A Simple Example for Linear Partial Differential Equations and Its Solution Using the Method of Separation of Variables

Sora Otsuki
Shinshu University
Nagano, Japan

Pauline N. Kawamoto
Shinshu University
Nagano, Japan

Hiroshi Yamazaki
Shinshu University
Nagano, Japan

Abstract

Summary. In this article, we formalized in Mizar [4, (1) simple partial differential equations. In the first section, we formalized partial differentiability and partial derivative. The next section contains the method of separation of variables for one-dimensional wave equation. In the last section, we formalized the superposition principle. We referred to [6], [3, [5] and 9] in this formalization.

MSC: 35A08 68T99 03B35
Keywords: partial differential equations; separation of variables; superposition principle
MML identifier: PDIFFEQ1, version: 8.1.09 5.54.1341

1. Preliminaries

From now on m, n denote non zero elements of \mathbb{N}, i, j, k denote elements of \mathbb{N}, Z denotes a subset of \mathcal{R}^{2}, c denotes a real number, I denotes a non empty finite sequence of elements of \mathbb{N}, and d_{1}, d_{2} denote elements of \mathbb{R}.

Now we state the proposition:
(1) Let us consider a non zero element m of \mathbb{N}, a subset X of \mathcal{R}^{m}, a non empty finite sequence I of elements of \mathbb{N}, and a partial function f from \mathcal{R}^{m} to \mathbb{R}. Suppose f is partially differentiable on X w.r.t. I. Then $\operatorname{dom}\left(f \upharpoonright^{I} X\right)=$ X.

Let us note that $\Omega_{\mathbb{R}}$ is open and $\Omega_{\mathcal{R}^{2}}$ is open.
Now we state the proposition:
(2) Let us consider a partial function f from \mathbb{R} to \mathbb{R}, a subset Z of \mathbb{R}, and a real number x_{0}. Suppose Z is open and $x_{0} \in Z$. Then
(i) f is differentiable in x_{0} iff $f \upharpoonright Z$ is differentiable in x_{0}, and
(ii) if f is differentiable in x_{0}, then $f^{\prime}\left(x_{0}\right)=(f \upharpoonright Z)^{\prime}\left(x_{0}\right)$.

Proof: f is differentiable in x_{0} iff $f \upharpoonright Z$ is differentiable in x_{0}.
Let us consider a partial function f from \mathbb{R} to \mathbb{R} and a subset X of \mathbb{R}. Now we state the propositions:
(3) If X is open and $X \subseteq \operatorname{dom} f$, then f is differentiable on X iff $f \upharpoonright X$ is differentiable on X. The theorem is a consequence of (2).
(4) If X is open and $X \subseteq \operatorname{dom} f$ and f is differentiable on X, then $(f \upharpoonright X)_{\mid X}^{\prime}=$ $f_{\uparrow X}^{\prime}$. The theorem is a consequence of (3) and (2).
Let us consider a partial function f from \mathbb{R} to \mathbb{R} and a subset Z of \mathbb{R}. Now we state the propositions:
(5) If $Z \subseteq \operatorname{dom} f$ and Z is open and f is differentiable 1 times on Z, then f is differentiable on Z and $\left(f^{\prime}(Z)\right)(1)=f_{\lceil Z}^{\prime}$. The theorem is a consequence of (3) and (4).
(6) Suppose $Z \subseteq \operatorname{dom} f$ and Z is open and f is differentiable 2 times on Z. Then
(i) f is differentiable on Z, and
(ii) $\left(f^{\prime}(Z)\right)(1)=f_{\mid Z}^{\prime}$, and
(iii) $f_{\mid Z}^{\prime}$ is differentiable on Z, and
(iv) $\left(f^{\prime}(Z)\right)(2)=\left(f_{\mid Z}^{\prime}\right)_{Y Z}^{\prime}$.

The theorem is a consequence of (5).
(7) Let us consider subsets X, T of \mathbb{R}, a partial function f from \mathbb{R} to \mathbb{R}, and a partial function g from \mathbb{R} to \mathbb{R}. Suppose $X \subseteq \operatorname{dom} f$ and $T \subseteq \operatorname{dom} g$. Then there exists a partial function u from \mathcal{R}^{2} to \mathbb{R} such that
(i) $\operatorname{dom} u=\{\langle x, t\rangle$, where x, t are real numbers : $x \in X$ and $t \in T\}$, and
(ii) for every real numbers x, t such that $x \in X$ and $t \in T$ holds $u_{/\langle x, t\rangle}=$ $f_{/ x} \cdot\left(g_{/ t}\right)$.
Proof: Define \mathcal{Q} [object, object $] \equiv$ there exist real numbers x, t such that $x \in X$ and $t \in T$ and $\$_{1}=\langle x, t\rangle$ and $\$_{2}=f_{/ x} \cdot\left(g_{/ t}\right)$. For every objects z, w_{1}, w_{2} such that $z \in \mathcal{R}^{2}$ and $\mathcal{Q}\left[z, w_{1}\right]$ and $\mathcal{Q}\left[z, w_{2}\right]$ holds $w_{1}=w_{2}$. Consider u being a partial function from \mathcal{R}^{2} to \mathbb{R} such that for every object z, $z \in \operatorname{dom} u$ iff $z \in \mathcal{R}^{2}$ and there exists an object w such that $\mathcal{Q}[z, w]$ and for every object z such that $z \in \operatorname{dom} u$ holds $\mathcal{Q}[z, u(z)]$. For every object z,
$z \in \operatorname{dom} u$ iff $z \in\{\langle x, t\rangle$, where x, t are real numbers : $x \in X$ and $t \in T\}$. Consider x_{1}, t_{1} being real numbers such that $x_{1} \in X$ and $t_{1} \in T$ and $\langle x$, $t\rangle=\left\langle x_{1}, t_{1}\right\rangle$ and $u(\langle x, t\rangle)=f_{/ x_{1}} \cdot\left(g_{/ t_{1}}\right)$.
Let us consider a partial function f from \mathbb{R} to \mathbb{R}, a partial function g from \mathbb{R} to \mathbb{R}, a partial function u from \mathcal{R}^{2} to \mathbb{R}, real numbers x_{0}, t_{0}, and an element z of \mathcal{R}^{2}. Now we state the propositions:
(8) Suppose dom $u=\{\langle x, t\rangle$, where x, t are real numbers : $x \in \operatorname{dom} f$ and $t \in \operatorname{dom} g\}$ and for every real numbers x, t such that $x \in \operatorname{dom} f$ and $t \in \operatorname{dom} g$ holds $u_{/\langle x, t\rangle}=f_{/ x} \cdot\left(g_{/ t}\right)$ and $z=\left\langle x_{0}, t_{0}\right\rangle$ and $x_{0} \in \operatorname{dom} f$ and $t_{0} \in \operatorname{dom} g$. Then
(i) $u \cdot(\operatorname{reproj}(1, z))=g_{/ t_{0}} \cdot f$, and
(ii) $u \cdot(\operatorname{reproj}(2, z))=f_{/ x_{0}} \cdot g$.

Proof: For every object $s, s \in \operatorname{dom}(u \cdot(\operatorname{reproj}(1, z)))$ iff $s \in \operatorname{dom} f$. For every object $s, s \in \operatorname{dom}(u \cdot(\operatorname{reproj}(2, z)))$ iff $s \in \operatorname{dom} g$. For every object s such that $s \in \operatorname{dom}(u \cdot(\operatorname{reproj}(1, z)))$ holds $(u \cdot(\operatorname{reproj}(1, z)))(s)=$ $\left(g_{/ t_{0}} \cdot f\right)(s)$. For every object s such that $s \in \operatorname{dom}(u \cdot(\operatorname{reproj}(2, z)))$ holds $(u \cdot(\operatorname{reproj}(2, z)))(s)=\left(f_{/ x_{0}} \cdot g\right)(s)$ by [7, (14)].
(9) Suppose $x_{0} \in \operatorname{dom} f$ and $t_{0} \in \operatorname{dom} g$ and $z=\left\langle x_{0}, t_{0}\right\rangle$ and $\operatorname{dom} u=$ $\{\langle x, t\rangle$, where x, t are real numbers : $x \in \operatorname{dom} f$ and $t \in \operatorname{dom} g\}$ and f is differentiable in x_{0} and for every real numbers x, t such that $x \in \operatorname{dom} f$ and $t \in \operatorname{dom} g$ holds $u_{/\langle x, t\rangle}=f_{/ x} \cdot\left(g_{/ t}\right)$. Then
(i) u is partially differentiable in z w.r.t. 1 , and
(ii) $\operatorname{partdiff}(u, z, 1)=f^{\prime}\left(x_{0}\right) \cdot\left(g_{/ t_{0}}\right)$.

The theorem is a consequence of (8).
(10) Suppose $x_{0} \in \operatorname{dom} f$ and $t_{0} \in \operatorname{dom} g$ and $z=\left\langle x_{0}, t_{0}\right\rangle$ and $\operatorname{dom} u=$ $\{\langle x, t\rangle$, where x, t are real numbers : $x \in \operatorname{dom} f$ and $t \in \operatorname{dom} g\}$ and g is differentiable in t_{0} and for every real numbers x, t such that $x \in \operatorname{dom} f$ and $t \in \operatorname{dom} g$ holds $u_{/\langle x, t\rangle}=f_{/ x} \cdot\left(g_{/ t}\right)$. Then
(i) u is partially differentiable in z w.r.t. 2 , and
(ii) $\operatorname{partdiff}(u, z, 2)=f_{/ x_{0}} \cdot\left(g^{\prime}\left(t_{0}\right)\right)$.

The theorem is a consequence of (8).
Let us consider subsets X, T of \mathbb{R}, a subset Z of \mathcal{R}^{2}, a partial function f from \mathbb{R} to \mathbb{R}, a partial function g from \mathbb{R} to \mathbb{R}, and a partial function u from \mathcal{R}^{2} to \mathbb{R}. Now we state the propositions:
(11) Suppose $X \subseteq \operatorname{dom} f$ and $T \subseteq \operatorname{dom} g$ and X is open and T is open and Z is open and $Z=\{\langle x, t\rangle$, where x, t are real numbers : $x \in X$ and $t \in T\}$ and $\operatorname{dom} u=\{\langle x, t\rangle$, where x, t are real numbers : $x \in \operatorname{dom} f$ and
$t \in \operatorname{dom} g\}$ and f is differentiable on X and g is differentiable on T and for every real numbers x, t such that $x \in \operatorname{dom} f$ and $t \in \operatorname{dom} g$ holds $u_{/\langle x, t\rangle}=f_{/ x} \cdot\left(g_{/ t}\right)$. Then
(i) u is partially differentiable on Z w.r.t. $\langle 1\rangle$, and
(ii) for every real numbers x, t such that $x \in X$ and $t \in T$ holds $\left(u \Gamma^{\langle 1\rangle} Z\right)_{/\langle x, t\rangle}=f^{\prime}(x) \cdot\left(g_{/ t}\right)$, and
(iii) u is partially differentiable on Z w.r.t. $\langle 2\rangle$, and
(iv) for every real numbers x, t such that $x \in X$ and $t \in T$ holds $\left(u \upharpoonright^{\langle 2\rangle} Z\right)_{/\langle x, t\rangle}=f_{/ x} \cdot\left(g^{\prime}(t)\right)$.
Proof: $Z \subseteq \operatorname{dom} u$. For every element z of \mathcal{R}^{2} such that $z \in Z$ holds u is partially differentiable in z w.r.t. 1 . For every real numbers x, t and for every element z of \mathcal{R}^{2} such that $x \in X$ and $t \in T$ and $z=\langle x, t\rangle$ holds partdiff $(u, z, 1)=f^{\prime}(x) \cdot\left(g_{/ t}\right)$. For every real numbers x, t such that $x \in X$ and $t \in T$ holds $\left(u \upharpoonright^{\langle 1\rangle} Z\right)_{/\langle x, t\rangle}=f^{\prime}(x) \cdot\left(g_{/ t}\right)$. For every element z of \mathcal{R}^{2} such that $z \in Z$ holds u is partially differentiable in z w.r.t. 2 . For every real numbers x, t and for every element z of \mathcal{R}^{2} such that $x \in X$ and $t \in T$ and $z=\langle x, t\rangle$ holds partdiff $(u, z, 2)=f_{/ x} \cdot\left(g^{\prime}(t)\right)$.
(12) Suppose $X \subseteq \operatorname{dom} f$ and $T \subseteq \operatorname{dom} g$ and X is open and T is open and Z is open and $Z=\{\langle x, t\rangle$, where x, t are real numbers : $x \in X$ and $t \in T\}$ and $\operatorname{dom} u=\{\langle x, t\rangle$, where x, t are real numbers $: x \in \operatorname{dom} f$ and $t \in \operatorname{dom} g\}$ and f is differentiable 2 times on X and g is differentiable 2 times on T and for every real numbers x, t such that $x \in \operatorname{dom} f$ and $t \in \operatorname{dom} g$ holds $u_{/\langle x, t\rangle}=f_{/ x} \cdot\left(g_{/ t}\right)$. Then
(i) u is partially differentiable on Z w.r.t. $\langle 1\rangle^{\wedge}\langle 1\rangle$, and
(ii) for every real numbers x, t such that $x \in X$ and $t \in T$ holds $\left(u \upharpoonright^{\langle 1\rangle}\langle 1\rangle Z\right)_{/\langle x, t\rangle}=\left(f^{\prime}(X)\right)(2)_{/ x} \cdot\left(g_{/ t}\right)$, and
(iii) u is partially differentiable on Z w.r.t. $\langle 2\rangle \frown\langle 2\rangle$, and
(iv) for every real numbers x, t such that $x \in X$ and $t \in T$ holds $\left(u \upharpoonright^{\langle 2\rangle^{\wedge}\langle 2\rangle} Z\right)_{/\langle x, t\rangle}=f_{/ x} \cdot\left(\left(g^{\prime}(T)\right)(2)_{/ t}\right)$.
Proof: u is partially differentiable on Z w.r.t. $\langle 1\rangle$ and for every real numbers x, t such that $x \in X$ and $t \in T$ holds $\left(u \upharpoonright^{\langle 1\rangle} Z\right)_{/\langle x, t\rangle}=f^{\prime}(x) \cdot\left(g_{/ t}\right)$ and u is partially differentiable on Z w.r.t. $\langle 2\rangle$ and for every real numbers x, t such that $x \in X$ and $t \in T$ holds $\left(u \upharpoonright^{\langle 2\rangle} Z\right)_{/\langle x, t\rangle}=f_{/ x} \cdot\left(g^{\prime}(t)\right) . u$ is partially differentiable on Z w.r.t. 1. For every real numbers x, t such that $x \in \operatorname{dom}\left(f_{\uparrow X}^{\prime}\right)$ and $t \in \operatorname{dom}(g \upharpoonright T)$ holds $\left(u \upharpoonright^{\langle 1\rangle} Z\right)_{/\langle x, t\rangle}=\left(f_{\uparrow X}^{\prime}\right)_{/ x}$. $\left((g \upharpoonright T)_{/ t}\right) . u \upharpoonright^{\langle 1\rangle} Z$ is partially differentiable on Z w.r.t. $\langle 1\rangle$ and for every real numbers x, t such that $x \in X$ and $t \in T$ holds $\left(\left(u \upharpoonright^{\langle 1\rangle} Z\right) \upharpoonright^{\langle 1\rangle} Z\right)_{/\langle x, t\rangle}=$
$\left(f_{\lceil X}^{\prime}\right)^{\prime}(x) \cdot\left((g \mid T)_{/ t}\right)$. For every real numbers x, t such that $x \in X$ and $t \in T$ holds $\left(\left.u\right|^{\langle 1\rangle}\langle 1\rangle\langle)_{/\langle x, t\rangle}=\left(f^{\prime}(X)\right)(2)_{/ x} \cdot\left(g_{/ t}\right) . u\right.$ is partially differentiable on Z w.r.t. 2. For every real numbers x, t such that $x \in \operatorname{dom}(f \upharpoonright X)$ and $t \in \operatorname{dom}\left(g_{\mid T}^{\prime}\right)$ holds $\left(u \upharpoonright^{\langle 2\rangle} Z\right)_{/\langle x, t\rangle}=(f \mid X)_{/ x} \cdot\left(\left(g_{\mid T}^{\prime}\right)_{/ t}\right) .\left.u\right|^{\langle 2\rangle} Z$ is partially differentiable on Z w.r.t. $\langle 2\rangle$ and for every real numbers x, t such that $x \in X$ and $t \in T$ holds $\left(\left(u \Gamma^{(2)} Z\right) \upharpoonright^{\langle 2\rangle} Z\right)_{/\langle x, t\rangle}=(f \upharpoonright X)_{/ x} \cdot\left(\left(g_{\Gamma T}^{\prime}\right)^{\prime}(t)\right)$.
(13) Let us consider functions f, g from \mathbb{R} into \mathbb{R}, a partial function u from \mathcal{R}^{2} to \mathbb{R}, and a real number c. Suppose f is differentiable 2 times on $\Omega_{\mathbb{R}}$ and g is differentiable 2 times on $\Omega_{\mathbb{R}}$ and $\operatorname{dom} u=\Omega_{\mathcal{R}^{2}}$ and for every real numbers $x, t, u_{/\langle x, t\rangle}=f_{/ x} \cdot\left(g_{/ t}\right)$ and for every real numbers x, t, $f_{/ x} \cdot\left(\left(g^{\prime}\left(\Omega_{\mathbb{R}}\right)\right)(2)_{/ t}\right)=c^{2} \cdot\left(\left(f^{\prime}\left(\Omega_{\mathbb{R}}\right)\right)(2)_{/ x}\right) \cdot\left(g_{/ t}\right)$. Then
(i) u is partially differentiable on $\Omega_{\mathcal{R}^{2}}$ w.r.t. $\langle 1\rangle \wedge\langle 1\rangle$, and
(ii) for every real numbers x, t such that $x, t \in \Omega_{\mathbb{R}}$ holds

$$
\left(\left.u\right|^{\langle 1\rangle \curlyvee\langle 1\rangle} \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=\left(f^{\prime}\left(\Omega_{\mathbb{R}}\right)\right)(2)_{/ x} \cdot\left(g_{/ t}\right) \text {, and }
$$

(iii) u is partially differentiable on $\Omega_{\mathcal{R}^{2}}$ w.r.t. $\langle 2\rangle \wedge\langle 2\rangle$, and
(iv) for every real numbers x, t such that $x, t \in \Omega_{\mathbb{R}}$ holds

$$
\left(\left.u\right|^{\langle 2)^{\curlyvee}\langle 2\rangle} \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=f_{/ x} \cdot\left(\left(g^{\prime}\left(\Omega_{\mathbb{R}}\right)\right)(2)_{/ t}\right) \text {, and }
$$

(v) for every real numbers $x, t,\left(\left.u\right|^{\langle 2\rangle^{\wedge}\langle 2\rangle} \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=$

$$
c^{2} \cdot\left(\left(\left.u\right|^{\langle 1\rangle} \curlyvee\langle 1\rangle \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}\right) .
$$

The theorem is a consequence of (12).
(14) Let us consider real numbers A, B, e, and a function f from \mathbb{R} into \mathbb{R}. Suppose for every real number $x, f(x)=A \cdot($ the function $\cos)(e \cdot x)+B$. (the function \sin) $(e \cdot x)$. Then
(i) f is differentiable on $\Omega_{\mathbb{R}}$, and
(ii) for every real number $x,\left(f_{\mid \Omega_{\mathbb{R}}}^{\prime}\right)(x)=-e \cdot(A \cdot($ the function $\sin)(e \cdot x)$ $-B \cdot($ the function $\cos)(e \cdot x))$.

Proof: Reconsider $f_{1}=A \cdot($ the function $\cos) \cdot\left(e \cdot \operatorname{id}_{\Omega_{\mathbb{R}}}\right), f_{2}=B$. (the function $\sin) \cdot\left(e \cdot \mathrm{id}_{\Omega_{\mathbb{R}}}\right)$ as a partial function from \mathbb{R} to \mathbb{R}. Reconsider $Z=\Omega_{\mathbb{R}}$ as an open subset of \mathbb{R}. Reconsider $E=e \cdot \mathrm{id}_{\Omega_{\mathbb{R}}}$ as a function from \mathbb{R} into \mathbb{R}. For every real number x such that $x \in Z$ holds $E(x)=e \cdot x$. For every object x such that $x \in \operatorname{dom} f$ holds $f(x)=f_{1}(x)+f_{2}(x)$. For every real number $x,\left(f_{\wedge_{\mathbb{R}}}^{\prime}\right)(x)=-e \cdot(A \cdot($ the function $\sin)(e \cdot x)-B$. (the function $\cos)(e \cdot x)$).

2. The Method of Separation of Variables for One-dimensional Wave Equation

Now we state the propositions:
(15) Let us consider real numbers A, B, e, and a function f from \mathbb{R} into \mathbb{R}. Suppose for every real number $x, f(x)=A \cdot($ the function $\cos)(e \cdot x)+B$. (the function $\sin)(e \cdot x)$. Then
(i) f is differentiable 2 times on $\Omega_{\mathbb{R}}$, and
(ii) for every real number $x,\left(f_{\mid \Omega_{\mathbb{R}}}^{\prime}\right)(x)=-e \cdot(A \cdot($ the function $\sin)(e \cdot x)$ $-B \cdot($ the function $\cos)(e \cdot x))$ and $\left(\left(f_{\Omega_{\mathbb{R}}}^{\prime}\right)_{\Omega_{\mathbb{R}}}^{\prime}\right)(x)=-e^{2} \cdot(A$. (the function $\cos)(e \cdot x)+B \cdot($ the function $\sin)(e \cdot x))$ and $\left(f^{\prime}\left(\Omega_{\mathbb{R}}\right)\right)(2)_{/ x}+e^{2} \cdot\left(f_{/ x}\right)=0$.
Proof: f is differentiable on $\Omega_{\mathbb{R}}$ and for every real number $x,\left(f_{\Omega_{\mathbb{R}}}^{\prime}\right)(x)=$ $-e \cdot(A \cdot($ the function $\sin)(e \cdot x)-B \cdot($ the function $\cos)(e \cdot x))$. For every real number $x,\left(f_{\mathbb{R}_{\mathbb{R}}}^{\prime}\right)(x)=e \cdot B \cdot($ the function $\cos)(e \cdot x)+(-e \cdot A)$. (the function $\sin)(e \cdot x)$. For every natural number i such that $i \leqslant 2-1$ holds $\left(f^{\prime}\left(\Omega_{\mathbb{R}}\right)\right)(i)$ is differentiable on $\Omega_{\mathbb{R}}$.
(16) Let us consider real numbers A, B, e. Then there exists a function f from \mathbb{R} into \mathbb{R} such that for every real number $x, f(x)=A \cdot$ (the function $\cos)(e \cdot x)+B \cdot($ the function $\sin)(e \cdot x)$.
Proof: Define \mathcal{P} [object, object] \equiv there exists a real number t such that $\$_{1}=t$ and $\$_{2}=A \cdot($ the function $\cos)(e \cdot t)+B \cdot($ the function $\sin)(e \cdot t)$. For every object x such that $x \in \mathbb{R}$ there exists an object y such that $y \in \mathbb{R}$ and $\mathcal{P}[x, y]$. Consider f being a function from \mathbb{R} into \mathbb{R} such that for every object x such that $x \in \mathbb{R}$ holds $\mathcal{P}[x, f(x)]$.
(17) Let us consider real numbers A, B, C, d, c, e, and functions f, g from \mathbb{R} into \mathbb{R}. Suppose for every real number $x, f(x)=A \cdot$ (the function $\cos)(e \cdot x)+B \cdot($ the function $\sin)(e \cdot x)$ and for every real number $t, g(t)=$ $C \cdot($ the function $\cos)(e \cdot c \cdot t)+d \cdot($ the function $\sin)(e \cdot c \cdot t)$. Let us consider real numbers x, t. Then $f_{/ x} \cdot\left(\left(g^{\prime}\left(\Omega_{\mathbb{R}}\right)\right)(2)_{/ t}\right)=c^{2} \cdot\left(\left(f^{\prime}\left(\Omega_{\mathbb{R}}\right)\right)(2)_{/ x}\right) \cdot\left(g_{/ t}\right)$. The theorem is a consequence of (15).
(18) Let us consider functions f, g from \mathbb{R} into \mathbb{R}, and a function u from \mathcal{R}^{2} into \mathbb{R}. Suppose f is differentiable 2 times on $\Omega_{\mathbb{R}}$ and g is differentiable 2 times on $\Omega_{\mathbb{R}}$ and for every real numbers $x, t, f_{/ x} \cdot\left(\left(g^{\prime}\left(\Omega_{\mathbb{R}}\right)\right)(2)_{/ t}\right)=$ $c^{2} \cdot\left(\left(f^{\prime}\left(\Omega_{\mathbb{R}}\right)\right)(2)_{/ x}\right) \cdot\left(g_{/ t}\right)$ and for every real numbers $x, t, u_{/\langle x, t\rangle}=f_{/ x} \cdot\left(g_{/ t}\right)$. Then
(i) u is partially differentiable on $\Omega_{\mathcal{R}^{2}}$ w.r.t. $\langle 1\rangle$, and
(ii) for every real numbers $x, t,\left(\left.u\right|^{\langle 1\rangle} \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=f^{\prime}(x) \cdot\left(g_{/ t}\right)$, and
(iii) u is partially differentiable on $\Omega_{\mathcal{R}^{2}}$ w.r.t. $\langle 2\rangle$, and
(iv) for every real numbers $x, t,\left(u \upharpoonright^{\langle 2\rangle} \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=f_{/ x} \cdot\left(g^{\prime}(t)\right)$, and
(v) f is differentiable 2 times on $\Omega_{\mathbb{R}}$, and
(vi) g is differentiable 2 times on $\Omega_{\mathbb{R}}$, and
(vii) u is partially differentiable on $\Omega_{\mathcal{R}^{2}}$ w.r.t. $\langle 1\rangle^{\wedge}\langle 1\rangle$, and
(viii) for every real numbers $x, t,\left(u \uparrow^{\langle 1\rangle^{\wedge}\langle 1\rangle} \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=$ $\left(f^{\prime}\left(\Omega_{\mathbb{R}}\right)\right)(2)_{/ x} \cdot\left(g_{/ t}\right)$, and
(ix) u is partially differentiable on $\Omega_{\mathcal{R}^{2}}$ w.r.t. $\langle 2\rangle{ }^{\wedge}\langle 2\rangle$, and
(x) for every real numbers $x, t,\left(u \Gamma^{\langle 2\rangle}\langle 2\rangle \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=$ $f_{/ x} \cdot\left(\left(g^{\prime}\left(\Omega_{\mathbb{R}}\right)\right)(2)_{/ t}\right)$, and
(xi) for every real numbers $x, t,\left(u \upharpoonright^{\langle 2\rangle^{\wedge}\langle 2\rangle} \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=$ $c^{2} \cdot\left(\left(u \Gamma^{\langle 1\rangle^{\wedge}\langle 1\rangle} \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}\right)$.
The theorem is a consequence of (11) and (13).
(19) Let us consider real numbers A, B, C, d, e, c, and a function u from \mathcal{R}^{2} into \mathbb{R}. Suppose for every real numbers $x, t, u_{/\langle x, t\rangle}=(A \cdot($ the function $\cos)(e \cdot x)+B \cdot($ the function $\sin)(e \cdot x)) \cdot(C \cdot($ the function $\cos)(e \cdot c \cdot t)+$ $d \cdot($ the function $\sin)(e \cdot c \cdot t))$. Then
(i) u is partially differentiable on $\Omega_{\mathcal{R}^{2}}$ w.r.t. $\langle 1\rangle$, and
(ii) for every real numbers $x, t,\left(u \Gamma^{\langle 1\rangle} \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=$ $(-A \cdot e \cdot($ the function $\sin)(e \cdot x)+B \cdot e \cdot($ the function $\cos)(e \cdot x)) \cdot(C \cdot$ (the function $\cos)(e \cdot c \cdot t)+d \cdot($ the function $\sin)(e \cdot c \cdot t)$), and
(iii) u is partially differentiable on $\Omega_{\mathcal{R}^{2}}$ w.r.t. $\langle 2\rangle$, and
(iv) for every real numbers $x, t,\left(u \uparrow^{\langle 2\rangle} \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=(A \cdot($ the function $\cos)(e \cdot$ $x)+B \cdot($ the function $\sin)(e \cdot x)) \cdot(-C \cdot(e \cdot c) \cdot($ the function $\sin)(e \cdot c \cdot t)$ $+d \cdot(e \cdot c) \cdot($ the function $\cos)(e \cdot c \cdot t))$, and
(v) u is partially differentiable on $\Omega_{\mathcal{R}^{2}}$ w.r.t. $\langle 1\rangle^{\wedge}\langle 1\rangle$, and
(vi) for every real numbers $x, t,\left(u \upharpoonright^{\langle 1\rangle^{\wedge}\langle 1\rangle} \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=$ $-e^{2} \cdot(A \cdot($ the function $\cos)(e \cdot x)+B \cdot($ the function $\sin)(e \cdot x)) \cdot(C$. (the function $\cos)(e \cdot c \cdot t)+d \cdot($ the function $\sin)(e \cdot c \cdot t))$ and u is partially differentiable on $\Omega_{\mathcal{R}^{2}}$ w.r.t. $\langle 2\rangle^{\wedge}\langle 2\rangle$ and for every real numbers $x, t,\left(u \upharpoonright^{\langle 2\rangle}{ }^{\wedge}\langle 2\rangle \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=-(e \cdot c)^{2} \cdot(A \cdot($ the function $\cos)(e \cdot x)+B$. (the function $\sin)(e \cdot x)) \cdot(C \cdot($ the function $\cos)(e \cdot c \cdot t)+d$. (the function $\sin)(e \cdot c \cdot t)$), and
(vii) for every real numbers $x, t,\left(u \Gamma^{\langle 2\rangle^{\wedge}\langle 2\rangle} \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=$

$$
c^{2} \cdot\left(\left(u \Gamma^{\langle 1\rangle}\langle 1\rangle \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}\right) .
$$

The theorem is a consequence of $(16),(15),(17),(18)$, and (6).
(20) Let us consider a real number c. Then there exists a partial function u from \mathcal{R}^{2} to \mathbb{R} such that
(i) u is partially differentiable on $\Omega_{\mathcal{R}^{2}}$ w.r.t. $\langle 1\rangle^{\wedge}\langle 1\rangle$ and partially differentiable on $\Omega_{\mathcal{R}^{2}}$ w.r.t. $\langle 2\rangle \wedge\langle 2\rangle$, and
(ii) for every real numbers $x, t,\left(u \Gamma^{\langle 2\rangle}\langle 2\rangle \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=$ $c^{2} \cdot\left(\left(u \upharpoonright^{\langle 1\rangle}{ }^{\wedge}\langle 1\rangle \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}\right)$.
The theorem is a consequence of $(16),(7),(15),(17)$, and (18).

3. The Superposition Principle

Now we state the propositions:
(21) Let us consider real numbers C, d, c, a natural number n, and a function u from \mathcal{R}^{2} into \mathbb{R}. Suppose for every real numbers $x, t, u_{/\langle x, t\rangle}=$ (the function $\sin)(n \cdot \pi \cdot x) \cdot(C \cdot($ the function $\cos)(n \cdot \pi \cdot c \cdot t)+d \cdot($ the function $\sin)(n \cdot \pi \cdot c \cdot t)$. Then
(i) u is partially differentiable on $\Omega_{\mathcal{R}^{2}}$ w.r.t. $\langle 1\rangle$, and
(ii) for every real numbers $x, t,\left(\left.u\right|^{\langle 1\rangle} \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=n \cdot \pi \cdot$ (the function $\cos)(n \cdot \pi \cdot x) \cdot(C \cdot($ the function $\cos)(n \cdot \pi \cdot c \cdot t)+d \cdot($ the function $\sin)(n \cdot \pi \cdot c \cdot t)$, and
(iii) u is partially differentiable on $\Omega_{\mathcal{R}^{2}}$ w.r.t. $\langle 2\rangle$, and
(iv) for every real numbers $x, t,\left(u \Gamma^{\langle 2\rangle} \Omega_{\mathcal{R}^{2}}\right) /\langle x, t\rangle=$ (the function $\left.\sin \right)(n$. $\pi \cdot x) \cdot(-C \cdot(n \cdot \pi \cdot c) \cdot($ the function $\sin)(n \cdot \pi \cdot c \cdot t)+d \cdot(n \cdot \pi \cdot c) \cdot$ (the function $\cos)(n \cdot \pi \cdot c \cdot t)$), and
(v) u is partially differentiable on $\Omega_{\mathcal{R}^{2}}$ w.r.t. $\langle 1\rangle^{\wedge}\langle 1\rangle$, and
(vi) for every real numbers $x, t,\left(u \Gamma^{\langle 1\rangle^{\wedge}\langle 1\rangle} \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=-(n \cdot \pi)^{2}$. (the function $\sin)(n \cdot \pi \cdot x) \cdot(C \cdot($ the function $\cos)(n \cdot \pi \cdot c \cdot t)+d \cdot$ (the function $\sin)(n \cdot \pi \cdot c \cdot t)$) and u is partially differentiable on $\Omega_{\mathcal{R}^{2}}$ w.r.t. $\langle 2\rangle{ }^{\wedge}\langle 2\rangle$ and for every real numbers $x, t,\left(u \Gamma^{\langle 2\rangle^{\wedge}\langle 2\rangle} \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=$ $-(n \cdot \pi \cdot c)^{2} \cdot($ the function $\sin)(n \cdot \pi \cdot x) \cdot(C \cdot($ the function $\cos)(n$.
$\pi \cdot c \cdot t)+d \cdot($ the function $\sin)(n \cdot \pi \cdot c \cdot t))$, and
(vii) for every real number $t, u_{/\langle 0, t\rangle}=0$ and $u_{/\langle 1, t\rangle}=0$, and
(viii) for every real numbers $x, t,\left(u \Gamma^{\langle 2\rangle^{\wedge}\langle 2\rangle} \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=$

$$
c^{2} \cdot\left(\left(u \Gamma^{\langle 1\rangle}\langle 1\rangle \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}\right) .
$$

Proof: Set $e=n \cdot \pi$. For every real numbers $x, t,\left(u \upharpoonright^{\langle 1\rangle} \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=$ $e \cdot($ the function $\cos)(e \cdot x) \cdot(C \cdot($ the function $\cos)(e \cdot c \cdot t)+d \cdot$ (the function $\sin)(e \cdot c \cdot t)$). For every real numbers $x, t,\left(u \upharpoonright^{\langle 2\rangle} \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=$ (the function $\sin)(e \cdot x) \cdot(-C \cdot(e \cdot c) \cdot($ the function $\sin)(e \cdot c \cdot t)+d \cdot(e \cdot c) \cdot$ (the function $\cos)(e \cdot c \cdot t)$. For every real numbers $x, t,\left(u \Gamma^{\langle 1\rangle^{\wedge}\langle 1\rangle} \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=-e^{\mathbf{2}}$. (the function $\sin)(e \cdot x) \cdot(C \cdot($ the function $\cos)(e \cdot c \cdot t)+d$.
(the function $\sin)(e \cdot c \cdot t)$). For every real numbers $x, t,\left(u \uparrow^{\langle 2\rangle} \sim\langle 2\rangle \Omega_{\mathcal{R}^{2}}\right)_{/\langle x, t\rangle}=$ $-(e \cdot c)^{2} \cdot($ the function $\sin)(e \cdot x) \cdot(C \cdot($ the function $\cos)(e \cdot c \cdot t)+d \cdot$ (the function $\sin)(e \cdot c \cdot t))$. For every real number $t, u_{/\langle 0, t\rangle}=0$ and $u_{/\langle 1, t\rangle}=$ 0 by [8, (30)].
(22) Let us consider partial functions u, v from \mathcal{R}^{2} to \mathbb{R}, a subset Z of \mathcal{R}^{2}, and a real number c. Suppose Z is open and $Z \subseteq \operatorname{dom} u$ and $Z \subseteq \operatorname{dom} v$ and u is partially differentiable on Z w.r.t. $\langle 1\rangle^{\wedge}\langle 1\rangle$ and partially differentiable on Z w.r.t. $\langle 2\rangle \wedge\langle 2\rangle$ and for every real numbers x, t such that $\langle x, t\rangle \in Z$ holds $\left(\left.u\right|^{\langle 2\rangle}\langle 2\rangle Z\right)_{/\langle x, t\rangle}=c^{2} \cdot\left(\left(u \upharpoonright^{\langle 1\rangle^{\wedge}\langle 1\rangle} Z\right)_{/\langle x, t\rangle}\right)$ and v is partially differentiable on Z w.r.t. $\langle 1\rangle^{\wedge}\langle 1\rangle$ and partially differentiable on Z w.r.t. $\langle 2\rangle{ }^{\wedge}\langle 2\rangle$ and for every real numbers x, t such that $\langle x, t\rangle \in Z$ holds $\left(v \Gamma^{\langle 2\rangle^{\wedge}\langle 2\rangle} Z\right)_{/\langle x, t\rangle}=$ $c^{2} \cdot\left(\left(v \upharpoonright^{\langle 1)^{\langle }\langle 1\rangle} Z\right)_{/\langle x, t\rangle}\right)$. Then
(i) $Z \subseteq \operatorname{dom}(u+v)$, and
(ii) $u+v$ is partially differentiable on Z w.r.t. $\langle 1\rangle{ }^{\wedge}\langle 1\rangle$ and partially differentiable on Z w.r.t. $\langle 2\rangle^{\wedge}\langle 2\rangle$, and
(iii) for every real numbers x, t such that $\langle x, t\rangle \in Z$ holds

$$
\left(u+v \upharpoonright^{\langle 2\rangle^{\wedge}\langle 2\rangle} Z\right)_{/\langle x, t\rangle}=c^{2} \cdot\left(\left(u+v \upharpoonright^{\langle 1\rangle^{\wedge}\langle 1\rangle} Z\right)_{/\langle x, t\rangle}\right) .
$$

Proof: For every real numbers x, t such that $\langle x, t\rangle \in Z$ holds $(u+$ $\left.v \upharpoonright^{\langle 2)^{\langle }\langle 2\rangle} Z\right)_{/\langle x, t\rangle}=c^{2} \cdot\left(\left(u+v \uparrow^{\langle 1\rangle \sim\langle 1\rangle} Z\right)_{/\langle x, t\rangle}\right)$ by (1), [2, (75)].
(23) Let us consider a sequence u of partial functions from \mathcal{R}^{2} into \mathbb{R}, a subset Z of \mathcal{R}^{2}, and a real number c. Suppose Z is open and for every natural number $i, Z \subseteq \operatorname{dom}(u(i))$ and $\operatorname{dom}(u(i))=\operatorname{dom}(u(0))$ and $u(i)$ is partially differentiable on Z w.r.t. $\langle 1\rangle^{\wedge}\langle 1\rangle$ and partially differentiable on Z w.r.t. $\langle 2\rangle \frown\langle 2\rangle$ and for every real numbers x, t such that $\langle x, t\rangle \in Z$ holds $\left(u(i) \upharpoonright^{\langle 2\rangle}\langle 2\rangle Z\right)_{/\langle x, t\rangle}=c^{2} \cdot\left(\left(u(i) \upharpoonright^{\langle 1\rangle^{\wedge}\langle 1\rangle} Z\right)_{/\langle x, t\rangle}\right)$. Let us consider a natural number i. Then
(i) $Z \subseteq \operatorname{dom}\left(\left(\left(\sum_{\alpha=0}^{\kappa} u(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(i)\right)$, and
(ii) $\left(\left(\sum_{\alpha=0}^{\kappa} u(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(i)$ is partially differentiable on Z w.r.t. $\langle 1\rangle{ }^{\wedge}\langle 1\rangle$ and partially differentiable on Z w.r.t. $\langle 2\rangle \wedge\langle 2\rangle$, and
(iii) for every real numbers x, t such that $\langle x, t\rangle \in Z$ holds

$$
\left.\left.\begin{array}{l}
\left(\left(\left(\sum_{\alpha=0}^{\kappa} u(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(i) \Gamma^{\langle 2\rangle^{\wedge}\langle 2\rangle} Z\right)_{/\langle x, t\rangle}= \\
c^{2} \cdot\left(\left(\left(\left(\sum_{\alpha=0}^{\kappa} u(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(i) \Gamma^{\langle 1\rangle}\langle 1\rangle\right.\right. \\
Z
\end{array}\right) /\langle x, t\rangle\right) .
$$

Proof: Define \mathcal{X} [natural number] $\equiv Z \subseteq \operatorname{dom}\left(\left(\left(\sum_{\alpha=0}^{\kappa} u(\alpha)\right)_{\kappa \in \mathbb{N}}\right)\left(\$_{1}\right)\right)$ and $\left(\left(\sum_{\alpha=0}^{\kappa} u(\alpha)\right)_{\kappa \in \mathbb{N}}\right)\left(\$_{1}\right)$ is partially differentiable on Z w.r.t. $\langle 1\rangle^{\wedge}\langle 1\rangle$ and partially differentiable on Z w.r.t. $\langle 2\rangle^{\wedge}\langle 2\rangle$ and for every real numbers x, t such that $\langle x, t\rangle \in Z$ holds $\left(\left(\left(\sum_{\alpha=0}^{\kappa} u(\alpha)\right)_{\kappa \in \mathbb{N}}\right)\left(\$_{1}\right) \Gamma^{\langle 2\rangle}\langle 2\rangle Z\right)_{/\langle x, t\rangle}=c^{2}$. $\left(\left(\left(\left(\sum_{\alpha=0}^{\kappa} u(\alpha)\right)_{\kappa \in \mathbb{N}}\right)\left(\$_{1}\right) \Gamma^{\langle 1\rangle^{\wedge}\langle 1\rangle} Z\right)_{/\langle x, t\rangle}\right)$. For every natural number i such that $\mathcal{X}[i]$ holds $\mathcal{X}[i+1]$. For every natural number $n, \mathcal{X}[n]$.

Acknowledgement: We would like to thank Yasunari Shidama for useful advice on formalizing theorems.

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9-32, 2018. do1 10.1007/s10817-017-9440-6
[2] Noboru Endou, Hiroyuki Okazaki, and Yasunari Shidama. Higher-order partial differentiation. Formalized Mathematics, 20(2):113-124, 2012. doi 10.2478/v10037-012-0015-z
[3] John Fritz. Nonlinear Wave Equations, Formulation of Singularities. American Mathematical Society, 1990. ISBN 978-0-8218-7001-3.
[4] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi 10.1007/s10817-015-9345-1
[5] Mitsuhiro Nakao. Bibun-sekibun-gaku (Japanese). Kindai-kagaku-sha, pages 52-53, 1992.
[6] Ian Naismith Sneddon. Elements of Partial Differential Equations. Tokyo McGraw-Hill Kogakusha, pages 209-273, 1957.
[7] Hiroshi Yamazaki, Yoshinori Fujisawa, and Yatsuka Nakamura. On replace function and swap function for finite sequences. Formalized Mathematics, 9(3):471-474, 2001.
[8] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.
[9] Kentaro Yano. Kaiseki-gaku-gairon (Japanese). Shokabo Co., Ltd., 1982.

