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Poland

Summary. This is the second part of a four-article series containing a Mi-
zar [2], [1] formalization of Kronecker’s construction about roots of polynomials
in field extensions, i.e. that for every field F and every polynomial p ∈ F [X]\F
there exists a field extension E of F such that p has a root over E. The forma-
lization follows Kronecker’s classical proof using F [X]/<p> as the desired field
extension E [5], [3], [4].

In the first part we show that an irreducible polynomial p ∈ F [X]\F has
a root over F [X]/<p>. Note, however, that this statement cannot be true in
a rigid formal sense: We do not have F ⊆ F [X]/< p> as sets, so F is not
a subfield of F [X]/<p>, and hence formally p is not even a polynomial over
F [X]/<p>. Consequently, we translate p along the canonical monomorphism
φ : F −→ F [X]/<p> and show that the translated polynomial φ(p) has a root
over F [X]/<p>.

Because F is not a subfield of F [X]/<p> we construct in this second part the
field (E \φF )∪F for a given monomorphism φ : F −→ E and show that this field
both is isomorphic to F and includes F as a subfield. In the literature this part of
the proof usually consists of saying that “one can identify F with its image φF in
F [X]/<p> and therefore consider F as a subfield of F [X]/<p>”. Interestingly, to
do so we need to assume that F ∩E = ∅, in particular Kronecker’s construction
can be formalized for fields F with F ∩ F [X] = ∅.

Surprisingly, as we show in the third part, this condition is not automatically
true for arbitray fields F : With the exception of Z2 we construct for every field F
an isomorphic copy F ′ of F with F ′ ∩ F ′[X] 6= ∅. We also prove that for Mizar’s
representations of Zn, Q and R we have Zn ∩ Zn[X] = ∅, Q ∩ Q[X] = ∅ and
R ∩ R[X] = ∅, respectively.

In the fourth part we finally define field extensions: E is a field extension
of F iff F is a subfield of E. Note, that in this case we have F ⊆ E as sets,
and thus a polynomial p over F is also a polynomial over E. We then apply the
construction of the second part to F [X]/<p> with the canonical monomorphism
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φ : F −→ F [X]/<p>. Together with the first part this gives - for fields F with
F ∩ F [X] = ∅ - a field extension E of F in which p ∈ F [X]\F has a root.
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From now on R denotes a ring, S denotes an R-monomorphic ring,K denotes
a field, F denotes a K-monomorphic field, and T denotes a K-monomorphic
commutative ring.

Let us consider R and S. Let f be a monomorphism of R and S. Let us
observe that the functor f−1 yields a function from rng f into R. Now we state
the propositions:

(1) Let us consider a monomorphism f of R and S, and elements a, b of
rng f . Then

(i) (f−1)(a+ b) = (f−1)(a) + (f−1)(b), and

(ii) (f−1)(a · b) = (f−1)(a) · (f−1)(b).

(2) Let us consider a monomorphism f of R and S, and an element a of
rng f . Then (f−1)(a) = 0R if and only if a = 0S .

Let us consider a monomorphism f of R and S. Now we state the proposi-
tions:

(3) (i) (f−1)(1S) = 1R, and

(ii) (f−1)(0S) = 0R.
The theorem is a consequence of (1).

(4) f−1 is one-to-one and onto.

(5) Let us consider a monomorphism f of R and S, and an element a of R.
Then f(a) = 0S if and only if a = 0R.

(6) Let us consider a monomorphism f of K and F , and an element a of K.
If a 6= 0K , then f(a−1) = f(a)−1. The theorem is a consequence of (5).

Let R, S be rings. We introduce the notation R and S are disjoint as a
synonym of R misses S.

One can check that R and S are disjoint if and only if the condition (Def.
1) is satisfied.

(Def. 1) ΩR ∩ ΩS = ∅.
Let us consider R and S. Let f be a monomorphism of R and S. The functor

f yielding a non empty set is defined by the term

(Def. 2) (ΩS \ rng f) ∪ ΩR.

http://zbmath.org/classification/?q=cc:12E05
http://zbmath.org/classification/?q=cc:12F05
http://zbmath.org/classification/?q=cc:68T99
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/field_2.miz
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Let R be a ring, S be an R-monomorphic ring, and a, b be elements of f .
The functor addemb(f, a, b) yielding an element of f is defined by the term

(Def. 3)



(the addition of R)(a, b), if a, b ∈ ΩR,
(the addition of S)(f(a), b), if a ∈ ΩR and b /∈ ΩR,
(the addition of S)(a, f(b)), if b ∈ ΩR and a /∈ ΩR,
(f−1)((the addition of S)(a, b)), if a /∈ ΩR and b /∈ ΩR and

(the addition of S)(a, b) ∈ rng f,
(the addition of S)(a, b), otherwise.

The functor addemb(f) yielding a binary operation on f is defined by

(Def. 4) for every elements a, b of f , it(a, b) = addemb(f, a, b).

Let K be a field, T be a K-monomorphic commutative ring, f be a mono-
morphism of K and T , and a, b be elements of f . The functor multemb(f, a, b)
yielding an element of f is defined by the term

(Def. 5)



(the multiplication of K)(a, b), if a, b ∈ ΩK ,
0K , if a = 0K or b = 0K ,
(the multiplication of T )(f(a), b), if a ∈ ΩK and a 6= 0K and

b /∈ ΩK ,
(the multiplication of T )(a, f(b)), if b ∈ ΩK and b 6= 0K and

a /∈ ΩK ,
(f−1)((the multiplication of T )(a, b)), if a /∈ ΩK and b /∈ ΩK and

(the multiplication of T )
(a, b) ∈ rng f,

(the multiplication of T )(a, b), otherwise.

The functor multemb(f) yielding a binary operation on f is defined by

(Def. 6) for every elements a, b of f , it(a, b) = multemb(f, a, b).

The functor embField(f) yielding a strict double loop structure is defined
by

(Def. 7) the carrier of it = f and the addition of it = addemb(f) and the multipli-
cation of it = multemb(f) and the one of it = 1K and the zero of it = 0K .

One can verify that embField(f) is non degenerated and embField(f) is
Abelian and right zeroed.

Let us consider a monomorphism f of K and T . Now we state the proposi-
tions:

(7) If K and T are disjoint, then embField(f) is add-associative. The the-
orem is a consequence of (1).

(8) If K and T are disjoint, then embField(f) is right complementable.

Let K be a field, T be a K-monomorphic commutative ring, and f be a mo-
nomorphism ofK and T . Note that embField(f) is commutative and well unital.
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(9) Let us consider a monomorphism f of K and F . If K and F are disjoint,
then embField(f) is associative. The theorem is a consequence of (1), (2),
and (6).

(10) Let us consider a monomorphism f of K and T . If K and T are disjoint,
then embField(f) is distributive. The theorem is a consequence of (3), (2),
and (1).

Let us consider a monomorphism f of K and F . Now we state the proposi-
tions:

(11) If K and F are disjoint, then embField(f) is almost left invertible. The
theorem is a consequence of (3).

(12) If K and F are disjoint, then embField(f) is a field.

Let K be a field, F be a K-monomorphic field, and f be a monomorphism
of K and F . The functor emb-iso(f) yielding a function from embField(f) into
F is defined by

(Def. 8) for every element a of embField(f) such that a /∈ K holds it(a) = a and
for every element a of embField(f) such that a ∈ K holds it(a) = f(a).

One can verify that emb-iso(f) is unity-preserving.
Let us consider a monomorphism f of K and F . Now we state the proposi-

tions:

(13) If K and F are disjoint, then emb-iso(f) is additive.

(14) If K and F are disjoint, then emb-iso(f) is multiplicative.

Let K be a field, F be a K-monomorphic field, and f be a monomorphism
of K and F . Note that emb-iso(f) is one-to-one.

Let us consider a monomorphism f of K and F . Now we state the proposi-
tions:

(15) If K and F are disjoint, then emb-iso(f) is onto.

(16) If K and F are disjoint, then F and embField(f) are isomorphic. The
theorem is a consequence of (13), (14), and (15).

(17) Let us consider a monomorphism f of K and F , and a field E. If E =
embField(f), then K is a subfield of E.

(18) If K and F are disjoint, then there exists a field E such that E and F
are isomorphic and K is a subfield of E. The theorem is a consequence of
(7), (9), (10), (8), (11), (16), and (17).

(19) Let us consider fields K, F . Suppose K and F are disjoint. Then F is
K-monomorphic if and only if there exists a field E such that E and F
are isomorphic and K is a subfield of E. The theorem is a consequence of
(18).
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