

Some Remarks about Product Spaces

Sebastian Koch[®] Johannes Gutenberg University Mainz, Germany¹

Summary. This article covers some technical aspects about the product topology which are usually not given much of a thought in mathematics and standard literature like [7] and [6], not even by Bourbaki in [4].

Let $\{\mathcal{T}_i\}_{i\in I}$ be a family of topological spaces. The prebasis of the product space $\mathcal{T} = \prod_{i\in I} \mathcal{T}_i$ is defined in [5] as the set of all $\pi_i^{-1}(V)$ with $i \in I$ and V open in \mathcal{T}_i . Here it is shown that the basis generated by this prebasis consists exactly of the sets $\prod_{i\in I} V_i$ with V_i open in \mathcal{T}_i and for all but finitely many $i \in I$ holds $V_i = \mathcal{T}_i$. Given $I = \{a\}$ we have $\mathcal{T} \cong \mathcal{T}_a$, given $I = \{a, b\}$ with $a \neq b$ we have $\mathcal{T} \cong \mathcal{T}_a \times \mathcal{T}_b$. Given another family of topological spaces $\{\mathcal{S}_i\}_{i\in I}$ such that $\mathcal{S}_i \cong \mathcal{T}_i$ for all $i \in I$, we have $\mathcal{S} = \prod_{i\in I} \mathcal{S}_i \cong \mathcal{T}$. If instead S_i is a subspace of T_i for each $i \in I$, then \mathcal{S} is a subspace of \mathcal{T} .

These results are obvious for mathematicians, but formally proven here by means of the Mizar system [3], [2].

MSC: 54B10 68T99 03B35

Keywords: topology; product spaces

MML identifier: $TOPS_5$, version: 8.1.08 5.53.1335

1. Preliminaries

Now we state the propositions:

(1) Let us consider a one-to-one function f, and an object y. Suppose rng $f = \{y\}$. Then dom $f = \{(f^{-1})(y)\}$.

PROOF: Consider x_0 being an object such that $x_0 \in \text{dom } f$ and $f(x_0) = y$. For every object $x, x \in \text{dom } f$ iff $x = (f^{-1})(y)$. \Box

¹The author is enrolled in the Johannes Gutenberg University in Mayence, Germany, mailto: skoch02@students.uni-mainz.de

(2) Let us consider a one-to-one function f, and objects y_1 , y_2 . Suppose rng $f = \{y_1, y_2\}$. Then dom $f = \{(f^{-1})(y_1), (f^{-1})(y_2)\}$.

PROOF: Consider x_1 being an object such that $x_1 \in \text{dom } f$ and $f(x_1) = y_1$. Consider x_2 being an object such that $x_2 \in \text{dom } f$ and $f(x_2) = y_2$. For every object $x, x \in \text{dom } f$ iff $x = (f^{-1})(y_1)$ or $x = (f^{-1})(y_2)$. \Box

Let X, Y be sets. Note that there exists a function which is empty, X-defined, Y-valued, and one-to-one.

Let T, S be sets, f be a function from T into S, and G be a finite family of subsets of T. Let us note that $f^{\circ}G$ is finite.

Now we state the propositions:

- (3) Let us consider a set A, a family F of subsets of A, and a binary relation R. Then $R^{\circ}(\bigcap F) \subseteq \bigcap \{R^{\circ}X, \text{ where } X \text{ is a subset of } A : X \in F\}.$
- (4) Let us consider a set A, a family F of subsets of A, and a one-to-one function f. Then $f^{\circ}(\bigcap F) = \bigcap \{f^{\circ}X, \text{ where } X \text{ is a subset of } A : X \in F\}$. PROOF: Set $S = \{f^{\circ}X, \text{ where } X \text{ is a subset of } A : X \in F\}$. $\bigcap S \subseteq f^{\circ}(\bigcap F)$. $f^{\circ}(\bigcap F) \subseteq \bigcap S$. \Box
- (5) Let us consider a set X, a non empty set Y, and a function f from X into Y. Then $\{f^{-1}(\{y\}), where y \text{ is an element of } Y : y \in \operatorname{rng} f\}$ is a partition of X.

PROOF: Set $P = \{f^{-1}(\{y\}), \text{ where } y \text{ is an element of } Y : y \in \operatorname{rng} f\}$. For every object $x, x \in X$ iff there exists a set A such that $x \in A$ and $A \in P$. For every subset A of X such that $A \in P$ holds $A \neq \emptyset$ and for every subset B of X such that $B \in P$ holds A = B or A misses B. $P \subseteq 2^X$. \Box

- (6) Let us consider a non empty set X, and objects x, y. If $X \mapsto x = X \mapsto y$, then x = y.
- (7) Let us consider an object i, and a many sorted set J indexed by $\{i\}$. Then $J = \{i\} \longmapsto J(i)$. PROOF: For every object x such that $x \in \text{dom } J$ holds $J(x) = (\{i\} \longmapsto J(i))(x)$. \Box
- (8) Let us consider a 2-element set I, and elements i, j of I. If $i \neq j$, then $I = \{i, j\}$.

PROOF: For every object x, x = i or x = j iff $x \in I$. \Box

- (9) Let us consider a 2-element set I, a many sorted set f indexed by I, and elements i, j of I. If $i \neq j$, then $f = [i \mapsto f(i), j \mapsto f(j)]$. The theorem is a consequence of (8).
- (10) Let us consider objects a, b, c, d. If $a \neq b$, then $[a \longmapsto c, b \longmapsto d] = [b \longmapsto d, a \longmapsto c]$. PROOF: For every object x such that $x \in \text{dom}[a \longmapsto c, b \longmapsto d]$ holds $[a \longmapsto c, b \longmapsto d](x) = [b \longmapsto d, a \longmapsto c](x)$. \Box

- (11) Let us consider a function f, and objects i, j. If $i, j \in \text{dom } f$, then $f = f + [i \longmapsto f(i), j \longmapsto f(j)].$
- (12) Let us consider objects x, y, z. Then $x \mapsto y + (x \mapsto z) = x \mapsto z$. Let us observe that there exists a function which is non non-empty. Now we state the propositions:
- (13) Let us consider non empty sets X, Y, and an element y of Y. Then $X \longmapsto y \in \prod (X \longmapsto Y)$. PROOF: Set $f = X \longmapsto y$. For every object x such that $x \in \text{dom}(X \longmapsto Y)$ holds $f(x) \in (X \longmapsto Y)(x)$. \Box
- (14) Let us consider a non empty set X, a set Y, and a subset Z of Y. Then $\prod(X \longmapsto Z) \subseteq \prod(X \longmapsto Y).$
- (15) Let us consider a non empty set X, and an object i. Then $\prod(\{i\} \mapsto X) = \{\{i\} \mapsto x, \text{ where } x \text{ is an element of } X\}.$ PROOF: Set $S = \{\{i\} \mapsto x, \text{ where } x \text{ is an element of } X\}.$ For every object $z, z \in \prod(\{i\} \mapsto X) \text{ iff } z \in S. \square$
- (16) Let us consider a non empty set X, and objects i, f. Then $f \in \prod(\{i\} \mapsto X)$ if and only if there exists an element x of X such that $f = \{i\} \mapsto x$. The theorem is a consequence of (15).
- (17) Let us consider a non empty set X, an object i, and an element x of X. Then $(\operatorname{proj}(\{i\} \longmapsto X, i))(\{i\} \longmapsto x) = x$. The theorem is a consequence of (13).
- (18) Let us consider sets X, Y. Then $X \neq \emptyset$ and $Y = \emptyset$ if and only if $\prod (X \mapsto Y) = \emptyset$.

Let f be an empty function and x be an object. Let us note that proj(f, x) is trivial.

Now we state the proposition:

(19) Let us consider a trivial function f, and an object x. If $x \in \text{dom } f$, then proj(f, x) is one-to-one.

PROOF: Consider t being an object such that dom $f = \{t\}$. Set F = proj(f, x). For every objects y, z such that $y, z \in \text{dom } F$ and F(y) = F(z) holds y = z. \Box

Let x, y be objects. Note that $\operatorname{proj}(x \mapsto y, x)$ is one-to-one.

Let I be a 1-element set, J be a many sorted set indexed by I, and i be an element of I. One can verify that proj(J, i) is one-to-one.

Now we state the propositions:

(20) Let us consider a non empty set X, a subset Y of X, and an object i. Then $(\operatorname{proj}(\{i\} \mapsto X, i))^{\circ}(\prod(\{i\} \mapsto Y)) = Y$. The theorem is a consequence of (16), (13), and (14).

- (21) Let us consider non-empty functions f, g, and objects i, x. Suppose $x \in \prod f \cap \prod (f+\cdot g)$. Then $(\operatorname{proj}(f,i))(x) = (\operatorname{proj}(f+\cdot g,i))(x)$.
- (22) Let us consider non-empty functions f, g, an object i, and a set A. Suppose $A \subseteq \prod f \cap \prod (f+\cdot g)$. Then $(\operatorname{proj}(f,i))^{\circ}A = (\operatorname{proj}(f+\cdot g,i))^{\circ}A$. The theorem is a consequence of (21).
- (23) Let us consider non-empty functions f, g. Suppose dom $g \subseteq \text{dom } f$ and for every object i such that $i \in \text{dom } g$ holds $g(i) \subseteq f(i)$. Then $\prod (f+\cdot g) \subseteq \prod f$.

Let us consider non-empty functions f, g and an object i. Now we state the propositions:

- (24) Suppose dom $g \subseteq \text{dom } f$ and for every object i such that $i \in \text{dom } g$ holds $g(i) \subseteq f(i)$. Then if $i \in \text{dom } f \setminus \text{dom } g$, then $(\text{proj}(f,i))^{\circ}(\prod(f+\cdot g)) = f(i)$. The theorem is a consequence of (23) and (22).
- (25) Suppose dom $g \subseteq \text{dom } f$ and for every object i such that $i \in \text{dom } g$ holds $g(i) \subseteq f(i)$. Then if $i \in \text{dom } g$, then $(\text{proj}(f,i))^{\circ}(\prod(f+\cdot g)) = g(i)$. The theorem is a consequence of (23) and (22).
- (26) Suppose dom g = dom f and for every object i such that $i \in \text{dom } g$ holds $g(i) \subseteq f(i)$. Then if $i \in \text{dom } g$, then $(\text{proj}(f, i))^{\circ}(\prod g) = g(i)$. The theorem is a consequence of (25).
- (27) Let us consider a function f, sets X, Y, and an object i. Suppose $X \subseteq Y$. Then $\prod (f + (i \mapsto X)) \subseteq \prod (f + (i \mapsto Y))$.
- (28) Let us consider objects i, j, and sets A, B, C, D. Suppose $A \subseteq C$ and $B \subseteq D$. Then $\prod[i \longmapsto A, j \longmapsto B] \subseteq \prod[i \longmapsto C, j \longmapsto D]$. The theorem is a consequence of (14).
- (29) Let us consider sets X, Y, and objects f, i, j. Suppose $i \neq j$. Then $f \in \prod [i \longmapsto X, j \longmapsto Y]$ if and only if there exist objects x, y such that $x \in X$ and $y \in Y$ and $f = [i \longmapsto x, j \longmapsto y]$. PROOF: If $f \in \prod [i \longmapsto X, j \longmapsto Y]$, then there exist objects x, y such that $x \in X$ and $y \in Y$ and $f = [i \longmapsto x, j \longmapsto y]$. Reconsider g = f as a function. For every object z such that $z \in \text{dom}[i \longmapsto X, j \longmapsto Y]$ holds $g(z) \in [i \longmapsto X, j \longmapsto Y](z)$. \Box
- (30) Let us consider a non-empty function f, sets X, Y, objects i, j, x, y, and a function g. Suppose $x \in X$ and $y \in Y$ and $i \neq j$ and $g \in \prod f$. Then $g + \cdot [i \longmapsto x, j \longmapsto y] \in \prod (f + \cdot [i \longmapsto X, j \longmapsto Y])$. PROOF: For every object z such that $z \in \text{dom}(f + \cdot [i \longmapsto X, j \longmapsto Y])$ holds $(g + \cdot [i \longmapsto x, j \longmapsto y])(z) \in (f + \cdot [i \longmapsto X, j \longmapsto Y])(z)$. \Box
- (31) Let us consider a function f, sets A, B, C, D, and objects i, j. Suppose $A \subseteq C$ and $B \subseteq D$. Then $\prod (f + [i \longmapsto A, j \longmapsto B]) \subseteq \prod (f + [i \longmapsto A, j \longmapsto B])$

 $C, j \mapsto D$). The theorem is a consequence of (27).

- (32) Let us consider a function f, sets A, B, and objects i, j. Suppose i, $j \in \text{dom } f$ and $A \subseteq f(i)$ and $B \subseteq f(j)$. Then $\prod (f + [i \longmapsto A, j \longmapsto B]) \subseteq \prod f$. The theorem is a consequence of (11) and (31).
- (33) Let us consider a set I, and many sorted sets f, g indexed by I. Then $\prod f \cap \prod g = \prod (f \cap g)$. PROOF: For every object $x, x \in \prod f \cap \prod g$ iff there exists a function hsuch that h = x and dom $h = \text{dom}(f \cap g)$ and for every object y such that $y \in \text{dom}(f \cap g)$ holds $h(y) \in (f \cap g)(y)$. \Box
- (34) Let us consider a 2-element set I, a many sorted set f indexed by I, elements i, j of I, and an object x. Suppose $i \neq j$. Then

(i)
$$f + (i, x) = [i \longmapsto x, j \longmapsto f(j)]$$
, and

(ii)
$$f + (j, x) = [i \longmapsto f(i), j \longmapsto x].$$

The theorem is a consequence of (10).

Let us consider a non-empty function f, a set X, and an object i. Now we state the propositions:

- (35) If $i \in \text{dom } f$, then f + (i, X) is non-empty iff X is not empty. PROOF: For every object x such that $x \in \text{dom}(f + (i, X))$ holds (f + (i, X))(x) is not empty. \Box
- (36) If $i \in \text{dom } f$, then $\prod (f + (i, X)) = \emptyset$ iff X is empty. The theorem is a consequence of (35).
- (37) Let us consider a non-empty function f, a set X, objects i, x, and a function g. Suppose $i \in \text{dom } f$ and $x \in X$ and $g \in \prod f$. Then $g + (i, x) \in \prod(f + (i, X))$. PROOF: For every object y such that $y \in \text{dom}(f + (i, X))$ holds $(g + (i, x))(y) \in (f + (i, X))(y)$. \Box
- (38) Let us consider a function f, sets X, Y, and an object i. Suppose $i \in \text{dom } f$ and $X \subseteq Y$. Then $\prod(f + (i, X)) \subseteq \prod(f + (i, Y))$. The theorem is a consequence of (27).
- (39) Let us consider a function f, a set X, and an object i. Suppose $i \in \text{dom } f$ and $X \subseteq f(i)$. Then $\prod (f + (i, X)) \subseteq \prod f$. The theorem is a consequence of (38).
- (40) Let us consider a non-empty function f, non empty sets X, Y, and objects i, j. Suppose $i, j \in \text{dom } f$ and $(X \not\subseteq f(i) \text{ or } f(j) \not\subseteq Y)$ and $\prod(f + (i, X)) \subseteq \prod(f + (j, Y))$. Then
 - (i) i = j, and
 - (ii) $X \subseteq Y$.

PROOF: f + (i, X) is non-empty and f + (j, Y) is non-empty. i = j. Set g = the element of $\prod f. g + (i, x) \in \prod (f + (i, X)). \square$

- (41) Let us consider a non-empty function f, a set X, and an object i. Suppose $i \in \text{dom } f$ and $\prod (f + (i, X)) \subseteq \prod f$. Then $X \subseteq f(i)$. The theorem is a consequence of (37).
- (42) Let us consider a non-empty function f, non empty sets X, Y, and objects i, j. Suppose $i, j \in \text{dom } f$ and $(X \neq f(i) \text{ or } Y \neq f(j))$ and $\prod(f + (i, X)) = \prod(f + (j, Y))$. Then
 - (i) i = j, and
 - (ii) X = Y.

PROOF: f + (i, X) is non-empty and f + (j, Y) is non-empty. i = j.

- (43) Let us consider a non-empty function f, a set X, and an object i. Suppose $i \in \text{dom } f$ and $X \subseteq f(i)$. Then $(\text{proj}(f,i))^{\circ}(\prod(f+(i,X))) = X$. The theorem is a consequence of (25).
- (44) Let us consider objects x, y, z. Then $x \mapsto y + (x, z) = x \mapsto z$. The theorem is a consequence of (12).

Let I be a non empty set and J be a 1-sorted yielding, nonempty many sorted set indexed by I. Let us observe that the support of J is non-empty.

2. Remarks about Product Spaces

Now we state the propositions:

- (45) Let us consider topological spaces T, S, and a function f from T into S. Then f is open if and only if there exists a basis B of T such that for every subset V of T such that $V \in B$ holds $f^{\circ}V$ is open.
- (46) Let us consider non empty topological spaces T₁, T₂, S₁, S₂, a function f from T₁ into S₁, and a function g from T₂ into S₂. If f is open and g is open, then f × g is open.
 PROOF: There exists a basis B of T₁ × T₂ such that for every subset P of

 $T_1 \times T_2$ such that $P \in B$ holds $(f \times g)^{\circ} P$ is open. \Box

Let us consider non empty topological spaces S, T and a function f from S into T. Now we state the propositions:

(47) If f is bijective and there exists a basis K of S and there exists a basis L of T such that $f^{\circ}K = L$, then f is a homeomorphism. PROOF: For every subset W of T such that $W \in L$ holds $f^{-1}(W)$ is open. For every subset V of S such that $V \in K$ holds $f^{\circ}V$ is open. \Box (48) If f is bijective and there exists a prebasis K of S and there exists a prebasis L of T such that $f^{\circ}K = L$, then f is a homeomorphism. PROOF: Reconsider $K_0 = \text{FinMeetCl}(K)$ as a basis of S. Reconsider $L_0 =$ FinMeetCl(L) as a basis of T. For every subset W of T, $W \in L_0$ iff there exists a subset V of S such that $V \in K_0$ and $f^{\circ}V = W$. \Box

Let us consider topological spaces S, T. Now we state the propositions:

- (49) If there exists a basis K of S and there exists a basis L of T such that $K = L \cap {\Omega_S}$, then S is a subspace of T. PROOF: For every subset A of S, $A \in$ the topology of S iff there exists a subset B of T such that $B \in$ the topology of T and $A = B \cap \Omega_S$. Consider B being a subset of T such that $B \in$ the topology of T and the carrier of $S = B \cap \Omega_S$. \Box
- (50) Suppose $\Omega_S \subseteq \Omega_T$ and there exists a prebasis K of S and there exists a prebasis L of T such that $K = L \cap {\Omega_S}$. Then S is a subspace of T. PROOF: Reconsider $K_0 = \text{FinMeetCl}(K)$ as a basis of S. Reconsider $L_0 = \text{FinMeetCl}(L)$ as a basis of T. For every object $x, x \in K_0$ iff $x \in L_0 \cap {\Omega_S}$. \Box
- (51) If there exists a prebasis K of S and there exists a prebasis L of T such that $\Omega_S \in K$ and $K = L \cap {\Omega_S}$, then S is a subspace of T. The theorem is a consequence of (50).
- (52) Let us consider a non empty set I, a topological structure yielding, nonempty many sorted set J indexed by I, and an element i of I. Then rng proj(J, i) = the carrier of J(i).

Let X be a set and T be a topological structure. Observe that $X \mapsto T$ is topological structure yielding.

Let F be a binary relation. We say that F is topological space yielding if and only if

(Def. 1) for every object x such that $x \in \operatorname{rng} F$ holds x is a topological space.

Note that every binary relation which is topological space yielding is also topological structure yielding and every function which is topological space yielding is also 1-sorted yielding.

Let X be a set and T be a topological space. One can verify that $X \mapsto T$ is topological space yielding.

Let I be a set. One can verify that there exists a many sorted set indexed by I which is topological space yielding and nonempty.

Let I be a non empty set, J be a topological space yielding, nonempty many sorted set indexed by I, and i be an element of I. Let us note that the functor J(i) yields a non empty topological space. Let f be a function. The functor ProjMap f yielding a many sorted function indexed by dom f is defined by

- (Def. 2) for every object x such that $x \in \text{dom } f$ holds it(x) = proj(f, x).
 - Let f be an empty function. One can verify that ProjMap f is empty.

Let f be a non-empty function. Note that $\operatorname{ProjMap} f$ is non-empty.

Let f be a non-non-empty function. Let us note that ProjMap f is empty yielding.

Let I be a non empty set and J be a topological structure yielding, nonempty many sorted set indexed by I. The functor ProjMap J yielding a many sorted set indexed by I is defined by the term

(Def. 3) ProjMap(the support of J).

Observe that $\operatorname{ProjMap} J$ is function yielding, non empty, and non-empty. Now we state the proposition:

(53) Let us consider a non empty set I, a topological structure yielding, nonempty many sorted set J indexed by I, and an element i of I. Then $(\operatorname{ProjMap} J)(i) = \operatorname{proj}(J, i).$

Let I be a non empty set, J be a topological structure yielding, nonempty many sorted set indexed by I, and f be a one-to-one, I-valued function. The functor ProdBasSel(J, f) yielding a many sorted set indexed by rng f is defined by the term

(Def. 4) (ProjMap J) ° (I-indexing f^{-1}) \upharpoonright rng f.

Let f be an empty, one-to-one, $\,I\mbox{-}valued$ function. Note that ${\rm ProdBasSel}(J,f)$ is empty.

Now we state the propositions:

- (54) Let us consider a non empty set I, a topological structure yielding, nonempty many sorted set J indexed by I, a one-to-one, I-valued function f, and an element i of I. Suppose $i \in \operatorname{rng} f$. Then $(\operatorname{ProdBasSel}(J, f))(i) =$ $(\operatorname{proj}(J, i))^{\circ}(f^{-1})(i)$. The theorem is a consequence of (53).
- (55) Let us consider a non empty set I, a topological structure yielding, nonempty many sorted set J indexed by I, and a one-to-one, I-valued function f. Suppose f^{-1} is non-empty and dom $f \subseteq 2\Pi^{\alpha}$. Then ProdBasSel(J, f)is non-empty, where α is the support of J. The theorem is a consequence of (54).
- (56) Let us consider a non empty set I, and a topological space yielding, nonempty many sorted set J indexed by I. Then $\emptyset \in$ the product prebasis for J. The theorem is a consequence of (36).
- (57) Let us consider a non empty set I, a topological structure yielding, nonempty many sorted set J indexed by I, and a non empty subset P of \prod (the support of J). Suppose $P \in$ the product prebasis for J. Then there exists an element i of I such that

- (i) $(\operatorname{proj}(J, i))^{\circ}P$ is open, and
- (ii) for every element j of I such that $j \neq i$ holds $(\operatorname{proj}(J, j))^{\circ} P = \Omega_{J(i)}$.

PROOF: Consider *i* being a set, *T* being a topological structure, *V* being a subset of *T* such that $i \in I$ and *V* is open and T = J(i) and $P = \prod((\text{the support of } J) + (i, V))$. rng $\operatorname{proj}(J, i) = \text{the carrier of } J(i)$. For every object $x, x \in (\operatorname{proj}(J, j))^{\circ}P$ iff $x \in \Omega_{J(j)}$ by [1, (30), (32)], [9, (8)],[8, (7)]. \Box

- (58) Let us consider a non empty set I, a topological space yielding, nonempty many sorted set J indexed by I, and a non empty subset P of \prod (the support of J). Suppose $P \in$ the product prebasis for J. Then
 - (i) for every element j of I, $(\text{proj}(J, j))^{\circ}P$ is open, and
 - (ii) there exists an element *i* of *I* such that for every element *j* of *I* such that $j \neq i$ holds $(\operatorname{proj}(J, j))^{\circ}P = \Omega_{J(j)}$.

The theorem is a consequence of (57).

- (59) Let us consider a non empty set I, a topological structure yielding, nonempty many sorted set J indexed by I, a one-to-one, I-valued function f, and a family X of subsets of \prod (the support of J). Suppose $X \subseteq$ the product prebasis for J and dom f = X and f^{-1} is non-empty and for every subset A of \prod (the support of J) such that $A \in X$ holds $(\operatorname{proj}(J, f_{A}))^{\circ}A$ is open. Let us consider an element i of I. Then
 - (i) if $i \notin \operatorname{rng} f$, then $(\operatorname{proj}(J, i))^{\circ}(\prod((\text{the support of } J) + \cdots \operatorname{ProdBasSel}(J, f))) = \Omega_{J(i)}$, and
 - (ii) if $i \in \operatorname{rng} f$, then $(\operatorname{proj}(J, i))^{\circ}(\prod((\text{the support of } J) + \cdots \operatorname{ProdBasSel}(J, f)))$ is open.

PROOF: Set $g = \operatorname{ProdBasSel}(J, f)$. Set $P = \prod((\text{the support of } J) + g)$. g is non-empty. If $i \notin \operatorname{rng} f$, then $(\operatorname{proj}(J, i))^{\circ} P = \Omega_{J(i)}$. \Box

- (60) Let us consider a non empty set I, a topological space yielding, nonempty many sorted set J indexed by I, a one-to-one, I-valued function f, and a family X of subsets of \prod (the support of J). Suppose $X \subseteq$ the product prebasis for J and dom f = X and f^{-1} is non-empty and for every subset A of \prod (the support of J) such that $A \in X$ holds $(\operatorname{proj}(J, f_{/A}))^{\circ}A$ is open. Let us consider an element i of I. Then
 - (i) $(\operatorname{proj}(J, i))^{\circ}(\prod((\text{the support of } J) + \operatorname{ProdBasSel}(J, f)))$ is open, and
 - (ii) if $i \notin \operatorname{rng} f$, then $(\operatorname{proj}(J, i))^{\circ}(\prod((\text{the support of } J) + \cdots \operatorname{ProdBasSel}(J, f))) = \Omega_{J(i)}$.

The theorem is a consequence of (59).

(61) Let us consider a non empty set I, a topological space yielding, nonempty many sorted set J indexed by I, and a subset P of \prod (the support of J). Then $P \in \text{FinMeetCl}$ (the product prebasis for J) if and only if there exists a family X of subsets of \prod (the support of J) and there exists a one-to-one, I-valued function f such that $X \subseteq$ the product prebasis for J and X is finite and P = Intersect(X) and dom f = X and $P = \prod$ ((the support of J)+· ProdBasSel(J, f)).

Let us consider a non empty set I, a topological space yielding, nonempty many sorted set J indexed by I, and a non empty subset P of \prod (the support of J). Now we state the propositions:

- (62) Suppose $P \in \text{FinMeetCl}(\text{the product prebasis for } J)$. Then there exists a family X of subsets of \prod (the support of J) and there exists a one-to-one, I-valued function f such that $X \subseteq$ the product prebasis for J and X is finite and P = Intersect(X) and dom f = X and for every element i of I, $(\text{proj}(J, i))^{\circ}P$ is open and if $i \notin \text{rng } f$, then $(\text{proj}(J, i))^{\circ}P = \Omega_{J(i)}$. PROOF: Consider X being a family of subsets of \prod (the support of J), f being a one-to-one, I-valued function such that $X \subseteq$ the product prebasis
 - for J and X is finite and P = Intersect(X) and dom f = X and $P = \prod((\text{the support of } J) + \cdot \text{ProdBasSel}(J, f))$. f^{-1} is non-empty. \Box
- (63) Suppose $P \in \text{FinMeetCl}(\text{the product prebasis for } J)$. Then there exists a finite subset I_0 of I such that for every element i of I, $(\text{proj}(J, i))^{\circ}P$ is open and if $i \notin I_0$, then $(\text{proj}(J, i))^{\circ}P = \Omega_{J(i)}$. The theorem is a consequence of (62).
- (64) Let us consider a 1-element set I, a topological structure yielding, nonempty many sorted set J indexed by I, an element i of I, and a subset Pof \prod (the support of J). Then $P \in$ the product prebasis for J if and only if there exists a subset V of J(i) such that V is open and $P = \prod(\{i\} \mapsto V)$. The theorem is a consequence of (7) and (44).
- (65) Let us consider a 1-element set I, and a topological space yielding, nonempty many sorted set J indexed by I. Then the topology of $\prod J =$ the product prebasis for J.
- (66) Let us consider a 1-element set I, a topological space yielding, nonempty many sorted set J indexed by I, an element i of I, and a subset P of $\prod J$. Then P is open if and only if there exists a subset V of J(i) such that Vis open and $P = \prod(\{i\} \mapsto V)$. The theorem is a consequence of (65) and (64).

Let I be a non empty set, J be a topological structure yielding, nonempty many sorted set indexed by I, and i be an element of I. Note that proj(J, i) is continuous and onto. Let J be a topological space yielding, nonempty many sorted set indexed by I. Note that proj(J, i) is open.

Let us consider a 1-element set I, a topological space yielding, nonempty many sorted set J indexed by I, and an element i of I. Now we state the propositions:

- (67) $\operatorname{proj}(J, i)$ is a homeomorphism. The theorem is a consequence of (7).
- (68) $\prod J$ and J(i) are homeomorphic. The theorem is a consequence of (67).

Let us consider a 2-element set I, a topological space yielding, nonempty many sorted set J indexed by I, elements i, j of I, and a subset P of \prod (the support of J). Now we state the propositions:

- (69) Suppose $i \neq j$. Then $P \in$ the product prebasis for J if and only if there exists a subset V of J(i) such that V is open and $P = \prod [i \mapsto V, j \mapsto \Omega_{J(j)}]$ or there exists a subset W of J(j) such that W is open and $P = \prod [i \mapsto \Omega_{J(i)}, j \mapsto W]$. The theorem is a consequence of (34).
- (70) Suppose $i \neq j$. Then $P \in \text{FinMeetCl}(\text{the product prebasis for } J)$ if and only if there exists a subset V of J(i) and there exists a subset W of J(j)such that V is open and W is open and $P = \prod[i \longmapsto V, j \longmapsto W]$. PROOF: There exists a family Y of subsets of $\prod(\text{the support of } J)$ such that $Y \subseteq$ the product prebasis for J and Y is finite and P = Intersect(Y). \Box
- (71) Let us consider a non empty set I, a topological space yielding, nonempty many sorted set J indexed by I, and elements i, j of I. Then $\langle \operatorname{proj}(J, i), \operatorname{proj}(J, j) \rangle$ is a function from $\prod J$ into $J(i) \times J(j)$.
- (72) Let us consider a non empty set I, a topological space yielding, nonempty many sorted set J indexed by I, a subset P of \prod (the support of J), and elements i, j of I. Suppose $i \neq j$ and there exists a many sorted set Findexed by I such that $P = \prod F$ and for every element k of $I, F(k) \subseteq$ (the support of J)(k). Then $\langle \operatorname{proj}(J, i), \operatorname{proj}(J, j) \rangle^{\circ} P = (\operatorname{proj}(J, i))^{\circ} P \times$ ($\operatorname{proj}(J, j)$) $^{\circ} P$. The theorem is a consequence of (26), (30), and (11).
- (73) Let us consider a non empty set I, a topological space yielding, nonempty many sorted set J indexed by I, elements i, j of I, and a function f from $\prod J$ into $J(i) \times J(j)$. Suppose $i \neq j$ and $f = \langle \operatorname{proj}(J, i), \operatorname{proj}(J, j) \rangle$. Then f is onto and open.

PROOF: For every element k of I, $(\operatorname{proj}(J,k))^{\circ}(\Omega_{\prod \alpha}) = \text{the carrier of } J(k)$, where α is the support of J. There exists a basis B of $\prod J$ such that for every subset P of $\prod J$ such that $P \in B$ holds $f^{\circ}P$ is open. \Box

(74) Let us consider a 2-element set I, a topological space yielding, nonempty many sorted set J indexed by I, elements i, j of I, and a function f from $\prod J$ into $J(i) \times J(j)$. Suppose $i \neq j$ and $f = \langle \operatorname{proj}(J, i), \operatorname{proj}(J, j) \rangle$. Then f is a homeomorphism.

PROOF: f is onto and open. For every objects x_1, x_2 such that $x_1, x_2 \in \text{dom } f$ and $f(x_1) = f(x_2)$ holds $x_1 = x_2$. \Box

(75) Let us consider a 2-element set I, a topological space yielding, nonempty many sorted set J indexed by I, and elements i, j of I. If $i \neq j$, then $\prod J$ and $J(i) \times J(j)$ are homeomorphic. The theorem is a consequence of (74).

Let I_1 , I_2 be non empty sets, J be a topological space yielding, nonempty many sorted set indexed by I_2 , and f be a function from I_1 into I_2 . One can check that $J \cdot f$ is topological space yielding and nonempty.

Let J_1 be a topological space yielding, nonempty many sorted set indexed by I_1 , J_2 be a topological space yielding, nonempty many sorted set indexed by I_2 , and p be a function from I_1 into I_2 . Assume p is bijective and for every element i of I_1 , $J_1(i)$ and $(J_2 \cdot p)(i)$ are homeomorphic.

A product homeomorphism of J_1 , J_2 and p is a function from $\prod J_1$ into $\prod J_2$ defined by

(Def. 5) there exists a many sorted function F indexed by I_1 such that for every element i of I_1 , there exists a function f from $J_1(i)$ into $(J_2 \cdot p)(i)$ such that F(i) = f and f is a homeomorphism and for every element g of $\prod J_1$ and for every element i of I_1 , (it(g))(p(i)) = F(i)(g(i)).

Now we state the proposition:

(76) Let us consider non empty sets I_1 , I_2 , a topological space yielding, nonempty many sorted set J_1 indexed by I_1 , a topological space yielding, nonempty many sorted set J_2 indexed by I_2 , a function p from I_1 into I_2 , a product homeomorphism H of J_1 , J_2 and p, and a many sorted function F indexed by I_1 . Suppose p is bijective and for every element i of I_1 , there exists a function f from $J_1(i)$ into $(J_2 \cdot p)(i)$ such that F(i) = f and f is a homeomorphism and for every element g of $\prod J_1$ and for every element i of I_1 , (H(g))(p(i)) = F(i)(g(i)). Let us consider an element i of I_1 , and a subset U of $J_1(i)$. Then $H^{\circ}(\prod((\text{the support of } J_1) + (i, U))) = \prod((\text{the support of } J_2) + (p(i), F(i)^{\circ}U)).$

PROOF: Reconsider j = p(i) as an element of I_2 . Consider f being a function from $J_1(i)$ into $(J_2 \cdot p)(i)$ such that F(i) = f and f is a homeomorphism. For every object $y, y \in H^{\circ}(\prod((\text{the support of } J_1) + (i, U)))$ iff $y \in \prod((\text{the support of } J_2) + (j, F(i)^{\circ}U))$. \Box

Let us consider non empty sets I_1 , I_2 , a topological space yielding, nonempty ty many sorted set J_1 indexed by I_1 , a topological space yielding, nonempty many sorted set J_2 indexed by I_2 , a function p from I_1 into I_2 , and a product homeomorphism H of J_1 , J_2 and p. Now we state the propositions: (77) If p is bijective and for every element i of I_1 , $J_1(i)$ and $(J_2 \cdot p)(i)$ are homeomorphic, then H is bijective.

PROOF: Consider F being a many sorted function indexed by I_1 such that for every element i of I_1 , there exists a function f from $J_1(i)$ into $(J_2 \cdot p)(i)$ such that F(i) = f and f is a homeomorphism and for every element g of $\prod J_1$ and for every element i of I_1 , (H(g))(p(i)) = F(i)(g(i)). For every objects x_1, x_2 such that $x_1, x_2 \in \text{dom } H$ and $H(x_1) = H(x_2)$ holds $x_1 = x_2$. Set i_0 = the element of I_1 . Consider f_0 being a function from $J_1(i_0)$ into $(J_2 \cdot p)(i_0)$ such that $F(i_0) = f_0$ and f_0 is a homeomorphism. \Box

- (78) If p is bijective and for every element i of I_1 , $J_1(i)$ and $(J_2 \cdot p)(i)$ are homeomorphic, then H is a homeomorphism. PROOF: Consider F being a many sorted function indexed by I_1 such that for every element i of I_1 , there exists a function f from $J_1(i)$ into $(J_2 \cdot p)(i)$ such that F(i) = f and f is a homeomorphism and for every element g of $\prod J_1$ and for every element i of I_1 , (H(g))(p(i)) = F(i)(g(i)). H is bijective. There exists a prebasis K of $\prod J_1$ and there exists a prebasis L of $\prod J_2$ such that $H^\circ K = L$. \square
- (79) Let us consider non empty sets I_1 , I_2 , a topological space yielding, nonempty many sorted set J_1 indexed by I_1 , a topological space yielding, nonempty many sorted set J_2 indexed by I_2 , and a function p from I_1 into I_2 . Suppose p is bijective and for every element i of I_1 , $J_1(i)$ and $(J_2 \cdot p)(i)$ are homeomorphic. Then $\prod J_1$ and $\prod J_2$ are homeomorphic. The theorem is a consequence of (78).
- (80) Let us consider a non empty set I, topological space yielding, nonempty many sorted sets J_1 , J_2 indexed by I, and a permutation p of I. Suppose for every element i of I, $J_1(i)$ and $(J_2 \cdot p)(i)$ are homeomorphic. Then $\prod J_1$ and $\prod J_2$ are homeomorphic.
- (81) Let us consider a non empty set I, a topological space yielding, nonempty many sorted set J indexed by I, and a permutation p of I. Then $\prod J$ and $\prod J \cdot p$ are homeomorphic. The theorem is a consequence of (79).
- (82) Let us consider a non empty set I, and topological space yielding, nonempty many sorted sets J_1 , J_2 indexed by I. Suppose for every element i of I, $J_1(i)$ is a subspace of $J_2(i)$. Then $\prod J_1$ is a subspace of $\prod J_2$. PROOF: There exists a prebasis K_1 of $\prod J_1$ and there exists a prebasis K_2 of $\prod J_2$ such that $\Omega_{\prod J_1} \in K_1$ and $K_1 = K_2 \cap {\{\Omega_{\prod J_1}\}}$. \Box

SEBASTIAN KOCH

References

- Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485–492, 1996.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [4] Nicolas Bourbaki. *Elements de Mathematique*, volume Topologie Generale. HERMANN, troisieme edition, 1960.
- [5] Jarosław Gryko. Injective spaces. Formalized Mathematics, 7(1):57–62, 1998.
- [6] John L. Kelley. General Topology, volume 27 of Graduate Texts in Mathematics. Springer-Verlag, 1955.
- [7] James Raymond Munkres. *Topology*. Prentice-Hall, Upper Saddle River, NJ, 2 edition, 2000.
- [8] Adam Naumowicz. On the characterization of collineations of the Segre product of strongly connected partial linear spaces. *Formalized Mathematics*, 13(1):125–131, 2005.
- [9] Bartłomiej Skorulski. The Tichonov Theorem. Formalized Mathematics, 9(2):373–376, 2001.

Accepted September 29, 2018