Some Remarks about Product Spaces

Sebastian Koch
Johannes Gutenberg University
Mainz, Germany ${ }^{1}$

Summary. This article covers some technical aspects about the product topology which are usually not given much of a thought in mathematics and standard literature like [7] and [6], not even by Bourbaki in [4.

Let $\left\{\mathcal{T}_{i}\right\}_{i \in I}$ be a family of topological spaces. The prebasis of the product space $\mathcal{T}=\prod_{i \in I} \mathcal{T}_{i}$ is defined in [5] as the set of all $\pi_{i}^{-1}(V)$ with $i \in I$ and V open in \mathcal{T}_{i}. Here it is shown that the basis generated by this prebasis consists exactly of the sets $\prod_{i \in I} V_{i}$ with V_{i} open in \mathcal{T}_{i} and for all but finitely many $i \in I$ holds $V_{i}=\mathcal{T}_{i}$. Given $I=\{a\}$ we have $\mathcal{T} \cong \mathcal{T}_{a}$, given $I=\{a, b\}$ with $a \neq b$ we have $\mathcal{T} \cong \mathcal{T}_{a} \times \mathcal{T}_{b}$. Given another family of topological spaces $\left\{\mathcal{S}_{i}\right\}_{i \in I}$ such that $\mathcal{S}_{i} \cong \mathcal{T}_{i}$ for all $i \in I$, we have $\mathcal{S}=\prod_{i \in I} \mathcal{S}_{i} \cong \mathcal{T}$. If instead S_{i} is a subspace of T_{i} for each $i \in I$, then \mathcal{S} is a subspace of \mathcal{T}.

These results are obvious for mathematicians, but formally proven here by means of the Mizar system [3], 2].

MSC: 54B10 68T99 03B35
Keywords: topology; product spaces
MML identifier: TOPS_5, version: 8.1.08 5.53.1335

1. Preliminaries

Now we state the propositions:
(1) Let us consider a one-to-one function f, and an object y. Suppose rng $f=$ $\{y\}$. Then $\operatorname{dom} f=\left\{\left(f^{-1}\right)(y)\right\}$.
Proof: Consider x_{0} being an object such that $x_{0} \in \operatorname{dom} f$ and $f\left(x_{0}\right)=y$. For every object $x, x \in \operatorname{dom} f$ iff $x=\left(f^{-1}\right)(y)$.

[^0](2) Let us consider a one-to-one function f, and objects y_{1}, y_{2}. Suppose $\operatorname{rng} f=\left\{y_{1}, y_{2}\right\}$. Then $\operatorname{dom} f=\left\{\left(f^{-1}\right)\left(y_{1}\right),\left(f^{-1}\right)\left(y_{2}\right)\right\}$.
Proof: Consider x_{1} being an object such that $x_{1} \in \operatorname{dom} f$ and $f\left(x_{1}\right)=y_{1}$. Consider x_{2} being an object such that $x_{2} \in \operatorname{dom} f$ and $f\left(x_{2}\right)=y_{2}$. For every object $x, x \in \operatorname{dom} f$ iff $x=\left(f^{-1}\right)\left(y_{1}\right)$ or $x=\left(f^{-1}\right)\left(y_{2}\right)$.
Let X, Y be sets. Note that there exists a function which is empty, X-defined, Y-valued, and one-to-one.

Let T, S be sets, f be a function from T into S, and G be a finite family of subsets of T. Let us note that $f^{\circ} G$ is finite.

Now we state the propositions:
(3) Let us consider a set A, a family F of subsets of A, and a binary relation R. Then $R^{\circ}(\bigcap F) \subseteq \bigcap\left\{R^{\circ} X\right.$, where X is a subset of $\left.A: X \in F\right\}$.
(4) Let us consider a set A, a family F of subsets of A, and a one-to-one function f. Then $f^{\circ}(\bigcap F)=\bigcap\left\{f^{\circ} X\right.$, where X is a subset of $\left.A: X \in F\right\}$. Proof: Set $S=\left\{f^{\circ} X\right.$, where X is a subset of $\left.A: X \in F\right\}$. $\cap S \subseteq$ $f^{\circ}(\bigcap F) . f^{\circ}(\bigcap F) \subseteq \bigcap S$.
(5) Let us consider a set X, a non empty set Y, and a function f from X into Y. Then $\left\{f^{-1}(\{y\})\right.$, where y is an element of $\left.Y: y \in \operatorname{rng} f\right\}$ is a partition of X.
Proof: Set $P=\left\{f^{-1}(\{y\})\right.$, where y is an element of $\left.Y: y \in \operatorname{rng} f\right\}$. For every object $x, x \in X$ iff there exists a set A such that $x \in A$ and $A \in P$. For every subset A of X such that $A \in P$ holds $A \neq \emptyset$ and for every subset B of X such that $B \in P$ holds $A=B$ or A misses $B . P \subseteq 2^{X}$.
(6) Let us consider a non empty set X, and objects x, y. If $X \longmapsto x=$ $X \longmapsto y$, then $x=y$.
(7) Let us consider an object i, and a many sorted set J indexed by $\{i\}$. Then $J=\{i\} \longmapsto J(i)$.
Proof: For every object x such that $x \in \operatorname{dom} J$ holds $J(x)=(\{i\} \longmapsto$ $J(i))(x)$.
(8) Let us consider a 2 -element set I, and elements i, j of I. If $i \neq j$, then $I=\{i, j\}$.
Proof: For every object $x, x=i$ or $x=j$ iff $x \in I$.
(9) Let us consider a 2-element set I, a many sorted set f indexed by I, and elements i, j of I. If $i \neq j$, then $f=[i \longmapsto f(i), j \longmapsto f(j)]$. The theorem is a consequence of (8).
(10) Let us consider objects a, b, c, d. If $a \neq b$, then $[a \longmapsto c, b \longmapsto d]=$ $[b \longmapsto d, a \longmapsto c]$.
Proof: For every object x such that $x \in \operatorname{dom}[a \longmapsto c, b \longmapsto d]$ holds $[a \longmapsto c, b \longmapsto d](x)=[b \longmapsto d, a \longmapsto c](x)$.
(11) Let us consider a function f, and objects i, j. If $i, j \in \operatorname{dom} f$, then $f=f+\cdot[i \longmapsto f(i), j \longmapsto f(j)]$.
(12) Let us consider objects x, y, z. Then $x \longmapsto y+\cdot(x \longmapsto z)=x \longmapsto z$.

Let us observe that there exists a function which is non non-empty.
Now we state the propositions:
(13) Let us consider non empty sets X, Y, and an element y of Y. Then $X \longmapsto y \in \Pi(X \longmapsto Y)$.
Proof: Set $f=X \longmapsto y$. For every object x such that $x \in \operatorname{dom}(X \longmapsto Y)$ holds $f(x) \in(X \longmapsto Y)(x)$.
(14) Let us consider a non empty set X, a set Y, and a subset Z of Y. Then $\Pi(X \longmapsto Z) \subseteq \Pi(X \longmapsto Y)$.
(15) Let us consider a non empty set X, and an object i. Then $\Pi(\{i\} \longmapsto$ $X)=\{\{i\} \longmapsto x$, where x is an element of $X\}$.
Proof: Set $S=\{\{i\} \longmapsto x$, where x is an element of $X\}$. For every object $z, z \in \Pi(\{i\} \longmapsto X)$ iff $z \in S$.
(16) Let us consider a non empty set X, and objects i, f. Then $f \in \Pi(\{i\} \longmapsto$ $X)$ if and only if there exists an element x of X such that $f=\{i\} \longmapsto x$. The theorem is a consequence of (15).
(17) Let us consider a non empty set X, an object i, and an element x of X. Then $(\operatorname{proj}(\{i\} \longmapsto X, i))(\{i\} \longmapsto x)=x$. The theorem is a consequence of (13).
(18) Let us consider sets X, Y. Then $X \neq \emptyset$ and $Y=\emptyset$ if and only if $\Pi(X \longmapsto$ $Y)=\emptyset$.
Let f be an empty function and x be an object. Let us note that $\operatorname{proj}(f, x)$ is trivial.

Now we state the proposition:
(19) Let us consider a trivial function f, and an object x. If $x \in \operatorname{dom} f$, then $\operatorname{proj}(f, x)$ is one-to-one.
Proof: Consider t being an object such that $\operatorname{dom} f=\{t\}$. Set $F=$ $\operatorname{proj}(f, x)$. For every objects y, z such that $y, z \in \operatorname{dom} F$ and $F(y)=F(z)$ holds $y=z$.
Let x, y be objects. Note that $\operatorname{proj}(x \longmapsto y, x)$ is one-to-one.
Let I be a 1 -element set, J be a many sorted set indexed by I, and i be an element of I. One can verify that $\operatorname{proj}(J, i)$ is one-to-one.

Now we state the propositions:
(20) Let us consider a non empty set X, a subset Y of X, and an object i. Then $(\operatorname{proj}(\{i\} \longmapsto X, i))^{\circ}(\Pi(\{i\} \longmapsto Y))=Y$. The theorem is a consequence of (16), (13), and (14).
(21) Let us consider non-empty functions f, g, and objects i, x. Suppose $x \in \Pi f \cap \prod(f+\cdot g)$. Then $(\operatorname{proj}(f, i))(x)=(\operatorname{proj}(f+\cdot g, i))(x)$.
(22) Let us consider non-empty functions f, g, an object i, and a set A. Suppose $A \subseteq \Pi f \cap \Pi(f+\cdot g)$. Then $(\operatorname{proj}(f, i))^{\circ} A=(\operatorname{proj}(f+\cdot g, i))^{\circ} A$. The theorem is a consequence of (21).
(23) Let us consider non-empty functions f, g. Suppose $\operatorname{dom} g \subseteq \operatorname{dom} f$ and for every object i such that $i \in \operatorname{dom} g$ holds $g(i) \subseteq f(i)$. Then $\prod(f+\cdot g) \subseteq$ $\prod f$.
Let us consider non-empty functions f, g and an object i. Now we state the propositions:
(24) Suppose $\operatorname{dom} g \subseteq \operatorname{dom} f$ and for every object i such that $i \in \operatorname{dom} g$ holds $g(i) \subseteq f(i)$. Then if $i \in \operatorname{dom} f \backslash \operatorname{dom} g$, then $(\operatorname{proj}(f, i))^{\circ}\left(\prod(f+\cdot g)\right)=f(i)$. The theorem is a consequence of (23) and (22).
(25) Suppose $\operatorname{dom} g \subseteq \operatorname{dom} f$ and for every object i such that $i \in \operatorname{dom} g$ holds $g(i) \subseteq f(i)$. Then if $i \in \operatorname{dom} g$, then $(\operatorname{proj}(f, i))^{\circ}(\Pi(f+\cdot g))=g(i)$. The theorem is a consequence of (23) and (22).
(26) Suppose $\operatorname{dom} g=\operatorname{dom} f$ and for every object i such that $i \in \operatorname{dom} g$ holds $g(i) \subseteq f(i)$. Then if $i \in \operatorname{dom} g$, then $(\operatorname{proj}(f, i))^{\circ}\left(\prod g\right)=g(i)$. The theorem is a consequence of (25).
(27) Let us consider a function f, sets X, Y, and an object i. Suppose $X \subseteq Y$. Then $\Pi(f+\cdot(i \longmapsto X)) \subseteq \prod(f+\cdot(i \longmapsto Y))$.
(28) Let us consider objects i, j, and sets A, B, C, D. Suppose $A \subseteq C$ and $B \subseteq D$. Then $\Pi[i \longmapsto A, j \longmapsto B] \subseteq \Pi[i \longmapsto C, j \longmapsto D]$. The theorem is a consequence of (14).
(29) Let us consider sets X, Y, and objects f, i, j. Suppose $i \neq j$. Then $f \in \Pi[i \longmapsto X, j \longmapsto Y]$ if and only if there exist objects x, y such that $x \in X$ and $y \in Y$ and $f=[i \longmapsto x, j \longmapsto y]$.
Proof: If $f \in \Pi[i \longmapsto X, j \longmapsto Y]$, then there exist objects x, y such that $x \in X$ and $y \in Y$ and $f=[i \longmapsto x, j \longmapsto y]$. Reconsider $g=f$ as a function. For every object z such that $z \in \operatorname{dom}[i \longmapsto X, j \longmapsto Y]$ holds $g(z) \in[i \longmapsto X, j \longmapsto Y](z)$.
(30) Let us consider a non-empty function f, sets X, Y, objects i, j, x, y, and a function g. Suppose $x \in X$ and $y \in Y$ and $i \neq j$ and $g \in \prod f$. Then $g+\cdot[i \longmapsto x, j \longmapsto y] \in \Pi(f+\cdot[i \longmapsto X, j \longmapsto Y])$.
Proof: For every object z such that $z \in \operatorname{dom}(f+\cdot[i \longmapsto X, j \longmapsto Y])$ holds $(g+\cdot[i \longmapsto x, j \longmapsto y])(z) \in(f+\cdot[i \longmapsto X, j \longmapsto Y])(z)$.
(31) Let us consider a function f, sets A, B, C, D, and objects i, j. Suppose $A \subseteq C$ and $B \subseteq D$. Then $\Pi(f+\cdot[i \longmapsto A, j \longmapsto B]) \subseteq \Pi(f+\cdot[i \longmapsto$
$C, j \longmapsto D]$). The theorem is a consequence of (27).
(32) Let us consider a function f, sets A, B, and objects i, j. Suppose $i, j \in$ $\operatorname{dom} f$ and $A \subseteq f(i)$ and $B \subseteq f(j)$. Then $\Pi(f+\cdot[i \longmapsto A, j \longmapsto B]) \subseteq \Pi f$. The theorem is a consequence of (11) and (31).
(33) Let us consider a set I, and many sorted sets f, g indexed by I. Then $\Pi f \cap \Pi g=\Pi(f \cap g)$.
Proof: For every object $x, x \in \Pi f \cap \Pi g$ iff there exists a function h such that $h=x$ and $\operatorname{dom} h=\operatorname{dom}(f \cap g)$ and for every object y such that $y \in \operatorname{dom}(f \cap g)$ holds $h(y) \in(f \cap g)(y)$.
(34) Let us consider a 2 -element set I, a many sorted set f indexed by I, elements i, j of I, and an object x. Suppose $i \neq j$. Then
(i) $f+\cdot(i, x)=[i \longmapsto x, j \longmapsto f(j)]$, and
(ii) $f+\cdot(j, x)=[i \longmapsto f(i), j \longmapsto x]$.

The theorem is a consequence of (10).
Let us consider a non-empty function f, a set X, and an object i. Now we state the propositions:
(35) If $i \in \operatorname{dom} f$, then $f+\cdot(i, X)$ is non-empty iff X is not empty.

Proof: For every object x such that $x \in \operatorname{dom}(f+\cdot(i, X))$ holds $(f+$. $(i, X))(x)$ is not empty.
(36) If $i \in \operatorname{dom} f$, then $\Pi(f+\cdot(i, X))=\emptyset$ iff X is empty. The theorem is a consequence of (35).
(37) Let us consider a non-empty function f, a set X, objects i, x, and a function g. Suppose $i \in \operatorname{dom} f$ and $x \in X$ and $g \in \Pi f$. Then $g+\cdot(i, x) \in$ $\Pi(f+\cdot(i, X))$.
Proof: For every object y such that $y \in \operatorname{dom}(f+\cdot(i, X))$ holds $(g+$. $(i, x))(y) \in(f+\cdot(i, X))(y)$.
(38) Let us consider a function f, sets X, Y, and an object i. Suppose $i \in$ $\operatorname{dom} f$ and $X \subseteq Y$. Then $\Pi(f+\cdot(i, X)) \subseteq \Pi(f+\cdot(i, Y))$. The theorem is a consequence of (27).
(39) Let us consider a function f, a set X, and an object i. Suppose $i \in \operatorname{dom} f$ and $X \subseteq f(i)$. Then $\Pi(f+\cdot(i, X)) \subseteq \Pi f$. The theorem is a consequence of (38).
(40) Let us consider a non-empty function f, non empty sets X, Y, and objects i, j. Suppose $i, j \in \operatorname{dom} f$ and $(X \nsubseteq f(i)$ or $f(j) \nsubseteq Y)$ and $\Pi(f+\cdot(i, X)) \subseteq$ $\Pi(f+\cdot(j, Y))$. Then
(i) $i=j$, and
(ii) $X \subseteq Y$.

Proof: $f+\cdot(i, X)$ is non-empty and $f+\cdot(j, Y)$ is non-empty. $i=j$. Set $g=$ the element of $\Pi f \cdot g+\cdot(i, x) \in \Pi(f+\cdot(i, X))$.
(41) Let us consider a non-empty function f, a set X, and an object i. Suppose $i \in \operatorname{dom} f$ and $\Pi(f+\cdot(i, X)) \subseteq \Pi f$. Then $X \subseteq f(i)$. The theorem is a consequence of (37).
(42) Let us consider a non-empty function f, non empty sets X, Y, and objects i, j. Suppose $i, j \in \operatorname{dom} f$ and $(X \neq f(i)$ or $Y \neq f(j))$ and $\Pi(f+\cdot(i, X))=$ $\Pi(f+\cdot(j, Y))$. Then
(i) $i=j$, and
(ii) $X=Y$.

Proof: $f+\cdot(i, X)$ is non-empty and $f+\cdot(j, Y)$ is non-empty. $i=j$.
(43) Let us consider a non-empty function f, a set X, and an object i. Suppose $i \in \operatorname{dom} f$ and $X \subseteq f(i)$. Then $(\operatorname{proj}(f, i))^{\circ}(\Pi(f+\cdot(i, X)))=X$. The theorem is a consequence of (25).
(44) Let us consider objects x, y, z. Then $x \longmapsto y+\cdot(x, z)=x \longmapsto z$. The theorem is a consequence of (12).
Let I be a non empty set and J be a 1 -sorted yielding, nonempty many sorted set indexed by I. Let us observe that the support of J is non-empty.

2. Remarks about Product Spaces

Now we state the propositions:
(45) Let us consider topological spaces T, S, and a function f from T into S. Then f is open if and only if there exists a basis B of T such that for every subset V of T such that $V \in B$ holds $f^{\circ} V$ is open.
(46) Let us consider non empty topological spaces $T_{1}, T_{2}, S_{1}, S_{2}$, a function f from T_{1} into S_{1}, and a function g from T_{2} into S_{2}. If f is open and g is open, then $f \times g$ is open.
Proof: There exists a basis B of $T_{1} \times T_{2}$ such that for every subset P of $T_{1} \times T_{2}$ such that $P \in B$ holds $(f \times g)^{\circ} P$ is open.
Let us consider non empty topological spaces S, T and a function f from S into T. Now we state the propositions:
(47) If f is bijective and there exists a basis K of S and there exists a basis L of T such that $f^{\circ} K=L$, then f is a homeomorphism.
Proof: For every subset W of T such that $W \in L$ holds $f^{-1}(W)$ is open. For every subset V of S such that $V \in K$ holds $f^{\circ} V$ is open. f is open.
(48) If f is bijective and there exists a prebasis K of S and there exists a prebasis L of T such that $f^{\circ} K=L$, then f is a homeomorphism.
Proof: Reconsider $K_{0}=\operatorname{FinMeetCl}(K)$ as a basis of S. Reconsider $L_{0}=$ FinMeet $\mathrm{Cl}(L)$ as a basis of T. For every subset W of $T, W \in L_{0}$ iff there exists a subset V of S such that $V \in K_{0}$ and $f^{\circ} V=W$.
Let us consider topological spaces S, T. Now we state the propositions:
(49) If there exists a basis K of S and there exists a basis L of T such that $K=L \cap\left\{\Omega_{S}\right\}$, then S is a subspace of T.
Proof: For every subset A of $S, A \in$ the topology of S iff there exists a subset B of T such that $B \in$ the topology of T and $A=B \cap \Omega_{S}$. Consider B being a subset of T such that $B \in$ the topology of T and the carrier of $S=B \cap \Omega_{S}$.
(50) Suppose $\Omega_{S} \subseteq \Omega_{T}$ and there exists a prebasis K of S and there exists a prebasis L of T such that $K=L \cap\left\{\Omega_{S}\right\}$. Then S is a subspace of T.
Proof: Reconsider $K_{0}=\operatorname{FinMeetCl}(K)$ as a basis of S. Reconsider $L_{0}=$ FinMeet $\mathrm{Cl}(L)$ as a basis of T. For every object $x, x \in K_{0}$ iff $x \in L_{0} \cap\left\{\Omega_{S}\right\}$.
(51) If there exists a prebasis K of S and there exists a prebasis L of T such that $\Omega_{S} \in K$ and $K=L \cap\left\{\Omega_{S}\right\}$, then S is a subspace of T. The theorem is a consequence of (50).
(52) Let us consider a non empty set I, a topological structure yielding, nonempty many sorted set J indexed by I, and an element i of I. Then $\operatorname{rng} \operatorname{proj}(J, i)=$ the carrier of $J(i)$.
Let X be a set and T be a topological structure. Observe that $X \longmapsto T$ is topological structure yielding.

Let F be a binary relation. We say that F is topological space yielding if and only if
(Def. 1) for every object x such that $x \in \operatorname{rng} F$ holds x is a topological space.
Note that every binary relation which is topological space yielding is also topological structure yielding and every function which is topological space yielding is also 1 -sorted yielding.

Let X be a set and T be a topological space. One can verify that $X \longmapsto T$ is topological space yielding.

Let I be a set. One can verify that there exists a many sorted set indexed by I which is topological space yielding and nonempty.

Let I be a non empty set, J be a topological space yielding, nonempty many sorted set indexed by I, and i be an element of I. Let us note that the functor $J(i)$ yields a non empty topological space. Let f be a function. The functor $\operatorname{ProjMap} f$ yielding a many sorted function indexed by $\operatorname{dom} f$ is defined by
(Def. 2) for every object x such that $x \in \operatorname{dom} f$ holds $i t(x)=\operatorname{proj}(f, x)$.
Let f be an empty function. One can verify that ProjMap f is empty.
Let f be a non-empty function. Note that ProjMap f is non-empty.
Let f be a non non-empty function. Let us note that ProjMap f is empty yielding.

Let I be a non empty set and J be a topological structure yielding, nonempty many sorted set indexed by I. The functor ProjMap J yielding a many sorted set indexed by I is defined by the term
(Def. 3) ProjMap(the support of J).
Observe that ProjMap J is function yielding, non empty, and non-empty.
Now we state the proposition:
(53) Let us consider a non empty set I, a topological structure yielding, nonempty many sorted set J indexed by I, and an element i of I. Then $(\operatorname{ProjMap} J)(i)=\operatorname{proj}(J, i)$.
Let I be a non empty set, J be a topological structure yielding, nonempty many sorted set indexed by I, and f be a one-to-one, I-valued function. The functor $\operatorname{ProdBasSel}(J, f)$ yielding a many sorted set indexed by $\operatorname{rng} f$ is defined by the term
(Def. 4) (ProjMap $J)^{\circ}\left(I\right.$-indexing $\left.f^{-1}\right) \upharpoonright \operatorname{rng} f$.
Let f be an empty, one-to-one, I-valued function. Note that $\operatorname{ProdBasSel}(J, f)$ is empty.

Now we state the propositions:
(54) Let us consider a non empty set I, a topological structure yielding, nonempty many sorted set J indexed by I, a one-to-one, I-valued function f, and an element i of I. Suppose $i \in \operatorname{rng} f$. Then $(\operatorname{ProdBasSel}(J, f))(i)=$ (proj$(J, i))^{\circ}\left(f^{-1}\right)(i)$. The theorem is a consequence of (53).
(55) Let us consider a non empty set I, a topological structure yielding, nonempty many sorted set J indexed by I, and a one-to-one, I-valued function f. Suppose f^{-1} is non-empty and $\operatorname{dom} f \subseteq 2 \prod^{\alpha}$. Then $\operatorname{ProdBasSel}(J, f)$ is non-empty, where α is the support of J. The theorem is a consequence of (54).
(56) Let us consider a non empty set I, and a topological space yielding, nonempty many sorted set J indexed by I. Then $\emptyset \in$ the product prebasis for J. The theorem is a consequence of (36).
(57) Let us consider a non empty set I, a topological structure yielding, nonempty many sorted set J indexed by I, and a non empty subset P of Π (the support of J). Suppose $P \in$ the product prebasis for J. Then there exists an element i of I such that
(i) $(\operatorname{proj}(J, i))^{\circ} P$ is open, and
(ii) for every element j of I such that $j \neq i$ holds $(\operatorname{proj}(J, j))^{\circ} P=\Omega_{J(j)}$. Proof: Consider i being a set, T being a topological structure, V being a subset of T such that $i \in I$ and V is open and $T=J(i)$ and $P=$ $\Pi(($ the support of $J)+\cdot(i, V))$. rng $\operatorname{proj}(J, i)=$ the carrier of $J(i)$. For every object $x, x \in(\operatorname{proj}(J, j))^{\circ} P$ iff $x \in \Omega_{J(j)}$ by [1, (30), (32)], [9, (8)], [8, (7)].
(58) Let us consider a non empty set I, a topological space yielding, nonempty many sorted set J indexed by I, and a non empty subset P of Π (the support of J). Suppose $P \in$ the product prebasis for J. Then
(i) for every element j of $I,(\operatorname{proj}(J, j))^{\circ} P$ is open, and
(ii) there exists an element i of I such that for every element j of I such that $j \neq i$ holds $(\operatorname{proj}(J, j))^{\circ} P=\Omega_{J(j)}$.
The theorem is a consequence of (57).
(59) Let us consider a non empty set I, a topological structure yielding, nonempty many sorted set J indexed by I, a one-to-one, I-valued function f, and a family X of subsets of Π (the support of $J)$. Suppose $X \subseteq$ the product prebasis for J and $\operatorname{dom} f=X$ and f^{-1} is non-empty and for every subset A of Π (the support of J) such that $A \in X$ holds $\left(\operatorname{proj}\left(J, f_{/ A}\right)\right)^{\circ} A$ is open. Let us consider an element i of I. Then
(i) if $i \notin \operatorname{rng} f$, then $(\operatorname{proj}(J, i))^{\circ}(\Pi(($ the support of $J)+$. $\operatorname{ProdBasSel}(J, f)))=\Omega_{J(i)}$, and
(ii) if $i \in \operatorname{rng} f$, then $(\operatorname{proj}(J, i))^{\circ}(\Pi($ (the support of $J)+$. $\operatorname{ProdBasSel}(J, f))$) is open.
Proof: Set $g=\operatorname{ProdBasSel}(J, f)$. Set $P=\Pi(($ the support of $J)+\cdot g) . g$ is non-empty. If $i \notin \operatorname{rng} f$, then $(\operatorname{proj}(J, i))^{\circ} P=\Omega_{J(i)}$.
(60) Let us consider a non empty set I, a topological space yielding, nonempty many sorted set J indexed by I, a one-to-one, I-valued function f, and a family X of subsets of Π (the support of J). Suppose $X \subseteq$ the product prebasis for J and $\operatorname{dom} f=X$ and f^{-1} is non-empty and for every subset A of Π (the support of $J)$ such that $A \in X$ holds $\left(\operatorname{proj}\left(J, f_{/ A}\right)\right)^{\circ} A$ is open. Let us consider an element i of I. Then
(i) $(\operatorname{proj}(J, i))^{\circ}(\Pi(($ the support of $J)+\cdot \operatorname{ProdBasSel}(J, f)))$ is open, and
(ii) if $i \notin \operatorname{rng} f$, then $(\operatorname{proj}(J, i))^{\circ}(\Pi($ (the support of $J)+$. $\operatorname{ProdBasSel}(J, f)))=\Omega_{J(i)}$.
The theorem is a consequence of (59).
(61) Let us consider a non empty set I, a topological space yielding, nonempty many sorted set J indexed by I, and a subset P of Π (the support of $J)$. Then $P \in \mathrm{FinMeetCl}$ (the product prebasis for J) if and only if there exists a family X of subsets of $\Pi($ the support of $J)$ and there exists a one-to-one, I-valued function f such that $X \subseteq$ the product prebasis for J and X is finite and $P=\operatorname{Intersect}(X)$ and $\operatorname{dom} f=X$ and $P=\Pi$ ((the support of $J)+\cdot \operatorname{ProdBasSel}(J, f))$.
Let us consider a non empty set I, a topological space yielding, nonempty many sorted set J indexed by I, and a non empty subset P of Π (the support of $J)$. Now we state the propositions:
(62) Suppose $P \in \operatorname{FinMeetCl}($ the product prebasis for J). Then there exists a family X of subsets of Π (the support of J) and there exists a one-to-one, I-valued function f such that $X \subseteq$ the product prebasis for J and X is finite and $P=\operatorname{Intersect}(X)$ and $\operatorname{dom} f=X$ and for every element i of I, $(\operatorname{proj}(J, i))^{\circ} P$ is open and if $i \notin \operatorname{rng} f$, then $(\operatorname{proj}(J, i))^{\circ} P=\Omega_{J(i)}$.
Proof: Consider X being a family of subsets of Π (the support of $J), f$ being a one-to-one, I-valued function such that $X \subseteq$ the product prebasis for J and X is finite and $P=\operatorname{Intersect}(X)$ and $\operatorname{dom} f=X$ and $P=$ $\Pi(($ the support of $J)+\cdot \operatorname{ProdBasSel}(J, f)) \cdot f^{-1}$ is non-empty.
(63) Suppose $P \in \operatorname{FinMeetCl}($ the product prebasis for $J)$. Then there exists a finite subset I_{0} of I such that for every element i of $I,(\operatorname{proj}(J, i))^{\circ} P$ is open and if $i \notin I_{0}$, then $(\operatorname{proj}(J, i))^{\circ} P=\Omega_{J(i)}$. The theorem is a consequence of (62).
(64) Let us consider a 1-element set I, a topological structure yielding, nonempty many sorted set J indexed by I, an element i of I, and a subset P of Π (the support of $J)$. Then $P \in$ the product prebasis for J if and only if there exists a subset V of $J(i)$ such that V is open and $P=\Pi(\{i\} \longmapsto V)$. The theorem is a consequence of (7) and (44).
(65) Let us consider a 1-element set I, and a topological space yielding, nonempty many sorted set J indexed by I. Then the topology of $\Pi J=$ the product prebasis for J.
(66) Let us consider a 1-element set I, a topological space yielding, nonempty many sorted set J indexed by I, an element i of I, and a subset P of ΠJ. Then P is open if and only if there exists a subset V of $J(i)$ such that V is open and $P=\Pi(\{i\} \longmapsto V)$. The theorem is a consequence of (65) and (64).

Let I be a non empty set, J be a topological structure yielding, nonempty many sorted set indexed by I, and i be an element of I. Note that $\operatorname{proj}(J, i)$ is continuous and onto.

Let J be a topological space yielding, nonempty many sorted set indexed by I. Note that $\operatorname{proj}(J, i)$ is open.

Let us consider a 1 -element set I, a topological space yielding, nonempty many sorted set J indexed by I, and an element i of I. Now we state the propositions:
(67) $\operatorname{proj}(J, i)$ is a homeomorphism. The theorem is a consequence of (7).
(68) ΠJ and $J(i)$ are homeomorphic. The theorem is a consequence of (67).

Let us consider a 2-element set I, a topological space yielding, nonempty many sorted set J indexed by I, elements i, j of I, and a subset P of Π (the support of $J)$. Now we state the propositions:
(69) Suppose $i \neq j$. Then $P \in$ the product prebasis for J if and only if there exists a subset V of $J(i)$ such that V is open and $P=\Pi[i \longmapsto$ $\left.V, j \longmapsto \Omega_{J(j)}\right]$ or there exists a subset W of $J(j)$ such that W is open and $P=\Pi\left[i \longmapsto \Omega_{J(i)}, j \longmapsto W\right]$. The theorem is a consequence of (34).
(70) Suppose $i \neq j$. Then $P \in \operatorname{FinMeetCl}($ the product prebasis for $J)$ if and only if there exists a subset V of $J(i)$ and there exists a subset W of $J(j)$ such that V is open and W is open and $P=\Pi[i \longmapsto V, j \longmapsto W]$.
Proof: There exists a family Y of subsets of Π (the support of J) such that $Y \subseteq$ the product prebasis for J and Y is finite and $P=\operatorname{Intersect}(Y)$.
(71) Let us consider a non empty set I, a topological space yielding, nonempty many sorted set J indexed by I, and elements i, j of I. Then $\langle\operatorname{proj}(J, i), \operatorname{proj}(J, j)\rangle$ is a function from ΠJ into $J(i) \times J(j)$.
(72) Let us consider a non empty set I, a topological space yielding, nonempty many sorted set J indexed by I, a subset P of Π (the support of J), and elements i, j of I. Suppose $i \neq j$ and there exists a many sorted set F indexed by I such that $P=\prod F$ and for every element k of $I, F(k) \subseteq$ (the support of $J)(k)$. Then $\langle\operatorname{proj}(J, i), \operatorname{proj}(J, j)\rangle^{\circ} P=(\operatorname{proj}(J, i))^{\circ} P \times$ $(\operatorname{proj}(J, j))^{\circ} P$. The theorem is a consequence of (26), (30), and (11).
(73) Let us consider a non empty set I, a topological space yielding, nonempty many sorted set J indexed by I, elements i, j of I, and a function f from ΠJ into $J(i) \times J(j)$. Suppose $i \neq j$ and $f=\langle\operatorname{proj}(J, i), \operatorname{proj}(J, j)\rangle$. Then f is onto and open.
Proof: For every element k of $I,(\operatorname{proj}(J, k))^{\circ}\left(\Omega{ }_{\prod \alpha}\right)=$ the carrier of $J(k)$, where α is the support of J. There exists a basis B of $\prod J$ such that for every subset P of ΠJ such that $P \in B$ holds $f^{\circ} P$ is open.
(74) Let us consider a 2-element set I, a topological space yielding, nonempty many sorted set J indexed by I, elements i, j of I, and a function f from
ΠJ into $J(i) \times J(j)$. Suppose $i \neq j$ and $f=\langle\operatorname{proj}(J, i), \operatorname{proj}(J, j)\rangle$. Then f is a homeomorphism.
Proof: f is onto and open. For every objects x_{1}, x_{2} such that $x_{1}, x_{2} \in$ $\operatorname{dom} f$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$ holds $x_{1}=x_{2}$.
(75) Let us consider a 2-element set I, a topological space yielding, nonempty many sorted set J indexed by I, and elements i, j of I. If $i \neq j$, then $\prod J$ and $J(i) \times J(j)$ are homeomorphic. The theorem is a consequence of (74).
Let I_{1}, I_{2} be non empty sets, J be a topological space yielding, nonempty many sorted set indexed by I_{2}, and f be a function from I_{1} into I_{2}. One can check that $J \cdot f$ is topological space yielding and nonempty.

Let J_{1} be a topological space yielding, nonempty many sorted set indexed by I_{1}, J_{2} be a topological space yielding, nonempty many sorted set indexed by I_{2}, and p be a function from I_{1} into I_{2}. Assume p is bijective and for every element i of $I_{1}, J_{1}(i)$ and $\left(J_{2} \cdot p\right)(i)$ are homeomorphic.

A product homeomorphism of J_{1}, J_{2} and p is a function from $\prod J_{1}$ into $\prod J_{2}$ defined by
(Def. 5) there exists a many sorted function F indexed by I_{1} such that for every element i of I_{1}, there exists a function f from $J_{1}(i)$ into $\left(J_{2} \cdot p\right)(i)$ such that $F(i)=f$ and f is a homeomorphism and for every element g of $\prod J_{1}$ and for every element i of $I_{1},(i t(g))(p(i))=F(i)(g(i))$.
Now we state the proposition:
(76) Let us consider non empty sets I_{1}, I_{2}, a topological space yielding, nonempty many sorted set J_{1} indexed by I_{1}, a topological space yielding, nonempty many sorted set J_{2} indexed by I_{2}, a function p from I_{1} into I_{2}, a product homeomorphism H of J_{1}, J_{2} and p, and a many sorted function F indexed by I_{1}. Suppose p is bijective and for every element i of I_{1}, there exists a function f from $J_{1}(i)$ into $\left(J_{2} \cdot p\right)(i)$ such that $F(i)=f$ and f is a homeomorphism and for every element g of $\prod J_{1}$ and for every element i of $I_{1},(H(g))(p(i))=F(i)(g(i))$. Let us consider an element i of I_{1}, and a subset U of $J_{1}(i)$. Then $H^{\circ}(\Pi(($ the support of $\left.\left.\left.J_{1}\right)+\cdot(i, U)\right)\right)=\Pi\left(\left(\right.\right.$ the support of $\left.\left.J_{2}\right)+\cdot\left(p(i), F(i)^{\circ} U\right)\right)$.
Proof: Reconsider $j=p(i)$ as an element of I_{2}. Consider f being a function from $J_{1}(i)$ into $\left(J_{2} \cdot p\right)(i)$ such that $F(i)=f$ and f is a homeomorphism. For every object $y, y \in H^{\circ}\left(\Pi\left(\left(\right.\right.\right.$ the support of $\left.\left.\left.J_{1}\right)+\cdot(i, U)\right)\right)$ iff $y \in \Pi\left(\left(\right.\right.$ the support of $\left.\left.J_{2}\right)+\cdot\left(j, F(i)^{\circ} U\right)\right)$.
Let us consider non empty sets I_{1}, I_{2}, a topological space yielding, nonempty many sorted set J_{1} indexed by I_{1}, a topological space yielding, nonempty many sorted set J_{2} indexed by I_{2}, a function p from I_{1} into I_{2}, and a product homeomorphism H of J_{1}, J_{2} and p. Now we state the propositions:
(77) If p is bijective and for every element i of $I_{1}, J_{1}(i)$ and $\left(J_{2} \cdot p\right)(i)$ are homeomorphic, then H is bijective.
Proof: Consider F being a many sorted function indexed by I_{1} such that for every element i of I_{1}, there exists a function f from $J_{1}(i)$ into $\left(J_{2} \cdot p\right)(i)$ such that $F(i)=f$ and f is a homeomorphism and for every element g of $\prod J_{1}$ and for every element i of $I_{1},(H(g))(p(i))=F(i)(g(i))$. For every objects x_{1}, x_{2} such that $x_{1}, x_{2} \in \operatorname{dom} H$ and $H\left(x_{1}\right)=H\left(x_{2}\right)$ holds $x_{1}=x_{2}$. Set $i_{0}=$ the element of I_{1}. Consider f_{0} being a function from $J_{1}\left(i_{0}\right)$ into $\left(J_{2} \cdot p\right)\left(i_{0}\right)$ such that $F\left(i_{0}\right)=f_{0}$ and f_{0} is a homeomorphism.
(78) If p is bijective and for every element i of $I_{1}, J_{1}(i)$ and $\left(J_{2} \cdot p\right)(i)$ are homeomorphic, then H is a homeomorphism.
Proof: Consider F being a many sorted function indexed by I_{1} such that for every element i of I_{1}, there exists a function f from $J_{1}(i)$ into $\left(J_{2} \cdot p\right)(i)$ such that $F(i)=f$ and f is a homeomorphism and for every element g of $\prod J_{1}$ and for every element i of $I_{1},(H(g))(p(i))=F(i)(g(i)) . H$ is bijective. There exists a prebasis K of ΠJ_{1} and there exists a prebasis L of ΠJ_{2} such that $H^{\circ} K=L$.
(79) Let us consider non empty sets I_{1}, I_{2}, a topological space yielding, nonempty many sorted set J_{1} indexed by I_{1}, a topological space yielding, nonempty many sorted set J_{2} indexed by I_{2}, and a function p from I_{1} into I_{2}. Suppose p is bijective and for every element i of $I_{1}, J_{1}(i)$ and $\left(J_{2} \cdot p\right)(i)$ are homeomorphic. Then $\prod J_{1}$ and $\prod J_{2}$ are homeomorphic. The theorem is a consequence of (78).
(80) Let us consider a non empty set I, topological space yielding, nonempty many sorted sets J_{1}, J_{2} indexed by I, and a permutation p of I. Suppose for every element i of $I, J_{1}(i)$ and $\left(J_{2} \cdot p\right)(i)$ are homeomorphic. Then ΠJ_{1} and $\prod J_{2}$ are homeomorphic.
(81) Let us consider a non empty set I, a topological space yielding, nonempty many sorted set J indexed by I, and a permutation p of I. Then ΠJ and $\Pi J \cdot p$ are homeomorphic. The theorem is a consequence of (79).
(82) Let us consider a non empty set I, and topological space yielding, nonempty many sorted sets J_{1}, J_{2} indexed by I. Suppose for every element i of $I, J_{1}(i)$ is a subspace of $J_{2}(i)$. Then ΠJ_{1} is a subspace of ΠJ_{2}.
Proof: There exists a prebasis K_{1} of ΠJ_{1} and there exists a prebasis K_{2} of $\prod J_{2}$ such that $\Omega_{\prod J_{1}} \in K_{1}$ and $K_{1}=K_{2} \cap\left\{\Omega_{\prod J_{1}}\right\}$.

References

[1] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9-32, 2018. dor $10.1007 /$ siU817-017-9440-6
[4] Nicolas Bourbaki. Elements de Mathematique, volume Topologie Generale. HERMANN, troisieme edition, 1960.
[5] Jarosław Gryko. Injective spaces Formalized Mathematics, 7(1):57-62, 1998.
[6] John L. Kelley. General Topology, volume 27 of Graduate Texts in Mathematics. SpringerVerlag, 1955.
[7] James Raymond Munkres. Topology. Prentice-Hall, Upper Saddle River, NJ, 2 edition, 2000.
[8] Adam Naumowicz. On the characterization of collineations of the Segre product of strongly connected partial linear spaces. Formalized Mathematics, 13(1):125-131, 2005.
[9] Bartłomiej Skorulski. The Tichonov Theorem Formalized Mathematics, 9(2):373-376, 2001.

Accepted September 29, 2018

[^0]: ${ }^{1}$ The author is enrolled in the Johannes Gutenberg University in Mayence, Germany, mailto: skoch02@students.uni-mainz.de

