \cdot \$_{1}\left(i_{3}\right), \$_{1}\left(i_{3}\right), \$_{1}\left(i_{3}\right)\right]$. Define $\mathcal{Q}_{2}[$ finite 0 -sequence of $\mathbb{N}] \equiv \$_{1}\left(i_{3}\right)=\Pi\left(1+\$_{1}\left(i_{1}\right)!\cdot\right.$ (idseq $(1+$ $\left.\left.\left.\$_{1}\left(i_{2}\right)\right)\right)\right) .\left\{p: \mathcal{Q}_{1}[p]\right\}=\left\{q: \mathcal{Q}_{2}[q]\right\}$.
Let us consider i_{1}, i_{2}, and i_{3}. Now we state the propositions:
(37) If $n \neq 0$, then $\left\{p: p\left(i_{3}\right)=\prod\left(p\left(i_{2}\right)+1+-\operatorname{idseq}\left(p\left(i_{1}\right)\right)\right)\right.$ and $\left.p\left(i_{2}\right)>p\left(i_{1}\right)\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}.
Proof: Set $n_{2}=n+2$. Define $\mathcal{R}[$ finite 0 -sequence of $\mathbb{N}] \equiv \$_{1}\left(i_{3}\right)=$ $\Pi\left(\$_{1}\left(i_{2}\right)+1+-\operatorname{idseq}\left(\$_{1}\left(i_{1}\right)\right)\right)$ and $\$_{1}\left(i_{2}\right)>\$_{1}\left(i_{1}\right)$. Set $R R=\{p: \mathcal{R}[p]\}$. Reconsider $Y=i_{3}, X_{2}=i_{2}, X_{1}=i_{1}, C=n, F=n+1$ as an element of n_{2}. Define \mathcal{P}_{1} [finite 0-sequence of $\left.\mathbb{N}\right] \equiv \$_{1}\left(X_{2}\right) \geqslant \$_{1}\left(X_{1}\right)$ and $\$_{1}(C)=$ $\binom{\$_{1}\left(X_{2}\right)}{\$_{1}\left(X_{1}\right)} .\left\{p\right.$, where p is an n_{2}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{1}[p]\right\}$ is a Diophantine subset of the n_{2}-xtuples of \mathbb{N}. Define \mathcal{P}_{2} [finite 0 -sequence of $\mathbb{N}] \equiv \$_{1}(F)=\$_{1}\left(X_{1}\right)$!. $\left\{p\right.$, where p is an n_{2}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{2}[p]\right\}$ is a Diophantine subset of the n_{2}-xtuples of \mathbb{N}. Define \mathcal{P}_{3} [finite 0 -sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}\left(X_{2}\right)>1 \cdot \$_{1}\left(X_{1}\right)+0$. Define \mathcal{P}_{4} [finite 0 -sequence of $\mathbb{N}] \equiv 1 \cdot \$_{1}(Y)=1 \cdot \$_{1}(F) \cdot \$_{1}(C)$.

Define $\mathcal{P}_{12}[$ finite 0 -sequence of $\mathbb{N}] \equiv \mathcal{P}_{1}\left[\$_{1}\right]$ and $\mathcal{P}_{2}\left[\$_{1}\right] .\{p$, where p is an n_{2}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{12}[p]\right\}$ is a Diophantine subset of the n_{2}-xtuples of \mathbb{N}. Define \mathcal{P}_{123} [finite 0 -sequence of $\left.\mathbb{N}\right] \equiv \mathcal{P}_{12}\left[\$_{1}\right]$ and $\mathcal{P}_{3}\left[\$_{1}\right] .\left\{p\right.$, where p is an n_{2}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{123}[p]\right\}$ is a Diophantine subset of the n_{2}-xtuples of \mathbb{N}. Define \mathcal{P}_{1234} [finite 0 -sequence of $\mathbb{N}] \equiv \mathcal{P}_{123}\left[\$_{1}\right]$ and $\mathcal{P}_{4}\left[\$_{1}\right]$. Set $P P=\left\{p\right.$, where p is an n_{2}-element finite 0 -sequence of $\left.\mathbb{N}: \mathcal{P}_{1234}[p]\right\}$. $P P$ is a Diophantine subset of the n_{2}-xtuples of \mathbb{N}. Reconsider $P P_{n}=\left\{p \upharpoonright n\right.$, where p is an n_{2}-element finite 0 -sequence of $\mathbb{N}: p \in P P\}$ as a Diophantine subset of the n-xtuples of $\mathbb{N} . P P_{n} \subseteq R R$. $R R \subseteq P P_{n} . \square$
(38) $\quad\left\{p: p\left(i_{3}\right)=\prod\left(p\left(i_{2}\right)+1+-\operatorname{idseq}\left(p\left(i_{1}\right)\right)\right)\right.$ and $\left.p\left(i_{2}\right)>p\left(i_{1}\right)\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}. The theorem is a consequence of (37).
(39) $\quad\left\{p: p\left(i_{1}\right)=\prod\left(i+p_{\left\lfloor n_{1}\right.} \upharpoonright n_{2}\right)\right\}$ is a Diophantine subset of the n-xtuples of \mathbb{N}.
Proof: Define \mathcal{P} [natural number] \equiv for every n such that $\$_{1}+n_{1} \leqslant n$ for every $i_{1},\left\{p: p\left(i_{1}\right)=\Pi\left(i+p_{\left\lfloor n_{1}\right.} \mid \$_{1}\right)\right\}$ is a Diophantine subset of the n xtuples of \mathbb{N}. $\mathcal{P}[0]$. If $\mathcal{P}[m]$, then $\mathcal{P}[m+1] . \mathcal{P}[m]$.

References

[1] Marcin Acewicz and Karol Pak. Basic Diophantine relations. Formalized Mathematics, 26(2):175-181, 2018. doi 10.2478/forma-2018-0015.
[2] Zofia Adamowicz and Paweł Zbierski. Logic of Mathematics: A Modern Course of Classical

Logic. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley-Interscience, 1997.
[3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[4] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9-32, 2018. doi 10.1007/s10817-017-9440-6
[5] Martin Davis. Hilbert's tenth problem is unsolvable. The American Mathematical Monthly, Mathematical Association of America, 80(3):233-269, 1973. doi 10.2307/2318447
[6] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi 10.1007/s10817-015-9345-1
[7] Artur Korniłowicz and Karol Pak. Basel problem - preliminaries. Formalized Mathematics, 25(2):141-147, 2017. doi 10.1515/forma-2017-0013
[8] Xiquan Liang, Li Yan, and Junjie Zhao. Linear congruence relation and complete residue systems. Formalized Mathematics, 15(4):181-187, 2007. doi 10.2478/v10037-007-0022-7.
[9] Karol Pak. Diophantine sets. Preliminaries. Formalized Mathematics, 26(1):81-90, 2018. doi:10.2478/forma-2018-0007.
[10] Craig Alan Smorynski. Logical Number Theory I, An Introduction. Universitext. SpringerVerlag Berlin Heidelberg, 1991. ISBN 978-3-642-75462-3.
[11] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences Formalized Mathematics, 9(4):825-829, 2001.
[12] Rafał Ziobro. On subnomials. Formalized Mathematics, 24(4):261-273, 2016. doi $10.1515 /$ forma-2016-0022.

