Cross-Ratio in Real Vector Space

Roland Coghetto
Rue de la Brasserie 5
7100 La Louvière, Belgium

Summary. Using Mizar [1] , in the context of a real vector space, we introduce the concept of affine ratio of three aligned points (see (5).

It is also equivalent to the notion of "Mesure algébrique" to the opposite of the notion of Teilverhaltnis \int^{2} or to the opposite of the ordered length-ratio (9 .

In the second part, we introduce the classic notion of "cross-ratio" of 4 points aligned in a real vector space.

Finally, we show that if the real vector space is the real line, the notion corresponds to the classical notion ${ }^{3}$? 9 :

The cross-ratio of a quadruple of distinct points on the real line with coordinates $x_{1}, x_{2}, x_{3}, x_{4}$ is given by:

$$
\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)=\frac{x_{3}-x_{1}}{x_{3}-x_{2}} \cdot \frac{x_{4}-x_{2}}{x_{4}-x_{1}}
$$

In the Mizar Mathematical Library, the vector spaces were first defined by Kusak, Leończuk and Muzalewski in the article [6], while the actual real vector space was defined by Trybulec [10] and the complex vector space was defined by Endou [4. Nakasho and Shidama have developed a solution to explore the notions introduced by different author s^{4} [7. The definitions can be directly linked in the HTMLized version of the Mizar library ${ }^{5}$

The study of the cross-ratio will continue within the framework of the KleinBeltrami model [2, [3]. For a generalized cross-ratio, see Papadopoulos [8].

MSC: 15A03 51A05 68T99 03B35
Keywords: affine ratio; cross-ratio; real vector space; geometry
MML identifier: ANPROJ10, version: 8.1.09 5.54.1341
${ }^{1}$ https://fr.wikipedia.org/wiki/Mesure_algébrique
2 https://de.wikipedia.org/wiki/Teilverhältnis
3^{3} https://en.wikipedia.org/wiki/Cross-ratio
${ }^{4}$ http://webmizar.cs.shinshu-u.ac.jp/mmlfe/current
${ }^{5}$ Example: RealLinearSpace http://mizar.org/version/current/html/rlvect_1.html\#NM2

1. Preliminaries

Let a, b, c, d be objects. Observe that $\langle a, b, c, d\rangle(1)$ reduces to a and $\langle a, b, c$, $d\rangle(2)$ reduces to b and $\langle a, b, c, d\rangle(3)$ reduces to c and $\langle a, b, c, d\rangle(4)$ reduces to d.

Now we state the proposition:
(1) Let us consider objects $a, b, c, d, a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$. Suppose $\langle a, b, c, d\rangle=\left\langle a^{\prime}\right.$, $\left.b^{\prime}, c^{\prime}, d^{\prime}\right\rangle$. Then
(i) $a=a^{\prime}$, and
(ii) $b=b^{\prime}$, and
(iii) $c=c^{\prime}$, and
(iv) $d=d^{\prime}$.

Let r be a real number. We say that r is unit if and only if
(Def. 1) $r=1$.
Let us observe that there exists a non zero real number which is non unit.
Let r be a non unit, non zero real number. The functor op1 (r) yielding a non unit, non zero real number is defined by the term
(Def. 2) $\frac{1}{r}$.
One can check that the functor is involutive.
The functor op2(r) yielding a non unit, non zero real number is defined by the term
(Def. 3) $1-r$.
Let us observe that the functor is involutive.
From now on a, b, r denote non unit, non zero real numbers.
Now we state the propositions:
(2) (i) op2 (op1 $(r))=\frac{r-1}{r}$, and
(ii) $\mathrm{op} 1(\mathrm{op} 2(r))=\frac{1}{1-r}$, and
(iii) op1 $(\operatorname{op} 2(\operatorname{op} 1(r)))=\frac{r}{r-1}$, and
(iv) $\mathrm{op} 2(\mathrm{op} 1(\operatorname{op} 2(r)))=\frac{r}{r-1}$.
(3) (i) op2 $(\mathrm{op} 1(\mathrm{op} 2(\mathrm{op} 1(r))))=\mathrm{op} 1(\mathrm{op} 2(r))$, and
(ii) op1 $(\mathrm{op} 2(\mathrm{op} 1(\mathrm{op} 2(r))))=\mathrm{op} 2(\mathrm{op} 1(r))$.

The theorem is a consequence of (2).
(4) $\frac{\mathrm{op} 1(a)}{\mathrm{op} 1(b)}=\frac{b}{a}$.

In the sequel X denotes a non empty set and x denotes a 4-tuple of X.
Now we state the propositions:
(5) $\quad X^{4}=$ the set of all $\left\langle d_{1}, d_{2}, d_{3}, d_{4}\right\rangle$ where $d_{1}, d_{2}, d_{3}, d_{4}$ are elements of X.
(6) Let us consider objects a, b, c, d. Suppose $(a=x(1)$ or $a=x(2)$ or $a=x(3)$ or $a=x(4))$ and $(b=x(1)$ or $b=x(2)$ or $b=x(3)$ or $b=x(4))$ and $(c=x(1)$ or $c=x(2)$ or $c=x(3)$ or $c=x(4))$ and $(d=x(1)$ or $d=x(2)$ or $d=x(3)$ or $d=x(4))$. Then $\langle a, b, c, d\rangle$ is a 4 -tuple of X. The theorem is a consequence of (5).
Let X be a non empty set and x be a 4 -tuple of X. The functors: $\sigma_{1342}(x)$, $\sigma_{1423}(x), \sigma_{2143}(x), \sigma_{2314}(x)$, and $\sigma_{2341}(x)$ yielding 4-tuples of X are defined by terms
(Def. 4) $\langle x(1), x(3), x(4), x(2)\rangle$,
(Def. 5) $\langle x(1), x(4), x(2), x(3)\rangle$,
(Def. 6) $\langle x(2), x(1), x(4), x(3)\rangle$,
(Def. 7) $\langle x(2), x(3), x(1), x(4)\rangle$,
(Def. 8) $\langle x(2), x(3), x(4), x(1)\rangle$,
respectively. The functors: $\sigma_{2413}(x), \sigma_{2431}(x), \sigma_{3124}(x), \sigma_{3142}(x)$, and $\sigma_{3241}(x)$ yielding 4 -tuples of X are defined by terms
(Def. 9) $\langle x(2), x(4), x(1), x(3)\rangle$,
(Def. 10) $\langle x(2), x(4), x(3), x(1)\rangle$,
(Def. 11) $\langle x(3), x(1), x(2), x(4)\rangle$,
(Def. 12) $\langle x(3), x(1), x(4), x(2)\rangle$,
(Def. 13) $\langle x(3), x(2), x(4), x(1)\rangle$,
respectively. The functors: $\sigma_{3412}(x), \sigma_{3421}(x), \sigma_{4123}(x), \sigma_{4132}(x)$, and $\sigma_{4213}(x)$ yielding 4 -tuples of X are defined by terms
(Def. 14) $\langle x(3), x(4), x(1), x(2)\rangle$,
(Def. 15) $\langle x(3), x(4), x(2), x(1)\rangle$,
(Def. 16) $\langle x(4), x(1), x(2), x(3)\rangle$,
(Def. 17) $\langle x(4), x(1), x(3), x(2)\rangle$,
(Def. 18) $\langle x(4), x(2), x(1), x(3)\rangle$,
respectively. The functors: $\sigma_{4312}(x)$ and $\sigma_{4321}(x)$ yielding 4-tuples of X are defined by terms
(Def. 19) $\langle x(4), x(3), x(1), x(2)\rangle$,
(Def. 20) $\langle x(4), x(3), x(2), x(1)\rangle$,
respectively. The functors: $\sigma_{\mathrm{id}}(x)$ and $\sigma_{12}(x)$ yielding 4-tuples of X are defined by terms
(Def. 21) $\langle x(1), x(2), x(3), x(4)\rangle$,
(Def. 22) $\langle x(2), x(1), x(3), x(4)\rangle$,
respectively. Observe that the functor is involutive.
The functors: $\sigma_{13}(x)$ and $\sigma_{14}(x)$ yielding 4-tuples of X are defined by terms
(Def. 23) $\langle x(3), x(2), x(1), x(4)\rangle$,
(Def. 24) $\langle x(4), x(2), x(3), x(1)\rangle$,
respectively. One can check that the functor is involutive.
The functor $\sigma_{23}(x)$ yielding a 4 -tuple of X is defined by the term
(Def. 25) $\langle x(1), x(3), x(2), x(4)\rangle$.
Note that the functor is involutive.
The functors: $\sigma_{24}(x)$ and $\sigma_{34}(x)$ yielding 4-tuples of X are defined by terms (Def. 26) $\langle x(1), x(4), x(3), x(2)\rangle$,
(Def. 27) $\langle x(1), x(2), x(4), x(3)\rangle$,
respectively. Let us observe that the functor is involutive.
Note that $\sigma_{\mathrm{id}}(x)$ reduces to x.
We introduce the notation $\sigma_{1234}(x)$ as a synonym of $\sigma_{\text {id }}(x)$ and $\sigma_{2134}(x)$ as a synonym of $\sigma_{12}(x)$ and $\sigma_{3214}(x)$ as a synonym of $\sigma_{13}(x)$. And $\sigma_{4231}(x)$ as a synonym of $\sigma_{14}(x)$ and $\sigma_{1324}(x)$ as a synonym of $\sigma_{23}(x)$ and $\sigma_{1432}(x)$ as a synonym of $\sigma_{24}(x)$ and $\sigma_{1243}(x)$ as a synonym of $\sigma_{34}(x)$.

Now we state the propositions:
(7) (i) $\sigma_{12}\left(\sigma_{13}(x)\right)=\sigma_{13}\left(\sigma_{23}(x)\right)$, and
(ii) $\sigma_{12}\left(\sigma_{14}(x)\right)=\sigma_{14}\left(\sigma_{24}(x)\right)$, and
(iii) $\sigma_{12}\left(\sigma_{23}(x)\right)=\sigma_{13}\left(\sigma_{12}(x)\right)$, and
(iv) $\sigma_{12}\left(\sigma_{24}(x)\right)=\sigma_{14}\left(\sigma_{12}(x)\right)$, and
(v) $\sigma_{12}\left(\sigma_{34}(x)\right)=\sigma_{34}\left(\sigma_{12}(x)\right)$, and
(vi) $\sigma_{13}\left(\sigma_{12}(x)\right)=\sigma_{23}\left(\sigma_{13}(x)\right)$, and
(vii) $\sigma_{13}\left(\sigma_{14}(x)\right)=\sigma_{34}\left(\sigma_{13}(x)\right)$, and
(viii) $\sigma_{13}\left(\sigma_{23}(x)\right)=\sigma_{12}\left(\sigma_{13}(x)\right)$, and
(ix) $\sigma_{13}\left(\sigma_{24}(x)\right)=\sigma_{13}\left(\sigma_{24}(x)\right)$, and
$(\mathrm{x}) \sigma_{13}\left(\sigma_{34}(x)\right)=\sigma_{14}\left(\sigma_{13}(x)\right)$, and
(xi) $\sigma_{23}\left(\sigma_{12}(x)\right)=\sigma_{13}\left(\sigma_{23}(x)\right)$, and
(xii) $\sigma_{23}\left(\sigma_{13}(x)\right)=\sigma_{12}\left(\sigma_{23}(x)\right)$, and
(xiii) $\sigma_{23}\left(\sigma_{14}(x)\right)=\sigma_{14}\left(\sigma_{23}(x)\right)$, and
(xiv) $\sigma_{23}\left(\sigma_{24}(x)\right)=\sigma_{34}\left(\sigma_{23}(x)\right)$, and
(xv) $\sigma_{23}\left(\sigma_{34}(x)\right)=\sigma_{24}\left(\sigma_{23}(x)\right)$, and
$(\mathrm{xvi}) \sigma_{24}\left(\sigma_{12}(x)\right)=\sigma_{14}\left(\sigma_{24}(x)\right)$, and
(xvii) $\sigma_{24}\left(\sigma_{13}(x)\right)=\sigma_{13}\left(\sigma_{24}(x)\right)$, and
(xviii) $\sigma_{24}\left(\sigma_{14}(x)\right)=\sigma_{12}\left(\sigma_{24}(x)\right)$, and
$($ xix $) \sigma_{24}\left(\sigma_{23}(x)\right)=\sigma_{34}\left(\sigma_{24}(x)\right)$, and
$(\mathrm{xx}) \sigma_{24}\left(\sigma_{34}(x)\right)=\sigma_{23}\left(\sigma_{24}(x)\right)$, and
$(\mathrm{xxi}) \sigma_{34}\left(\sigma_{12}(x)\right)=\sigma_{12}\left(\sigma_{34}(x)\right)$, and
(xxii) $\sigma_{34}\left(\sigma_{13}(x)\right)=\sigma_{14}\left(\sigma_{34}(x)\right)$, and
(xxiii) $\sigma_{34}\left(\sigma_{14}(x)\right)=\sigma_{13}\left(\sigma_{34}(x)\right)$, and
$($ xxiv $) \sigma_{34}\left(\sigma_{23}(x)\right)=\sigma_{24}\left(\sigma_{34}(x)\right)$, and
$(\mathrm{xxv}) \sigma_{34}\left(\sigma_{24}(x)\right)=\sigma_{23}\left(\sigma_{34}(x)\right)$.
(8) (i) $\sigma_{1342}(x)=\sigma_{34}\left(\sigma_{23}(x)\right)$, and
(ii) $\sigma_{1423}(x)=\sigma_{34}\left(\sigma_{24}(x)\right)$, and
(iii) $\sigma_{2143}(x)=\sigma_{12}\left(\sigma_{34}(x)\right)$, and
(iv) $\sigma_{2314}(x)=\sigma_{23}\left(\sigma_{12}(x)\right)$, and
(v) $\sigma_{2341}(x)=\sigma_{34}\left(\sigma_{23}\left(\sigma_{12}(x)\right)\right)$, and
(vi) $\sigma_{2413}(x)=\sigma_{34}\left(\sigma_{24}\left(\sigma_{12}(x)\right)\right)$, and
(vii) $\sigma_{2431}(x)=\sigma_{24}\left(\sigma_{12}(x)\right)$, and
(viii) $\sigma_{3124}(x)=\sigma_{23}\left(\sigma_{13}(x)\right)$, and
(ix) $\sigma_{3142}(x)=\sigma_{24}\left(\sigma_{34}\left(\sigma_{13}(x)\right)\right)$, and
(x) $\sigma_{3241}(x)=\sigma_{34}\left(\sigma_{13}(x)\right)$, and
(xi) $\sigma_{3412}(x)=\sigma_{24}\left(\sigma_{13}(x)\right)$, and
(xii) $\sigma_{3421}(x)=\sigma_{24}\left(\sigma_{23}\left(\sigma_{13}(x)\right)\right)$, and
(xiii) $\sigma_{4123}(x)=\sigma_{23}\left(\sigma_{34}\left(\sigma_{14}(x)\right)\right)$, and
(xiv) $\sigma_{4132}(x)=\sigma_{24}\left(\sigma_{14}(x)\right)$, and
$(\mathrm{xv}) \sigma_{4213}(x)=\sigma_{34}\left(\sigma_{14}(x)\right)$, and
$(\mathrm{xvi}) \sigma_{4312}(x)=\sigma_{23}\left(\sigma_{24}\left(\sigma_{14}(x)\right)\right)$, and
(xvii) $\sigma_{4321}(x)=\sigma_{23}\left(\sigma_{14}(x)\right)$.
(9) (i) $\sigma_{13}\left(\sigma_{23}\left(\sigma_{13}(x)\right)\right)=\sigma_{12}(x)$, and
(ii) $\sigma_{12}\left(\sigma_{34}\left(\sigma_{23}\left(\sigma_{13}(x)\right)\right)\right)=\sigma_{34}\left(\sigma_{23}(x)\right)$, and
(iii) $\sigma_{23}\left(\sigma_{24}\left(\sigma_{14}\left(\sigma_{23}\left(\sigma_{13}(x)\right)\right)\right)\right)=\sigma_{14}(x)$.
(i) $\sigma_{23}\left(\sigma_{14}\left(\sigma_{34}(x)\right)\right)=\sigma_{24}\left(\sigma_{23}\left(\sigma_{13}(x)\right)\right)$, and
(ii) $\sigma_{34}\left(\sigma_{24}\left(\sigma_{12}(x)\right)\right)=\sigma_{24}\left(\sigma_{13}\left(\sigma_{23}(x)\right)\right)$, and
(iii) $\sigma_{24}\left(\sigma_{34}\left(\sigma_{13}(x)\right)\right)=\sigma_{12}\left(\sigma_{34}\left(\sigma_{23}(x)\right)\right)$.

2. Affine Ratio

In the sequel V denotes a real linear space and A, B, C, P, Q, R, S denote elements of V.

Now we state the proposition:
(11) P, Q and Q are collinear.

Let V be a real linear space and A, B, C be elements of V. Assume $A \neq C$ and A, B and C are collinear. The functor AffineRatio (A, B, C) yielding a real number is defined by
(Def. 28) $\quad B-A=i t \cdot(C-A)$.
Now we state the propositions:
(12) If $A \neq C$ and A, B and C are collinear, then $A-B=(\operatorname{AffineRatio}(A, B, C))$. $(A-C)$.
(13) If $A \neq C$ and A, B and C are collinear, then $\operatorname{AffineRatio~}(A, B, C)=0$ iff $A=B$.
(14) If $A \neq C$ and A, B and C are collinear, then $\operatorname{AffineRatio~}(A, B, C)=1$ iff $B=C$.
(15) Let us consider real numbers a, b. If $P \neq Q$ and $a \cdot(P-Q)=b \cdot(P-Q)$, then $a=b$.
(16) If P, Q and R are collinear and $P \neq R$ and $P \neq Q$, then $\operatorname{AffineRatio~}(P, R$, $Q)=\frac{1}{\text { AffineRatio }(P, Q, R)}$. The theorem is a consequence of (15).
(17) Suppose P, Q and R are collinear and $P \neq R$ and $Q \neq R$ and $P \neq Q$. Then AffineRatio $(Q, P, R)=\frac{\operatorname{AffineRatio}(P, Q, R)}{\operatorname{AffineRatio}(P, Q, R)-1}$. The theorem is a consequence of (13) and (14).
(18) If P, Q and R are collinear and $P \neq R$, then $\operatorname{AffineRatio}(R, Q, P)=$ 1 - AffineRatio (P, Q, R). The theorem is a consequence of (15).
(19) If P, Q and R are collinear and $P \neq R$ and $P \neq Q$, then AffineRatio $(Q, R$, $P)=\frac{\text { AffineRatio }(P, Q, R)-1}{\text { AffineRatio }(P, Q, R)}$. The theorem is a consequence of (13) and (15).
(20) If P, Q and R are collinear and $P \neq R$ and $Q \neq R$, then $\operatorname{AffineRatio~}(R, P$, $Q)=\frac{1}{1 \text {-AffineRatio }(P, Q, R)}$. The theorem is a consequence of (14) and (15).
(21) Let us consider a real number r. Suppose P, Q and R are collinear and $P \neq R$ and $Q \neq R$ and $P \neq Q$ and $r=\operatorname{AffineRatio}(P, Q, R)$. Then
(i) $\operatorname{AffineRatio}(P, R, Q)=\frac{1}{r}$, and
(ii) $\operatorname{AffineRatio}(Q, P, R)=\frac{r}{r-1}$, and
(iii) AffineRatio $(Q, R, P)=\frac{r-1}{r}$, and
(iv) $\operatorname{AffineRatio}(R, P, Q)=\frac{1}{1-r}$, and
(v) $\operatorname{AffineRatio}(R, Q, P)=1-r$.
(22) Let us consider a non zero real number a. Suppose P, Q and R are collinear and $P \neq R$. Then $\operatorname{AffineRatio}(P, Q, R)=\operatorname{AffineRatio}(a \cdot P, a$. $Q, a \cdot R)$.
(23) Let us consider elements x, y of \mathcal{R}^{1}, and 1-tuples p, q of \mathbb{R}. If $p=x$ and $q=y$, then $x+y=p+q$.
Let us consider elements x, y of $\mathcal{E}_{\mathrm{T}}^{1}$ and 1-tuples p, q of \mathbb{R}. Now we state the propositions:
(24) If $p=x$ and $q=y$, then $x+y=p+q$.
(25) If $p=x$ and $q=y$, then $x-y=p-q$.
(26) Let us consider an element x of $\mathcal{E}_{\mathrm{T}}^{1}$, and a 1-tuple p of \mathbb{R}. If $p=x$, then $-x=-p$.
(27) Let us consider a real linear space T, elements x, y of T, and 1-tuples p, q of \mathbb{R}. If $T=\mathcal{E}_{\mathrm{T}}^{1}$ and $p=x$ and $q=y$, then $x+y=p+q$.
(28) Let us consider a 1 -tuple p of \mathbb{R}. Then $-p$ is a 1 -tuple of \mathbb{R}.
(29) Let us consider a real linear space T, an element x of T, and a 1-tuple p of \mathbb{R}. If $T=\mathcal{E}_{\mathrm{T}}^{1}$ and $p=x$, then $-p=-x$. The theorem is a consequence of (27).
(30) Let us consider a real linear space T, an element x of T, and an element p of $\mathcal{E}_{\mathrm{T}}^{1}$. If $T=\mathcal{E}_{\mathrm{T}}^{1}$ and $p=x$, then $-p=-x$. The theorem is a consequence of (29).
(31) Let us consider a real linear space T, elements x, y of T, and 1-tuples p, q of \mathbb{R}. If $T=\mathcal{E}_{\mathrm{T}}^{1}$ and $p=x$ and $q=y$, then $x-y=p-q$. The theorem is a consequence of (28) and (29).
(32) Let us consider a real linear space T, elements x, y of T, and elements p, q of $\mathcal{E}_{\mathrm{T}}^{1}$. If $T=\mathcal{E}_{\mathrm{T}}^{1}$ and $p=x$ and $q=y$, then $x+y=p+q$. The theorem is a consequence of (27).
(33) Let us consider a set D, and an element d of D. Then Seg $1 \longmapsto d=\langle d\rangle$.
(34) Let us consider real numbers a, r. Then $(\cdot \mathbb{R})^{\circ}(\operatorname{Seg} 1 \longmapsto a,\langle r\rangle)=\langle a \cdot r\rangle$. The theorem is a consequence of (33).
Let us consider a real number a and a 1-tuple p of \mathbb{R}. Now we state the propositions:
(35) $\quad(\cdot \mathbb{R})^{\circ}(\operatorname{dom} p \longmapsto a, p)=a \cdot p$. The theorem is a consequence of (34).
(36) $(\cdot \mathbb{R})^{\circ}(\operatorname{dom} p \longmapsto a, p)=a \cdot p$.
(37) Let us consider a real linear space T, elements x, y of T, a real number a, and 1-tuples p, q of \mathbb{R}. If $T=\mathcal{E}_{\mathrm{T}}^{1}$ and $p=x$ and $q=y$ and $x=a \cdot y$, then $p=a \cdot q$. The theorem is a consequence of (35).
(38) Let us consider a real linear space T, elements x, y of T, a real number a, and elements p, q of $\mathcal{E}_{\mathrm{T}}^{1}$. If $T=\mathcal{E}_{\mathrm{T}}^{1}$ and $p=x$ and $q=y$, then if $x=a \cdot y$, then $p=a \cdot q$. The theorem is a consequence of (37).
(39) Let us consider a real linear space T, elements x, y of T, and elements p, q of $\mathcal{E}_{\mathrm{T}}^{1}$. If $T=\mathcal{E}_{\mathrm{T}}^{1}$ and $p=x$ and $q=y$, then $x-y=p-q$. The theorem is a consequence of (30) and (32).
(40) Let us consider 1-tuples p, q of \mathbb{R}, and a real number r. Suppose $p=r \cdot q$ and $p \neq\langle 0\rangle$. Then there exist real numbers a, b such that
(i) $p=\langle a\rangle$, and
(ii) $q=\langle b\rangle$, and
(iii) $r=\frac{a}{b}$.
(41) Let us consider elements x, y, z of $\mathcal{E}_{\mathrm{T}}^{1}$. Then x, y and z are collinear.

Let us consider a real linear space T and elements x, y, z of T. Now we state the propositions:
(42) If $T=\mathcal{E}_{\mathrm{T}}^{1}$, then x, y and z are collinear.
(43) Suppose $T=\mathcal{E}_{\mathrm{T}}^{1}$. Then suppose $z \neq x$ and $y \neq x$. Then there exist real numbers a, b, c such that
(i) $x=\langle a\rangle$, and
(ii) $y=\langle b\rangle$, and
(iii) $z=\langle c\rangle$, and
(iv) $\operatorname{AffineRatio}(x, y, z)=\frac{b-a}{c-a}$.

The theorem is a consequence of (31), (41), (37), and (40).
Now we state the propositions:
(44) Let us consider an element x of $\mathcal{E}_{\mathrm{T}}^{1}$, and real numbers a, r. If $x=\langle a\rangle$, then $r \cdot x=\langle r \cdot a\rangle$.
(45) Let us consider elements x, y of $\mathcal{E}_{\mathrm{T}}^{1}$, and real numbers a, b, r. If $x=\langle a\rangle$ and $y=\langle b\rangle$, then $x=r \cdot y$ iff $a=r \cdot b$. The theorem is a consequence of (44).
(46) Let us consider elements x, y of $\mathcal{E}_{\mathrm{T}}^{1}$, and real numbers a, b. If $x=\langle a\rangle$ and $y=\langle b\rangle$, then $x-y=\langle a-b\rangle$.
(47) Let us consider a real linear space V, elements x, y of \mathbb{R}_{F}, and elements x^{\prime}, y^{\prime} of V. If $V=\mathbb{R}_{\mathrm{F}}$ and $x=x^{\prime}$ and $y=y^{\prime}$, then $x+y=x^{\prime}+y^{\prime}$.
Let us consider a real linear space V and elements P, Q, R of V. Now we state the propositions:
(48) If P, Q and R are collinear and $P \neq R$ and $Q \neq R$ and $P \neq Q$, then $\operatorname{AffineRatio}(P, Q, R) \neq 0$ and $\operatorname{AffineRatio}(P, Q, R) \neq 1$.
(49) Suppose P, Q and R are collinear and $P \neq R$ and $Q \neq R$ and $P \neq Q$. Then there exists a non unit, non zero real number r such that
(i) $r=\operatorname{AffineRatio}(P, Q, R)$, and
(ii) AffineRatio $(P, R, Q)=o p 1(r)$, and
(iii) $\operatorname{AffineRatio}(Q, P, R)=o p 1(o p 2(o p 1(r)))$, and
(iv) AffineRatio $(Q, R, P)=o p 2(o p 1(r))$, and
(v) AffineRatio $(R, P, Q)=o p 1(o p 2(r))$, and
(vi) AffineRatio $(R, Q, P)=o p 2(r)$.

The theorem is a consequence of (13), (14), (16), (17), (18), (19), (20), and (2).

3. Cross-Ratio

Now we state the propositions:
(50) Let us consider a non empty set X, a 4-tuple x of X, and elements P, Q, R, S of X. Suppose $x=\langle P, Q, R, S\rangle$. Then
(i) $\sigma_{1234}(x)=\langle P, Q, R, S\rangle$, and
(ii) $\sigma_{1243}(x)=\langle P, Q, S, R\rangle$, and
(iii) $\sigma_{1324}(x)=\langle P, R, Q, S\rangle$, and
(iv) $\sigma_{1342}(x)=\langle P, R, S, Q\rangle$, and
(v) $\sigma_{1423}(x)=\langle P, S, Q, R\rangle$, and
(vi) $\sigma_{1432}(x)=\langle P, S, R, Q\rangle$, and
(vii) $\sigma_{2134}(x)=\langle Q, P, R, S\rangle$, and
(viii) $\sigma_{2143}(x)=\langle Q, P, S, R\rangle$, and
(ix) $\sigma_{2314}(x)=\langle Q, R, P, S\rangle$, and
(x) $\sigma_{2341}(x)=\langle Q, R, S, P\rangle$, and
(xi) $\sigma_{2413}(x)=\langle Q, S, P, R\rangle$, and (xii) $\sigma_{2431}(x)=\langle Q, S, R, P\rangle$, and (xiii) $\sigma_{3124}(x)=\langle R, P, Q, S\rangle$, and (xiv) $\sigma_{3142}(x)=\langle R, P, S, Q\rangle$, and (xv) $\sigma_{3214}(x)=\langle R, Q, P, S\rangle$, and (xvi) $\sigma_{3241}(x)=\langle R, Q, S, P\rangle$, and (xvii) $\sigma_{3412}(x)=\langle R, S, P, Q\rangle$, and

$$
\left.\begin{array}{rl}
\text { (xviii) } \sigma_{3421}(x) & =\langle R, S, Q, P\rangle, \text { and } \\
\text { (xix) } & \sigma_{4123}(x) \\
\text { (xx) } & =\langle S, P, Q, R\rangle, \text { and } \\
\text { (xxi) } & \sigma_{4213}(x) \\
\text { (xxii) } & =\langle S, P, R, Q\rangle, \text { and } \\
\sigma_{4231}(x) & =\langle S, Q, P, R\rangle, \text { and } \\
\text { (xxiii) } & \sigma_{4312}(x) \\
\text { (xxiv) } & \sigma_{4321}(x)
\end{array}=\langle S, R, P, P\rangle, \text { and }, \text {, and }, Q, P\right\rangle \text {. }
$$

(51) Let us consider a non empty set X, and a 4 -tuple x of X. Then
(i) $\sigma_{1324}\left(\sigma_{1243}(x)\right)=\sigma_{1423}(x)$, and
(ii) $\sigma_{2143}\left(\sigma_{1243}(x)\right)=\sigma_{2134}(x)$, and
(iii) $\sigma_{3412}\left(\sigma_{1243}(x)\right)=\sigma_{4312}(x)$, and
(iv) $\sigma_{4321}\left(\sigma_{1243}(x)\right)=\sigma_{3421}(x)$, and
(v) $\sigma_{3412}\left(\sigma_{1324}(x)\right)=\sigma_{2413}(x)$, and
(vi) $\sigma_{2143}\left(\sigma_{1324}(x)\right)=\sigma_{3142}(x)$, and
(vii) $\sigma_{4321}\left(\sigma_{1324}(x)\right)=\sigma_{4231}(x)$, and (viii) $\sigma_{3412}\left(\sigma_{1423}(x)\right)=\sigma_{2314}(x)$, and
(ix) $\sigma_{2143}\left(\sigma_{1423}(x)\right)=\sigma_{4132}(x)$, and
(x) $\sigma_{4321}\left(\sigma_{1423}(x)\right)=\sigma_{3241}(x)$, and
(xi) $\sigma_{1243}\left(\sigma_{1423}(x)\right)=\sigma_{1432}(x)$, and (xii) $\sigma_{4321}\left(\sigma_{1432}(x)\right)=\sigma_{2341}(x)$, and (xiii) $\sigma_{3412}\left(\sigma_{1432}(x)\right)=\sigma_{3214}(x)$, and (xiv) $\sigma_{2143}\left(\sigma_{1432}(x)\right)=\sigma_{4123}(x)$, and $(\mathrm{xv}) \sigma_{4321}\left(\sigma_{3124}(x)\right)=\sigma_{4213}(x)$, and $(\mathrm{xvi}) \sigma_{3412}\left(\sigma_{3124}(x)\right)=\sigma_{2431}(x)$, and $($ xvii $) \sigma_{2143}\left(\sigma_{3124}(x)\right)=\sigma_{1342}(x)$, and (xviii) $\sigma_{4312}\left(\sigma_{3124}(x)\right)=\sigma_{4231}(x)$, and $($ xix $) \sigma_{4321}\left(\sigma_{3124}(x)\right)=\sigma_{4213}(x)$.
In the sequel x denotes a 4-tuple of the carrier of V and $P^{\prime}, Q^{\prime}, R^{\prime}, S^{\prime}$ denote elements of V.

Let V be a real linear space and P, Q, R, S be elements of V. The functor CrossRatio (P, Q, R, S) yielding a real number is defined by the term
(Def. 29) $\quad \frac{\text { AffineRatio }(R, P, Q)}{\text { AffineRatio }(S, P, Q)}$.
Now we state the propositions:
(52) If P, Q, R, and S are collinear and $R \neq Q$ and $S \neq Q$ and $S \neq P$, then $R=P$ iff CrossRatio $(P, Q, R, S)=0$. The theorem is a consequence of (13).
(53) If $P \neq R$ and $P \neq S$, then $\operatorname{CrossRatio}(P, P, R, S)=1$. The theorem is a consequence of (11) and (14).
(54) If P, Q, R, and S are collinear and $R \neq Q$ and $S \neq Q$ and $R \neq S$ and $\operatorname{CrossRatio}(P, Q, R, S)=1$, then $P=Q$. The theorem is a consequence of (15) and (14).
(55) Suppose P, Q, R, and S are collinear and $P^{\prime}, Q^{\prime}, R^{\prime}$, and S^{\prime} are collinear and $S \neq P$ and $S \neq Q$ and $S^{\prime} \neq P^{\prime}$ and $S^{\prime} \neq Q^{\prime}$. Then CrossRatio $(P, Q, R$, $S)=\operatorname{CrossRatio}\left(P^{\prime}, Q^{\prime}, R^{\prime}, S^{\prime}\right)$ if and only if AffineRatio (R, P, Q) AffineRa$\operatorname{tio}\left(S^{\prime}, P^{\prime}, Q^{\prime}\right)=\operatorname{AffineRatio}\left(R^{\prime}, P^{\prime}, Q^{\prime}\right) \cdot \operatorname{AffineRatio}(S, P, Q)$. The theorem is a consequence of (13).
(56) If P, Q, R, and S are collinear and $P \neq S$ and $R \neq Q$ and $S \neq Q$, then $\operatorname{CrossRatio}(P, Q, R, S)=\operatorname{CrossRatio}(R, S, P, Q)$. The theorem is a consequence of (13).
(57) Let us consider a real linear space V, and elements P, Q, R, S of V. Suppose P, Q, R, and S are collinear and $P \neq R$ and $P \neq S$ and $R \neq Q$ and $S \neq Q$. Then $\operatorname{CrossRatio}(P, Q, R, S)=\operatorname{CrossRatio}(Q, P, S, R)$. The theorem is a consequence of (11), (14), and (49).
(58) If P, Q, R, and S are collinear and $P \neq R$ and $P \neq S$ and $R \neq Q$ and $S \neq Q$, then $\operatorname{CrossRatio}(P, Q, R, S)=\operatorname{CrossRatio}(S, R, Q, P)$. The theorem is a consequence of (57) and (56).
(59) $\operatorname{CrossRatio}(P, Q, S, R)=\frac{1}{\operatorname{CrossRatio}(P, Q, R, S)}$.
(60) If P, Q, R, and S are collinear and $P \neq R$ and $P \neq S$ and $R \neq Q$ and $S \neq Q$, then CrossRatio $(Q, P, R, S)=\frac{1}{\operatorname{CrossRatio}(P, Q, R, S)}$. The theorem is a consequence of (57).
(61) If P, Q, R, and S are collinear and $P \neq R$ and $P \neq S$ and $R \neq Q$ and $S \neq Q$, then CrossRatio $(R, S, Q, P)=\frac{1}{\operatorname{CrossRatio}(P, Q, R, S)}$. The theorem is a consequence of (58).
(62) If P, Q, R, and S are collinear and $P \neq R$ and $P \neq S$ and $R \neq Q$ and $S \neq Q$, then CrossRatio $(S, R, P, Q)=\frac{1}{\operatorname{CrossRatio}(P, Q, R, S)}$. The theorem is a consequence of (56).
(63) If P, Q, R, and S are collinear and P, Q, R, S are mutually different, then CrossRatio $(P, R, Q, S)=1-\operatorname{CrossRatio}(P, Q, R, S)$. The theorem is a consequence of (17), (20), (14), (13), and (15).
(64) If P, Q, R, and S are collinear and P, Q, R, S are mutually different, then CrossRatio $(Q, S, P, R)=1-\operatorname{CrossRatio}(P, Q, R, S)$. The theorem is
a consequence of (56) and (63).
(65) If P, Q, R, and S are collinear and P, Q, R, S are mutually different, then CrossRatio $(R, P, S, Q)=1-\operatorname{CrossRatio}(P, Q, R, S)$. The theorem is a consequence of (57) and (63).
(66) If P, Q, R, and S are collinear and P, Q, R, S are mutually different, then CrossRatio $(S, Q, R, P)=1-\operatorname{CrossRatio}(P, Q, R, S)$. The theorem is a consequence of (58) and (63).
Let V be a real linear space and x be a 4 -tuple of the carrier of V. The functor CrossRatio (x) yielding a real number is defined by
(Def. 30) there exist elements P, Q, R, S of V such that $P=x(1)$ and $Q=x(2)$ and $R=x(3)$ and $S=x(4)$ and $i t=\operatorname{CrossRatio}(P, Q, R, S)$.
Now we state the propositions:
(67) If $x=\langle P, Q, R, S\rangle$, then $\operatorname{CrossRatio}(P, Q, R, S)=\operatorname{CrossRatio}(x)$.
(68) Suppose $x=\langle P, Q, R, S\rangle$ and P, Q, R, and S are collinear and $P \neq S$ and $Q \neq R$ and $Q \neq S$. Then $\operatorname{CrossRatio}(x)=\operatorname{CrossRatio}\left(\sigma_{3412}(x)\right)$. The theorem is a consequence of (56).
(69) Suppose $x=\langle P, Q, R, S\rangle$ and P, Q, R, and S are collinear and $P \neq R$ and $P \neq S$ and $Q \neq R$ and $Q \neq S$. Then
(i) $\operatorname{CrossRatio}(x)=\operatorname{CrossRatio}\left(\sigma_{2143}(x)\right)$, and
(ii) CrossRatio $(x)=\operatorname{CrossRatio}\left(\sigma_{4321}(x)\right)$.

The theorem is a consequence of (57) and (58).
(70) $\operatorname{CrossRatio}\left(\sigma_{1243}(x)\right)=\frac{1}{\operatorname{CrossRatio}(x)}$.
(71) Suppose $x=\langle P, Q, R, S\rangle$ and P, Q, R, S are mutually different and P, Q, R, and S are collinear. Then there exists a non unit, non zero real number r such that
(i) $r=\operatorname{CrossRatio}(x)$, and
(ii) $\operatorname{CrossRatio}\left(\sigma_{1243}(x)\right)=\operatorname{op} 1(r)$.

The theorem is a consequence of (54), (52), and (70).
(72) Suppose $x=\langle P, Q, R, S\rangle$ and P, Q, R, and S are collinear and $P \neq R$ and $P \neq S$ and $Q \neq R$ and $Q \neq S$. Then
(i) $\operatorname{CrossRatio}\left(\sigma_{1243}(x)\right)=\frac{1}{\operatorname{CrossRatio}(x)}$, and
(ii) $\operatorname{CrossRatio}\left(\sigma_{2134}(x)\right)=\frac{1}{\operatorname{CrossRatio}(x)}$, and
(iii) $\operatorname{CrossRatio}\left(\sigma_{3421}(x)\right)=\frac{1}{\operatorname{CrossRatio}(x)}$, and
(iv) $\operatorname{CrossRatio}\left(\sigma_{4312}(x)\right)=\frac{1}{\operatorname{CrossRatio}(x)}$.

The theorem is a consequence of (69) and (68).
(73) Suppose $x=\langle P, Q, R, S\rangle$ and P, Q, R, S are mutually different and P, Q, R, and S are collinear. Then
(i) $\operatorname{CrossRatio}\left(\sigma_{1324}(x)\right)=1-\operatorname{CrossRatio}(x)$, and
(ii) $\operatorname{CrossRatio}\left(\sigma_{2413}(x)\right)=1-\operatorname{CrossRatio}(x)$, and
(iii) $\operatorname{CrossRatio}\left(\sigma_{3142}(x)\right)=1-\operatorname{CrossRatio}(x)$, and
(iv) $\operatorname{CrossRatio}\left(\sigma_{4231}(x)\right)=1-\operatorname{CrossRatio}(x)$.

The theorem is a consequence of (68), (69), and (63).
(74) Suppose $x=\langle P, Q, R, S\rangle$ and P, Q, R, S are mutually different and P, Q, R, and S are collinear. Then
(i) $\operatorname{CrossRatio}\left(\sigma_{3124}(x)\right)=\frac{1}{1-\operatorname{CrossRatio}(x)}$, and
(ii) $\operatorname{CrossRatio}\left(\sigma_{2431}(x)\right)=\frac{1}{1-\operatorname{CrossRatio}(x)}$, and
(iii) $\operatorname{CrossRatio}\left(\sigma_{1342}(x)\right)=\frac{1}{1-\operatorname{CrossRatio}(x)}$, and
(iv) $\operatorname{CrossRatio}\left(\sigma_{4213}(x)\right)=\frac{1}{1-\operatorname{CrossRatio}(x)}$.

The theorem is a consequence of (70), (73), (68), and (69).
(75) Suppose $x=\langle P, Q, R, S\rangle$ and P, Q, R, S are mutually different and P, Q, R, and S are collinear. Then
(i) $\operatorname{CrossRatio}\left(\sigma_{1423}(x)\right)=\frac{\operatorname{CrossRatio}(x)-1}{\operatorname{CrossRatio}(x)}$, and
(ii) $\operatorname{CrossRatio}\left(\sigma_{2314}(x)\right)=\frac{\operatorname{CrossRatio}(x)-1}{\operatorname{CrossRatio}(x)}$, and
(iii) $\operatorname{CrossRatio}\left(\sigma_{4132}(x)\right)=\frac{\operatorname{CrossRatio}(x)-1}{\operatorname{CrossRatio}(x)}$, and
(iv) $\operatorname{CrossRatio}\left(\sigma_{3241}(x)\right)=\frac{\operatorname{CrossRatio}(x)-1}{\operatorname{CrossRatio}(x)}$.

The theorem is a consequence of $(52),(67),(73),(72),(68)$, and (69).
(76) Suppose $x=\langle P, Q, R, S\rangle$ and P, Q, R, S are mutually different and P, Q, R, and S are collinear. Then
(i) $\operatorname{CrossRatio}\left(\sigma_{1432}(x)\right)=\frac{\operatorname{CrossRatio}(x)}{\operatorname{CrossRatio}(x)-1}$, and
(ii) $\operatorname{CrossRatio}\left(\sigma_{2341}(x)\right)=\frac{\operatorname{CrossRatio}(x)}{\operatorname{CrossRatio}(x)-1}$, and
(iii) $\operatorname{CrossRatio}\left(\sigma_{3214}(x)\right)=\frac{\operatorname{CrossRatio}(x)}{\operatorname{CrossRatio}(x)-1}$, and
(iv) $\operatorname{CrossRatio}\left(\sigma_{4123}(x)\right)=\frac{\operatorname{CrossRatio}(x)}{\operatorname{CrossRatio}(x)-1}$.

The theorem is a consequence of $(70),(75),(69)$, and (68).

4. Cross-Ratio and the Real Line

Now we state the proposition:
(77) Let us consider elements $x_{1}, x_{2}, x_{3}, x_{4}$ of $\mathcal{E}_{\mathrm{T}}^{1}$. Suppose $x_{2} \neq x_{3}$ and $x_{3} \neq x_{1}$ and $x_{2} \neq x_{4}$ and $x_{1} \neq x_{4}$. Then there exist real numbers a, b, c, d such that
(i) $x_{1}=\langle a\rangle$, and
(ii) $x_{2}=\langle b\rangle$, and
(iii) $x_{3}=\langle c\rangle$, and
(iv) $x_{4}=\langle d\rangle$, and
(v) CrossRatio $\left(\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle\right)=\frac{c-a}{c-b} \cdot \frac{d-b}{d-a}$.

The theorem is a consequence of (43).

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Roland Coghetto. Klein-Beltrami model. Part I. Formalized Mathematics, 26(1):21-32, 2018. doi 10.2478/forma-2018-0003
[3] Roland Coghetto. Klein-Beltrami model. Part II. Formalized Mathematics, 26(1):33-48, 2018. doi $10.2478 /$ forma-2018-0004.
[4] Noboru Endou. Complex linear space and complex normed space. Formalized Mathematics, 12(2):93-102, 2004.
[5] Jadwiga Knop. About a certain generalization of the affine ratio of three points and unharmonic ratio of four points. Bulletin of the Section of Logic, 32(1-2):33-42, 2003.
[6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[7] Kazuhisa Nakasho and Yasunari Shidama. Documentation generator focusing on symbols for the HTML-ized Mizar library. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, CICM 2015, volume 9150 of Lecture Notes in Computer Science, pages 343-347. Springer, Cham, 2015. doi 10.1007/978-3-319-20615-8_25
[8] Athanase Papadopoulos and Sumio Yamada. On the projective geometry of constant curvature spaces. Sophus Lie and Felix Klein: The Erlangen Program and Its Impact in Mathematics and Physics, 23:237-245, 2015.
[9] Jürgen Richter-Gebert. Perspectives on projective geometry: a guided tour through real and complex geometry. Springer Science \& Business Media, 2011.
[10] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

