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Some Remarks about Product Spaces
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Summary. This article covers some technical aspects about the product
topology which are usually not given much of a thought in mathematics and
standard literature like [7] and [6], not even by Bourbaki in [4].

Let {Ti}i∈I be a family of topological spaces. The prebasis of the product
space T =

∏
i∈I Ti is defined in [5] as the set of all π−1i (V ) with i ∈ I and V

open in Ti. Here it is shown that the basis generated by this prebasis consists
exactly of the sets

∏
i∈I Vi with Vi open in Ti and for all but finitely many i ∈ I

holds Vi = Ti. Given I = {a} we have T ∼= Ta, given I = {a, b} with a 6= b we
have T ∼= Ta × Tb. Given another family of topological spaces {Si}i∈I such that
Si ∼= Ti for all i ∈ I, we have S =

∏
i∈I Si ∼= T . If instead Si is a subspace of Ti

for each i ∈ I, then S is a subspace of T .
These results are obvious for mathematicians, but formally proven here by

means of the Mizar system [3], [2].
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1. Preliminaries

Now we state the propositions:

(1) Let us consider a one-to-one function f , and an object y. Suppose rng f =
{y}. Then dom f = {(f−1)(y)}.
Proof: Consider x0 being an object such that x0 ∈ dom f and f(x0) = y.
For every object x, x ∈ dom f iff x = (f−1)(y). �
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(2) Let us consider a one-to-one function f , and objects y1, y2. Suppose
rng f = {y1, y2}. Then dom f = {(f−1)(y1), (f−1)(y2)}.
Proof: Consider x1 being an object such that x1 ∈ dom f and f(x1) = y1.
Consider x2 being an object such that x2 ∈ dom f and f(x2) = y2. For
every object x, x ∈ dom f iff x = (f−1)(y1) or x = (f−1)(y2). �

LetX, Y be sets. Note that there exists a function which is empty,X-defined,
Y -valued, and one-to-one.

Let T , S be sets, f be a function from T into S, and G be a finite family of
subsets of T . Let us note that f◦G is finite.

Now we state the propositions:

(3) Let us consider a set A, a family F of subsets of A, and a binary relation
R. Then R◦(

⋂
F ) ⊆

⋂
{R◦X, where X is a subset of A : X ∈ F}.

(4) Let us consider a set A, a family F of subsets of A, and a one-to-one
function f . Then f◦(

⋂
F ) =

⋂
{f◦X, where X is a subset of A : X ∈ F}.

Proof: Set S = {f◦X, where X is a subset of A : X ∈ F}.
⋂
S ⊆

f◦(
⋂
F ). f◦(

⋂
F ) ⊆

⋂
S. �

(5) Let us consider a set X, a non empty set Y, and a function f from X into
Y. Then {f−1({y}), where y is an element of Y : y ∈ rng f} is a partition
of X.
Proof: Set P = {f−1({y}), where y is an element of Y : y ∈ rng f}. For
every object x, x ∈ X iff there exists a set A such that x ∈ A and A ∈ P .
For every subset A of X such that A ∈ P holds A 6= ∅ and for every subset
B of X such that B ∈ P holds A = B or A misses B. P ⊆ 2X . �

(6) Let us consider a non empty set X, and objects x, y. If X 7−→ x =
X 7−→ y, then x = y.

(7) Let us consider an object i, and a many sorted set J indexed by {i}.
Then J = {i} 7−→ J(i).
Proof: For every object x such that x ∈ dom J holds J(x) = ({i} 7−→
J(i))(x). �

(8) Let us consider a 2-element set I, and elements i, j of I. If i 6= j, then
I = {i, j}.
Proof: For every object x, x = i or x = j iff x ∈ I. �

(9) Let us consider a 2-element set I, a many sorted set f indexed by I, and
elements i, j of I. If i 6= j, then f = [i 7−→ f(i), j 7−→ f(j)]. The theorem
is a consequence of (8).

(10) Let us consider objects a, b, c, d. If a 6= b, then [a 7−→ c, b 7−→ d] =
[b 7−→ d, a 7−→ c].
Proof: For every object x such that x ∈ dom[a 7−→ c, b 7−→ d] holds
[a 7−→ c, b 7−→ d](x) = [b 7−→ d, a 7−→ c](x). �
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(11) Let us consider a function f , and objects i, j. If i, j ∈ dom f , then
f = f+·[i 7−→ f(i), j 7−→ f(j)].

(12) Let us consider objects x, y, z. Then x 7−→. y+·(x 7−→. z) = x 7−→. z.

Let us observe that there exists a function which is non non-empty.
Now we state the propositions:

(13) Let us consider non empty sets X, Y, and an element y of Y. Then
X 7−→ y ∈

∏
(X 7−→ Y ).

Proof: Set f = X 7−→ y. For every object x such that x ∈ dom(X 7−→ Y )
holds f(x) ∈ (X 7−→ Y )(x). �

(14) Let us consider a non empty set X, a set Y, and a subset Z of Y. Then∏
(X 7−→ Z) ⊆

∏
(X 7−→ Y ).

(15) Let us consider a non empty set X, and an object i. Then
∏

({i} 7−→
X) = {{i} 7−→ x, where x is an element of X}.
Proof: Set S = {{i} 7−→ x, where x is an element of X}. For every ob-
ject z, z ∈

∏
({i} 7−→ X) iff z ∈ S. �

(16) Let us consider a non empty set X, and objects i, f . Then f ∈
∏

({i} 7−→
X) if and only if there exists an element x of X such that f = {i} 7−→ x.
The theorem is a consequence of (15).

(17) Let us consider a non empty set X, an object i, and an element x of X.
Then (proj({i} 7−→ X, i))({i} 7−→ x) = x. The theorem is a consequence
of (13).

(18) Let us consider sets X, Y. Then X 6= ∅ and Y = ∅ if and only if
∏

(X 7−→
Y ) = ∅.

Let f be an empty function and x be an object. Let us note that proj(f, x)
is trivial.

Now we state the proposition:

(19) Let us consider a trivial function f , and an object x. If x ∈ dom f , then
proj(f, x) is one-to-one.
Proof: Consider t being an object such that dom f = {t}. Set F =
proj(f, x). For every objects y, z such that y, z ∈ domF and F (y) = F (z)
holds y = z. �

Let x, y be objects. Note that proj(x 7−→. y, x) is one-to-one.
Let I be a 1-element set, J be a many sorted set indexed by I, and i be

an element of I. One can verify that proj(J, i) is one-to-one.
Now we state the propositions:

(20) Let us consider a non empty set X, a subset Y of X, and an object i.
Then (proj({i} 7−→ X, i))◦(

∏
({i} 7−→ Y )) = Y. The theorem is a conse-

quence of (16), (13), and (14).
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(21) Let us consider non-empty functions f , g, and objects i, x. Suppose
x ∈
∏
f ∩
∏

(f+·g). Then (proj(f, i))(x) = (proj(f+·g, i))(x).

(22) Let us consider non-empty functions f , g, an object i, and a set A.
Suppose A ⊆

∏
f ∩
∏

(f+·g). Then (proj(f, i))◦A = (proj(f+·g, i))◦A.
The theorem is a consequence of (21).

(23) Let us consider non-empty functions f , g. Suppose dom g ⊆ dom f and
for every object i such that i ∈ dom g holds g(i) ⊆ f(i). Then

∏
(f+·g) ⊆∏

f .

Let us consider non-empty functions f , g and an object i. Now we state the
propositions:

(24) Suppose dom g ⊆ dom f and for every object i such that i ∈ dom g holds
g(i) ⊆ f(i). Then if i ∈ dom f \dom g, then (proj(f, i))◦(

∏
(f+·g)) = f(i).

The theorem is a consequence of (23) and (22).

(25) Suppose dom g ⊆ dom f and for every object i such that i ∈ dom g holds
g(i) ⊆ f(i). Then if i ∈ dom g, then (proj(f, i))◦(

∏
(f+·g)) = g(i). The

theorem is a consequence of (23) and (22).

(26) Suppose dom g = dom f and for every object i such that i ∈ dom g holds
g(i) ⊆ f(i). Then if i ∈ dom g, then (proj(f, i))◦(

∏
g) = g(i). The theorem

is a consequence of (25).

(27) Let us consider a function f , sets X, Y, and an object i. Suppose X ⊆ Y.
Then

∏
(f+·(i 7−→. X)) ⊆

∏
(f+·(i 7−→. Y )).

(28) Let us consider objects i, j, and sets A, B, C, D. Suppose A ⊆ C and
B ⊆ D. Then

∏
[i 7−→ A, j 7−→ B] ⊆

∏
[i 7−→ C, j 7−→ D]. The theorem is

a consequence of (14).

(29) Let us consider sets X, Y, and objects f , i, j. Suppose i 6= j. Then
f ∈
∏

[i 7−→ X, j 7−→ Y ] if and only if there exist objects x, y such that
x ∈ X and y ∈ Y and f = [i 7−→ x, j 7−→ y].
Proof: If f ∈

∏
[i 7−→ X, j 7−→ Y ], then there exist objects x, y such

that x ∈ X and y ∈ Y and f = [i 7−→ x, j 7−→ y]. Reconsider g = f as
a function. For every object z such that z ∈ dom[i 7−→ X, j 7−→ Y ] holds
g(z) ∈ [i 7−→ X, j 7−→ Y ](z). �

(30) Let us consider a non-empty function f , sets X, Y, objects i, j, x, y,
and a function g. Suppose x ∈ X and y ∈ Y and i 6= j and g ∈

∏
f . Then

g+·[i 7−→ x, j 7−→ y] ∈
∏

(f+·[i 7−→ X, j 7−→ Y ]).
Proof: For every object z such that z ∈ dom(f+·[i 7−→ X, j 7−→ Y ])
holds (g+·[i 7−→ x, j 7−→ y])(z) ∈ (f+·[i 7−→ X, j 7−→ Y ])(z). �

(31) Let us consider a function f , sets A, B, C, D, and objects i, j. Suppose
A ⊆ C and B ⊆ D. Then

∏
(f+·[i 7−→ A, j 7−→ B]) ⊆

∏
(f+·[i 7−→
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C, j 7−→ D]). The theorem is a consequence of (27).

(32) Let us consider a function f , sets A, B, and objects i, j. Suppose i, j ∈
dom f and A ⊆ f(i) and B ⊆ f(j). Then

∏
(f+·[i 7−→ A, j 7−→ B]) ⊆

∏
f .

The theorem is a consequence of (11) and (31).

(33) Let us consider a set I, and many sorted sets f , g indexed by I. Then∏
f ∩
∏
g =
∏

(f ∩ g).
Proof: For every object x, x ∈

∏
f ∩
∏
g iff there exists a function h

such that h = x and domh = dom(f ∩ g) and for every object y such that
y ∈ dom(f ∩ g) holds h(y) ∈ (f ∩ g)(y). �

(34) Let us consider a 2-element set I, a many sorted set f indexed by I,
elements i, j of I, and an object x. Suppose i 6= j. Then

(i) f +· (i, x) = [i 7−→ x, j 7−→ f(j)], and

(ii) f +· (j, x) = [i 7−→ f(i), j 7−→ x].

The theorem is a consequence of (10).

Let us consider a non-empty function f , a set X, and an object i. Now we
state the propositions:

(35) If i ∈ dom f , then f +· (i,X) is non-empty iff X is not empty.
Proof: For every object x such that x ∈ dom(f +· (i,X)) holds (f +·
(i,X))(x) is not empty. �

(36) If i ∈ dom f , then
∏

(f +· (i,X)) = ∅ iff X is empty. The theorem is
a consequence of (35).

(37) Let us consider a non-empty function f , a set X, objects i, x, and a func-
tion g. Suppose i ∈ dom f and x ∈ X and g ∈

∏
f . Then g +· (i, x) ∈∏

(f +· (i,X)).
Proof: For every object y such that y ∈ dom(f +· (i,X)) holds (g +·
(i, x))(y) ∈ (f +· (i,X))(y). �

(38) Let us consider a function f , sets X, Y, and an object i. Suppose i ∈
dom f and X ⊆ Y. Then

∏
(f +· (i,X)) ⊆

∏
(f +· (i, Y )). The theorem is

a consequence of (27).

(39) Let us consider a function f , a set X, and an object i. Suppose i ∈ dom f

and X ⊆ f(i). Then
∏

(f +· (i,X)) ⊆
∏
f . The theorem is a consequence

of (38).

(40) Let us consider a non-empty function f , non empty setsX, Y, and objects
i, j. Suppose i, j ∈ dom f and (X 6⊆ f(i) or f(j) 6⊆ Y ) and

∏
(f+·(i,X)) ⊆∏

(f +· (j, Y )). Then

(i) i = j, and

(ii) X ⊆ Y.
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Proof: f +· (i,X) is non-empty and f +· (j, Y ) is non-empty. i = j. Set
g = the element of

∏
f . g +· (i, x) ∈

∏
(f +· (i,X)). �

(41) Let us consider a non-empty function f , a setX, and an object i. Suppose
i ∈ dom f and

∏
(f +· (i,X)) ⊆

∏
f . Then X ⊆ f(i). The theorem is

a consequence of (37).

(42) Let us consider a non-empty function f , non empty setsX, Y, and objects
i, j. Suppose i, j ∈ dom f and (X 6= f(i) or Y 6= f(j)) and

∏
(f+·(i,X)) =∏

(f +· (j, Y )). Then

(i) i = j, and

(ii) X = Y.

Proof: f +· (i,X) is non-empty and f +· (j, Y ) is non-empty. i = j. �

(43) Let us consider a non-empty function f , a setX, and an object i. Suppose
i ∈ dom f and X ⊆ f(i). Then (proj(f, i))◦(

∏
(f +· (i,X))) = X. The

theorem is a consequence of (25).

(44) Let us consider objects x, y, z. Then x 7−→. y +· (x, z) = x 7−→. z. The
theorem is a consequence of (12).

Let I be a non empty set and J be a 1-sorted yielding, nonempty many
sorted set indexed by I. Let us observe that the support of J is non-empty.

2. Remarks about Product Spaces

Now we state the propositions:

(45) Let us consider topological spaces T , S, and a function f from T into
S. Then f is open if and only if there exists a basis B of T such that for
every subset V of T such that V ∈ B holds f◦V is open.

(46) Let us consider non empty topological spaces T1, T2, S1, S2, a function
f from T1 into S1, and a function g from T2 into S2. If f is open and g is
open, then f × g is open.
Proof: There exists a basis B of T1 × T2 such that for every subset P of
T1 × T2 such that P ∈ B holds (f × g)◦P is open. �

Let us consider non empty topological spaces S, T and a function f from S

into T . Now we state the propositions:

(47) If f is bijective and there exists a basis K of S and there exists a basis
L of T such that f◦K = L, then f is a homeomorphism.
Proof: For every subset W of T such that W ∈ L holds f−1(W ) is open.
For every subset V of S such that V ∈ K holds f◦V is open. f is open. �
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(48) If f is bijective and there exists a prebasis K of S and there exists
a prebasis L of T such that f◦K = L, then f is a homeomorphism.
Proof: Reconsider K0 = FinMeetCl(K) as a basis of S. Reconsider L0 =
FinMeetCl(L) as a basis of T . For every subset W of T , W ∈ L0 iff there
exists a subset V of S such that V ∈ K0 and f◦V = W . �

Let us consider topological spaces S, T . Now we state the propositions:

(49) If there exists a basis K of S and there exists a basis L of T such that
K = L e {ΩS}, then S is a subspace of T .
Proof: For every subset A of S, A ∈ the topology of S iff there exists
a subset B of T such that B ∈ the topology of T and A = B∩ΩS . Consider
B being a subset of T such that B ∈ the topology of T and the carrier of
S = B ∩ ΩS . �

(50) Suppose ΩS ⊆ ΩT and there exists a prebasis K of S and there exists
a prebasis L of T such that K = L e {ΩS}. Then S is a subspace of T .
Proof: Reconsider K0 = FinMeetCl(K) as a basis of S. Reconsider L0 =
FinMeetCl(L) as a basis of T . For every object x, x ∈ K0 iff x ∈ L0e{ΩS}.
�

(51) If there exists a prebasis K of S and there exists a prebasis L of T such
that ΩS ∈ K and K = L e {ΩS}, then S is a subspace of T . The theorem
is a consequence of (50).

(52) Let us consider a non empty set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, and an element i of I. Then
rng proj(J, i) = the carrier of J(i).

Let X be a set and T be a topological structure. Observe that X 7−→ T is
topological structure yielding.

Let F be a binary relation. We say that F is topological space yielding if
and only if

(Def. 1) for every object x such that x ∈ rngF holds x is a topological space.

Note that every binary relation which is topological space yielding is al-
so topological structure yielding and every function which is topological space
yielding is also 1-sorted yielding.

Let X be a set and T be a topological space. One can verify that X 7−→ T

is topological space yielding.
Let I be a set. One can verify that there exists a many sorted set indexed

by I which is topological space yielding and nonempty.
Let I be a non empty set, J be a topological space yielding, nonempty many

sorted set indexed by I, and i be an element of I. Let us note that the functor
J(i) yields a non empty topological space. Let f be a function. The functor
ProjMap f yielding a many sorted function indexed by dom f is defined by
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(Def. 2) for every object x such that x ∈ dom f holds it(x) = proj(f, x).

Let f be an empty function. One can verify that ProjMap f is empty.
Let f be a non-empty function. Note that ProjMap f is non-empty.
Let f be a non non-empty function. Let us note that ProjMap f is empty

yielding.
Let I be a non empty set and J be a topological structure yielding, nonempty

many sorted set indexed by I. The functor ProjMapJ yielding a many sorted
set indexed by I is defined by the term

(Def. 3) ProjMap(the support of J).

Observe that ProjMap J is function yielding, non empty, and non-empty.
Now we state the proposition:

(53) Let us consider a non empty set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, and an element i of I. Then
(ProjMap J)(i) = proj(J, i).

Let I be a non empty set, J be a topological structure yielding, nonempty
many sorted set indexed by I, and f be a one-to-one, I-valued function. The
functor ProdBasSel(J, f) yielding a many sorted set indexed by rng f is defined
by the term

(Def. 4) (ProjMap J) ◦ (I -indexing f−1)� rng f .

Let f be an empty, one-to-one, I-valued function. Note that ProdBasSel(J, f)
is empty.

Now we state the propositions:

(54) Let us consider a non empty set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, a one-to-one, I-valued function
f , and an element i of I. Suppose i ∈ rng f . Then (ProdBasSel(J, f))(i) =
(proj(J, i))◦(f−1)(i). The theorem is a consequence of (53).

(55) Let us consider a non empty set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, and a one-to-one, I-valued func-
tion f . Suppose f−1 is non-empty and dom f ⊆ 2

∏
α. Then ProdBasSel(J, f)

is non-empty, where α is the support of J . The theorem is a consequence
of (54).

(56) Let us consider a non empty set I, and a topological space yielding,
nonempty many sorted set J indexed by I. Then ∅ ∈ the product prebasis
for J . The theorem is a consequence of (36).

(57) Let us consider a non empty set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, and a non empty subset P of∏

(the support of J). Suppose P ∈ the product prebasis for J . Then there
exists an element i of I such that
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(i) (proj(J, i))◦P is open, and

(ii) for every element j of I such that j 6= i holds (proj(J, j))◦P = ΩJ(j).

Proof: Consider i being a set, T being a topological structure, V being
a subset of T such that i ∈ I and V is open and T = J(i) and P =∏

((the support of J) +· (i, V )). rng proj(J, i) = the carrier of J(i). For
every object x, x ∈ (proj(J, j))◦P iff x ∈ ΩJ(j) by [1, (30), (32)], [9, (8)],
[8, (7)]. �

(58) Let us consider a non empty set I, a topological space yielding, no-
nempty many sorted set J indexed by I, and a non empty subset P of∏

(the support of J). Suppose P ∈ the product prebasis for J . Then

(i) for every element j of I, (proj(J, j))◦P is open, and

(ii) there exists an element i of I such that for every element j of I such
that j 6= i holds (proj(J, j))◦P = ΩJ(j).

The theorem is a consequence of (57).

(59) Let us consider a non empty set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, a one-to-one, I-valued func-
tion f , and a family X of subsets of

∏
(the support of J). Suppose X ⊆

the product prebasis for J and dom f = X and f−1 is non-empty and for
every subset A of

∏
(the support of J) such that A ∈ X holds

(proj(J, f/A))◦A is open. Let us consider an element i of I. Then

(i) if i /∈ rng f , then (proj(J, i))◦(
∏

((the support of J)+·
ProdBasSel(J, f))) = ΩJ(i), and

(ii) if i ∈ rng f , then (proj(J, i))◦(
∏

((the support of J)+·
ProdBasSel(J, f))) is open.

Proof: Set g = ProdBasSel(J, f). Set P =
∏

((the support of J)+·g). g
is non-empty. If i /∈ rng f , then (proj(J, i))◦P = ΩJ(i). �

(60) Let us consider a non empty set I, a topological space yielding, nonempty
many sorted set J indexed by I, a one-to-one, I-valued function f , and
a family X of subsets of

∏
(the support of J). Suppose X ⊆ the product

prebasis for J and dom f = X and f−1 is non-empty and for every subset
A of

∏
(the support of J) such that A ∈ X holds (proj(J, f/A))◦A is open.

Let us consider an element i of I. Then

(i) (proj(J, i))◦(
∏

((the support of J)+·ProdBasSel(J, f))) is open, and

(ii) if i /∈ rng f , then (proj(J, i))◦(
∏

((the support of J)+·
ProdBasSel(J, f))) = ΩJ(i).

The theorem is a consequence of (59).
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(61) Let us consider a non empty set I, a topological space yielding, nonempty
many sorted set J indexed by I, and a subset P of

∏
(the support of J).

Then P ∈ FinMeetCl(the product prebasis for J) if and only if there exists
a family X of subsets of

∏
(the support of J) and there exists a one-to-one,

I-valued function f such that X ⊆ the product prebasis for J and X is
finite and P = Intersect(X) and dom f = X and P =

∏
((the support of

J)+·ProdBasSel(J, f)).

Let us consider a non empty set I, a topological space yielding, nonempty
many sorted set J indexed by I, and a non empty subset P of

∏
(the support

of J). Now we state the propositions:

(62) Suppose P ∈ FinMeetCl(the product prebasis for J). Then there exists
a family X of subsets of

∏
(the support of J) and there exists a one-to-one,

I-valued function f such that X ⊆ the product prebasis for J and X is
finite and P = Intersect(X) and dom f = X and for every element i of I,
(proj(J, i))◦P is open and if i /∈ rng f , then (proj(J, i))◦P = ΩJ(i).
Proof: Consider X being a family of subsets of

∏
(the support of J), f

being a one-to-one, I-valued function such that X ⊆ the product prebasis
for J and X is finite and P = Intersect(X) and dom f = X and P =∏

((the support of J)+·ProdBasSel(J, f)). f−1 is non-empty. �

(63) Suppose P ∈ FinMeetCl(the product prebasis for J). Then there exists
a finite subset I0 of I such that for every element i of I, (proj(J, i))◦P is
open and if i /∈ I0, then (proj(J, i))◦P = ΩJ(i). The theorem is a consequ-
ence of (62).

(64) Let us consider a 1-element set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, an element i of I, and a subset P
of
∏

(the support of J). Then P ∈ the product prebasis for J if and only if
there exists a subset V of J(i) such that V is open and P =

∏
({i} 7−→ V ).

The theorem is a consequence of (7) and (44).

(65) Let us consider a 1-element set I, and a topological space yielding, no-
nempty many sorted set J indexed by I. Then the topology of

∏
J =

the product prebasis for J .

(66) Let us consider a 1-element set I, a topological space yielding, nonempty
many sorted set J indexed by I, an element i of I, and a subset P of

∏
J .

Then P is open if and only if there exists a subset V of J(i) such that V
is open and P =

∏
({i} 7−→ V ). The theorem is a consequence of (65) and

(64).

Let I be a non empty set, J be a topological structure yielding, nonempty
many sorted set indexed by I, and i be an element of I. Note that proj(J, i) is
continuous and onto.
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Let J be a topological space yielding, nonempty many sorted set indexed by
I. Note that proj(J, i) is open.

Let us consider a 1-element set I, a topological space yielding, nonempty
many sorted set J indexed by I, and an element i of I. Now we state the
propositions:

(67) proj(J, i) is a homeomorphism. The theorem is a consequence of (7).

(68)
∏
J and J(i) are homeomorphic. The theorem is a consequence of (67).

Let us consider a 2-element set I, a topological space yielding, nonempty ma-
ny sorted set J indexed by I, elements i, j of I, and a subset P of

∏
(the support

of J). Now we state the propositions:

(69) Suppose i 6= j. Then P ∈ the product prebasis for J if and only if
there exists a subset V of J(i) such that V is open and P =

∏
[i 7−→

V, j 7−→ ΩJ(j)] or there exists a subset W of J(j) such that W is open and
P =

∏
[i 7−→ ΩJ(i), j 7−→W ]. The theorem is a consequence of (34).

(70) Suppose i 6= j. Then P ∈ FinMeetCl(the product prebasis for J) if and
only if there exists a subset V of J(i) and there exists a subset W of J(j)
such that V is open and W is open and P =

∏
[i 7−→ V, j 7−→W ].

Proof: There exists a family Y of subsets of
∏

(the support of J) such
that Y ⊆ the product prebasis for J and Y is finite and P = Intersect(Y ).
�

(71) Let us consider a non empty set I, a topological space yielding, no-
nempty many sorted set J indexed by I, and elements i, j of I. Then
〈proj(J, i), proj(J, j)〉 is a function from

∏
J into J(i)× J(j).

(72) Let us consider a non empty set I, a topological space yielding, nonempty
many sorted set J indexed by I, a subset P of

∏
(the support of J), and

elements i, j of I. Suppose i 6= j and there exists a many sorted set F
indexed by I such that P =

∏
F and for every element k of I, F (k) ⊆

(the support of J)(k). Then 〈proj(J, i), proj(J, j)〉◦P = (proj(J, i))◦P ×
(proj(J, j))◦P . The theorem is a consequence of (26), (30), and (11).

(73) Let us consider a non empty set I, a topological space yielding, nonempty
many sorted set J indexed by I, elements i, j of I, and a function f from∏
J into J(i)× J(j). Suppose i 6= j and f = 〈proj(J, i),proj(J, j)〉. Then

f is onto and open.
Proof: For every element k of I, (proj(J, k))◦(Ω∏α) = the carrier of
J(k), where α is the support of J . There exists a basis B of

∏
J such that

for every subset P of
∏
J such that P ∈ B holds f◦P is open. �

(74) Let us consider a 2-element set I, a topological space yielding, nonempty
many sorted set J indexed by I, elements i, j of I, and a function f from
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∏
J into J(i)× J(j). Suppose i 6= j and f = 〈proj(J, i), proj(J, j)〉. Then

f is a homeomorphism.
Proof: f is onto and open. For every objects x1, x2 such that x1, x2 ∈
dom f and f(x1) = f(x2) holds x1 = x2. �

(75) Let us consider a 2-element set I, a topological space yielding, nonempty
many sorted set J indexed by I, and elements i, j of I. If i 6= j, then

∏
J

and J(i)×J(j) are homeomorphic. The theorem is a consequence of (74).

Let I1, I2 be non empty sets, J be a topological space yielding, nonempty
many sorted set indexed by I2, and f be a function from I1 into I2. One can
check that J · f is topological space yielding and nonempty.

Let J1 be a topological space yielding, nonempty many sorted set indexed
by I1, J2 be a topological space yielding, nonempty many sorted set indexed
by I2, and p be a function from I1 into I2. Assume p is bijective and for every
element i of I1, J1(i) and (J2 · p)(i) are homeomorphic.

A product homeomorphism of J1, J2 and p is a function from
∏
J1 into

∏
J2

defined by

(Def. 5) there exists a many sorted function F indexed by I1 such that for every
element i of I1, there exists a function f from J1(i) into (J2 · p)(i) such
that F (i) = f and f is a homeomorphism and for every element g of

∏
J1

and for every element i of I1, (it(g))(p(i)) = F (i)(g(i)).

Now we state the proposition:

(76) Let us consider non empty sets I1, I2, a topological space yielding, no-
nempty many sorted set J1 indexed by I1, a topological space yielding,
nonempty many sorted set J2 indexed by I2, a function p from I1 into
I2, a product homeomorphism H of J1, J2 and p, and a many sorted
function F indexed by I1. Suppose p is bijective and for every element
i of I1, there exists a function f from J1(i) into (J2 · p)(i) such that
F (i) = f and f is a homeomorphism and for every element g of

∏
J1

and for every element i of I1, (H(g))(p(i)) = F (i)(g(i)). Let us consider
an element i of I1, and a subset U of J1(i). Then H◦(

∏
((the support of

J1) +· (i, U))) =
∏

((the support of J2) +· (p(i), F (i)◦U)).
Proof: Reconsider j = p(i) as an element of I2. Consider f being a func-
tion from J1(i) into (J2 · p)(i) such that F (i) = f and f is a homeomor-
phism. For every object y, y ∈ H◦(

∏
((the support of J1) +· (i, U))) iff

y ∈
∏

((the support of J2) +· (j, F (i)◦U)). �

Let us consider non empty sets I1, I2, a topological space yielding, nonemp-
ty many sorted set J1 indexed by I1, a topological space yielding, nonempty
many sorted set J2 indexed by I2, a function p from I1 into I2, and a product
homeomorphism H of J1, J2 and p. Now we state the propositions:
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(77) If p is bijective and for every element i of I1, J1(i) and (J2 · p)(i) are
homeomorphic, then H is bijective.
Proof: Consider F being a many sorted function indexed by I1 such that
for every element i of I1, there exists a function f from J1(i) into (J2 ·p)(i)
such that F (i) = f and f is a homeomorphism and for every element
g of

∏
J1 and for every element i of I1, (H(g))(p(i)) = F (i)(g(i)). For

every objects x1, x2 such that x1, x2 ∈ domH and H(x1) = H(x2) holds
x1 = x2. Set i0 = the element of I1. Consider f0 being a function from
J1(i0) into (J2 · p)(i0) such that F (i0) = f0 and f0 is a homeomorphism.
�

(78) If p is bijective and for every element i of I1, J1(i) and (J2 · p)(i) are
homeomorphic, then H is a homeomorphism.
Proof: Consider F being a many sorted function indexed by I1 such that
for every element i of I1, there exists a function f from J1(i) into (J2 ·p)(i)
such that F (i) = f and f is a homeomorphism and for every element g
of
∏
J1 and for every element i of I1, (H(g))(p(i)) = F (i)(g(i)). H is

bijective. There exists a prebasis K of
∏
J1 and there exists a prebasis L

of
∏
J2 such that H◦K = L. �

(79) Let us consider non empty sets I1, I2, a topological space yielding, no-
nempty many sorted set J1 indexed by I1, a topological space yielding,
nonempty many sorted set J2 indexed by I2, and a function p from I1 into
I2. Suppose p is bijective and for every element i of I1, J1(i) and (J2 ·p)(i)
are homeomorphic. Then

∏
J1 and

∏
J2 are homeomorphic. The theorem

is a consequence of (78).

(80) Let us consider a non empty set I, topological space yielding, nonempty
many sorted sets J1, J2 indexed by I, and a permutation p of I. Suppose
for every element i of I, J1(i) and (J2 ·p)(i) are homeomorphic. Then

∏
J1

and
∏
J2 are homeomorphic.

(81) Let us consider a non empty set I, a topological space yielding, nonempty
many sorted set J indexed by I, and a permutation p of I. Then

∏
J and∏

J · p are homeomorphic. The theorem is a consequence of (79).

(82) Let us consider a non empty set I, and topological space yielding, no-
nempty many sorted sets J1, J2 indexed by I. Suppose for every element
i of I, J1(i) is a subspace of J2(i). Then

∏
J1 is a subspace of

∏
J2.

Proof: There exists a prebasis K1 of
∏
J1 and there exists a prebasis K2

of
∏
J2 such that Ω∏ J1

∈ K1 and K1 = K2 e {Ω∏ J1
}. �
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