Klein-Beltrami Model. Part I

Roland Coghetto
Rue de la Brasserie 5
7100 La Louvière, Belgium

Abstract

Summary. Tim Makarios (with Isabelle/HOL ${ }^{1}$) and John Harrison (with HOL-Light ${ }^{2}$ shown that "the Klein-Beltrami model of the hyperbolic plane satisfy all of Tarski's axioms except his Euclidean axiom" 3, 4], [14, [5.

With the Mizar system [2], [7] we use some ideas are taken from Tim Makarios' MSc thesis 13 for the formalization of some definitions (like the absolute) and lemmas necessary for the verification of the independence of the parallel postulate. This work can be also treated as further development of Tarski's geometry in the formal setting 6. Note that the model presented here, may also be called "Beltrami-Klein Model", "Klein disk model", and the "Cayley-Klein model" [1.

MSC: 51A05 51M10 03B35
Keywords: Tarski's geometry axioms; foundations of geometry; Klein-Beltrami model

MML identifier: BKMODEL1, version: 8.1.07 5.47.1318

1. Preliminaries

From now on a, b, c, d, e, f denote real numbers, g denotes a positive real number, x, y denote complex numbers, S, T denote elements of \mathcal{R}^{2}, and u, v, w denote elements of $\mathcal{E}_{\mathrm{T}}^{3}$.

Now we state the propositions:
(1) Let us consider elements P_{1}, P_{2}, P_{3} of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose u is not zero and v is not zero and w is not zero and $P_{1}=$ the direction of u and $P_{2}=$ the direction of v and $P_{3}=$ the direction of w. Then P_{1}, P_{2} and P_{3} are collinear if and only if $\langle | u, v, w| \rangle=0$.

[^0](2) If $(a \neq 0$ or $b \neq 0)$ and $a \cdot d=b \cdot c$, then there exists e such that $c=e \cdot a$ and $d=e \cdot b$.
(3) If $a^{2}+b^{2}=1$ and $(c \cdot a)^{2}+(c \cdot b)^{2}=1$, then $c=1$ or $c=-1$.
(4) $a \cdot u+(-a) \cdot u=0_{\mathcal{E}_{\mathrm{T}}^{3}}$.
(5) If $0 \leqslant a$ and $c<0$ and $\Delta(a, b, c)=0$, then $a=0$.

Proof: $0 \leqslant b^{2}$.
(6) $\sum\left({ }^{2}(T-S)\right)=\sum\left({ }^{2}(S-T)\right)$.
(7) If $a^{2}+b^{2}=1$ and $c^{2}+d^{2}=1$ and $c \cdot a+d \cdot b=1$, then $b \cdot c=a \cdot d$.
(8) If $a^{2}+b^{2}=1$ and $a=0$, then $b=1$ or $b=-1$.
(9) $0 \leqslant a^{2}$.
(10) If $(a \cdot b)^{2}+b^{2}=1$, then $b=\frac{1}{\sqrt{1+a^{2}}}$ or $b=\frac{-1}{\sqrt{1+a^{2}}}$.
(11) If $a \neq 0$ and $b^{2}=1+a \cdot a$, then $a \cdot \frac{1}{b} \cdot a \cdot \frac{-1}{b}+\frac{1}{b} \cdot \frac{-1}{b}=-1$.

Proof: $b \neq 0$. \square
(12) $a^{2} \cdot \frac{1}{b^{2}}=\left(\frac{a}{b}\right)^{2}$.
(13) $a^{2}+b^{2}=1$ if and only if $[a, b] \in \operatorname{circle}(0,0,1)$.
(14) $a^{2}+b^{2}=g^{2}$ if and only if $[a, b] \in \operatorname{circle}(0,0, g)$.
(15) If $a \neq 0$ and $-1<a<1$ and $b=\frac{2+\sqrt{\Delta(a \cdot a,-2,1)}}{2 \cdot a \cdot a}$, then $(1+a \cdot a) \cdot b \cdot b-$ $2 \cdot b+1-b \cdot b=0$.
Proof: $0 \leqslant 1-a^{2} . \Delta(a \cdot a,-2,1) \geqslant 0$.
(16) Suppose $a^{2}+b^{2}=1$ and $-1<c<1$. Then there exists d and there exists e and there exists f such that $e=d \cdot c \cdot a+(1-d) \cdot(-b)$ and $f=d \cdot c \cdot b+(1-d) \cdot a$ and $e^{2}+f^{2}=d^{2}$.
(17) If $a^{2}+b^{2}<1$ and $c^{2}+d^{2}=1$, then $\left(\frac{a+c}{2}\right)^{2}+\left(\frac{b+d}{2}\right)^{2}<1$.
(18) If $|S|^{2} \leqslant 1$, then $0 \leqslant \Delta\left(\sum\left({ }^{2}(T-S)\right), b, \sum\left({ }^{2} S\right)-1\right)$.
(19) If $a^{2}+b^{\mathbf{2}}$ is negative, then $a=0$ and $b=0$.
(20) If $u=[a, b, 1]$ and $v=[c, d, 1]$ and $w=\left[\frac{a+c}{2}, \frac{b+d}{2}, 1\right]$, then $\langle | u, v, w| \rangle=0$.
(i) $a \cdot|(u, v)|=|(a \cdot u, v)|$, and
(ii) $a \cdot|(u, v)|=|(u, a \cdot v)|$.

In the sequel a, b, c denote elements of \mathbb{R}_{F} and M, N denote square matrices over \mathbb{R}_{F} of dimension 3 .

Now we state the propositions:
(22) If $M=\operatorname{symmetric} 3(0,0,0,0,0,0)$, then $\operatorname{Det} M=0_{\mathbb{R}_{F}}$.
(23) Suppose $N=\langle\langle a, 0,0\rangle,\langle 0, b, 0\rangle,\langle 0,0, c\rangle\rangle$. Then
(i) $M^{\mathrm{T}} \cdot(N \cdot M)_{1,1}=a \cdot\left(M_{1,1}\right) \cdot\left(M_{1,1}\right)+b \cdot\left(M_{2,1}\right) \cdot\left(M_{2,1}\right)+c \cdot\left(M_{3,1}\right) \cdot\left(M_{3,1}\right)$, and
(ii) $M^{\mathrm{T}} \cdot(N \cdot M)_{1,2}=a \cdot\left(M_{1,1}\right) \cdot\left(M_{1,2}\right)+b \cdot\left(M_{2,1}\right) \cdot\left(M_{2,2}\right)+c \cdot\left(M_{3,1}\right) \cdot\left(M_{3,2}\right)$, and
(iii) $M^{\mathrm{T}} \cdot(N \cdot M)_{1,3}=a \cdot\left(M_{1,1}\right) \cdot\left(M_{1,3}\right)+b \cdot\left(M_{2,1}\right) \cdot\left(M_{2,3}\right)+c \cdot\left(M_{3,1}\right) \cdot\left(M_{3,3}\right)$, and
(iv) $M^{\mathrm{T}} \cdot(N \cdot M)_{2,1}=a \cdot\left(M_{1,2}\right) \cdot\left(M_{1,1}\right)+b \cdot\left(M_{2,2}\right) \cdot\left(M_{2,1}\right)+c \cdot\left(M_{3,2}\right) \cdot\left(M_{3,1}\right)$, and
(v) $M^{\mathrm{T}} \cdot(N \cdot M)_{2,2}=a \cdot\left(M_{1,2}\right) \cdot\left(M_{1,2}\right)+b \cdot\left(M_{2,2}\right) \cdot\left(M_{2,2}\right)+c \cdot\left(M_{3,2}\right) \cdot\left(M_{3,2}\right)$, and
(vi) $M^{\mathrm{T}} \cdot(N \cdot M)_{2,3}=a \cdot\left(M_{1,2}\right) \cdot\left(M_{1,3}\right)+b \cdot\left(M_{2,2}\right) \cdot\left(M_{2,3}\right)+c \cdot\left(M_{3,2}\right) \cdot\left(M_{3,3}\right)$, and
(vii) $M^{\mathrm{T}} \cdot(N \cdot M)_{3,1}=a \cdot\left(M_{1,3}\right) \cdot\left(M_{1,1}\right)+b \cdot\left(M_{2,3}\right) \cdot\left(M_{2,1}\right)+c \cdot\left(M_{3,3}\right) \cdot\left(M_{3,1}\right)$, and
(viii) $M^{\mathrm{T}} \cdot(N \cdot M)_{3,2}=a \cdot\left(M_{1,3}\right) \cdot\left(M_{1,2}\right)+b \cdot\left(M_{2,3}\right) \cdot\left(M_{2,2}\right)+c \cdot\left(M_{3,3}\right) \cdot\left(M_{3,2}\right)$, and
(ix) $M^{\mathrm{T}} \cdot(N \cdot M)_{3,3}=a \cdot\left(M_{1,3}\right) \cdot\left(M_{1,3}\right)+b \cdot\left(M_{2,3}\right) \cdot\left(M_{2,3}\right)+c \cdot\left(M_{3,3}\right) \cdot\left(M_{3,3}\right)$.
(24) Let us consider natural numbers m, n, a square matrix M over \mathbb{R}_{F} of dimension m, and a matrix N over \mathbb{R}_{F} of dimension $m \times n$. Suppose $m>0$. Then $M \cdot N$ is a matrix over \mathbb{R}_{F} of dimension $m \times n$.
In the sequel D denotes a non empty set, d_{1}, d_{2}, d_{3} denote elements of D, A denotes a matrix over D of dimension 1×3, and B denotes a matrix over D of dimension 3×1.

Now we state the propositions:
(25) Let us consider a square matrix M over D of dimension 1 . Then $M^{\mathrm{T}}=$ M.
(26) A^{T} is 3,1 -size.
(27) $\left\langle\left\langle d_{1}, d_{2}, d_{3}\right\rangle\right\rangle$ is a matrix over D of dimension 1×3.
(28) $\left\langle\left\langle d_{1}\right\rangle,\left\langle d_{2}\right\rangle,\left\langle d_{3}\right\rangle\right\rangle$ is a matrix over D of dimension 3×1.
(29) $\quad A=\left\langle\left\langle A_{1,1}, A_{1,2}, A_{1,3}\right\rangle\right\rangle$.

Proof: Reconsider $B=\left\langle\left\langle A_{1,1}, A_{1,2}, A_{1,3}\right\rangle\right\rangle$ as a matrix over D of dimension 1×3. For every natural numbers i, j such that $\langle i, j\rangle \in$ the indices of A holds $A_{i, j}=B_{i, j}$.
(30) $B=\left\langle\left\langle B_{1,1}\right\rangle,\left\langle B_{2,1}\right\rangle,\left\langle B_{3,1}\right\rangle\right\rangle$.

Proof: Reconsider $C=\left\langle\left\langle B_{1,1}\right\rangle,\left\langle B_{2,1}\right\rangle,\left\langle B_{3,1}\right\rangle\right\rangle$ as a matrix over D of dimension 3×1. For every natural numbers i, j such that $\langle i, j\rangle \in$ the indices of B holds $B_{i, j}=C_{i, j}$.
(31) $\quad A^{\mathrm{T}}=\left\langle\left\langle A_{1,1}\right\rangle,\left\langle A_{1,2}\right\rangle,\left\langle A_{1,3}\right\rangle\right\rangle$. The theorem is a consequence of (26) and (30).
(32) There exists d_{1} and there exists d_{2} and there exists d_{3} such that $A=\left\langle\left\langle d_{1}\right.\right.$, $\left.\left.d_{2}, d_{3}\right\rangle\right\rangle$. The theorem is a consequence of (29).
(33) Let us consider a finite sequence p of elements of \mathbb{R}^{1}. If len $p=3$, then $\operatorname{ColVec} 2 \mathrm{Mx}(\operatorname{M2F}(p))=p$. The theorem is a consequence of (30).
(34) Let us consider a square matrix M over \mathbb{R}_{F} of dimension 3, a square matrix M_{1} over \mathbb{R} of dimension 3 , an element v of $\mathcal{E}_{\mathrm{T}}^{3}$, a finite sequence u_{1} of elements of \mathbb{R}_{F}, a finite sequence u_{2} of elements of \mathbb{R}, and a finite sequence p of elements of \mathbb{R}^{1}. Suppose $p=M \cdot u_{1}$ and $v=\operatorname{M2F}(p)$ and len $u_{1}=3$ and $u_{1}=u_{2}$ and $M_{1}=M$. Then $v=M_{1} \cdot u_{2}$.
(35) Let us consider a square matrix N over \mathbb{R} of dimension 3 , and a finite sequence u_{1} of elements of \mathbb{R}. If $u_{1}=0_{\mathcal{E}_{\mathrm{T}}^{3}}$, then $N \cdot u_{1}=0_{\mathcal{E}_{\mathrm{T}}^{3}}$.
(36) Let us consider a square matrix N over \mathbb{R} of dimension 3 , a finite sequence u_{1} of elements of \mathbb{R}, and an element u of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose N is invertible and $u=u_{1}$ and u is not zero. Then $N \cdot u_{1} \neq 0_{\mathcal{E}_{\mathrm{T}}^{3}}$. The theorem is a consequence of (35).
(37) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3 , a square matrix N_{2} over \mathbb{R} of dimension 3 , elements P, Q of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$, non zero elements u, v of $\mathcal{E}_{\mathrm{T}}^{3}$, and finite sequences v_{1}, u_{2} of elements of \mathbb{R}. Suppose $P=$ the direction of u and $Q=$ the direction of v and $u=u_{2}$ and $v=v_{1}$ and $N=N_{2}$ and $N_{2} \cdot u_{2}=v_{1}$. Then (the homography of $N)(P)=Q$. The theorem is a consequence of (34).
(38) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3 , a square matrix N_{2} over \mathbb{R} of dimension 3 , elements P, Q of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$, non zero elements u, v of $\mathcal{E}_{\mathrm{T}}^{3}$, finite sequences v_{1}, u_{2} of elements of \mathbb{R}, and a non zero real number a. Suppose $P=$ the direction of u and $Q=$ the direction of v and $u=u_{2}$ and $v=v_{1}$ and $N=N_{2}$ and $N_{2} \cdot u_{2}=a \cdot v_{1}$. Then (the homography of $\left.N\right)(P)=Q$. The theorem is a consequence of (34) and (36).
Let us consider a finite sequence p of elements of \mathbb{R} and a square matrix M over \mathbb{R} of dimension 3 . Now we state the propositions:
(39) If len $p=3$, then $|(a \cdot p, M \cdot(b \cdot p))|=a \cdot b \cdot|(p, M \cdot p)|$.
(40) If len $p=3$, then SumAll QuadraticForm $(a \cdot p, M, b \cdot p)=$ $a \cdot b \cdot(\operatorname{SumAll}$ QuadraticForm $(p, M, p))$. The theorem is a consequence of (39).
(41) Let us consider real numbers a, b. Then $[a, b, 1]$ is not zero.
(42) Let us consider an element P of $\mathcal{E}_{\mathrm{T}}^{2}$, an element Q of $\mathcal{E}_{\mathrm{T}}^{2}$, and a real number r. Then $P \in \operatorname{Sphere}(Q, r)$ if and only if $P \in \operatorname{circle}(Q(1), Q(2), r)$.
In the sequel u, v denote non zero elements of $\mathcal{E}_{\mathrm{T}}^{3}$.
(43) If the direction of $u=$ the direction of v and $u(3)=v(3)$ and $v(3) \neq 0$, then $u=v$.
The functor Dir101 yielding a point of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$ is defined by the term
(Def. 1) the direction of $[1,0,1]$.
The functor Dirm101 yielding a point of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$ is defined by the term
(Def. 2) the direction of $[-1,0,1]$.
The functor Dir011 yielding a point of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$ is defined by the term
(Def. 3) the direction of $[0,1,1]$.
Now we state the propositions:
(i) Dir101, Dirm101 and Dir011 are not collinear, and
(ii) Dir101, Dirm101 and Dir010 are not collinear, and
(iii) Dir101, Dir011 and Dir010 are not collinear, and
(iv) Dirm101, Dir011 and Dir010 are not collinear.

Proof: Dir101, Dirm101 and Dir011 are not collinear. Dir101, Dirm101 and Dir010 are not collinear. Dir101, Dir011 and Dir010 are not collinear. Dirm101, Dir011 and Dir010 are not collinear.
(45) $\operatorname{symmetric} 3(1,1,1,0,0,0)=I_{\mathbb{R}_{\mathrm{F}}}^{3 \times 3}$.
(46) Let us consider elements $r, a, b, c, d, e, f, g, h, i$ of \mathbb{R}_{F}, and a square matrix M over \mathbb{R}_{F} of dimension 3. Suppose $M=\langle\langle a, b, c\rangle,\langle d, e, f\rangle,\langle g, h$, $i\rangle\rangle$. Then $r \cdot M=\langle\langle r \cdot a, r \cdot b, r \cdot c\rangle,\langle r \cdot d, r \cdot e, r \cdot f\rangle,\langle r \cdot g, r \cdot h, r \cdot i\rangle\rangle$.
(47) Let us consider a real number a, and an element r of \mathbb{R}_{F}. Suppose $r=$ $a \cdot a$. Then $(\operatorname{symmetric} 3(a, a,-a, 0,0,0)) \cdot(\operatorname{symmetric} 3(a, a,-a, 0,0,0))=$ $r \cdot\left(I_{\mathbb{R}_{F}}^{3 \times 3}\right)$. The theorem is a consequence of (46).
Let us consider a non zero real number a. Now we state the propositions:
(48) $(\operatorname{symmetric} 3(a, a,-a, 0,0,0)) \cdot\left(\operatorname{symmetric} 3\left(\frac{1}{a}, \frac{1}{a},-\frac{1}{a}, 0,0,0\right)\right)=I_{\mathbb{R}_{\mathrm{F}}}^{3 \times 3}$.
(49) $\quad\left(\operatorname{symmetric} 3\left(\frac{1}{a}, \frac{1}{a},-\frac{1}{a}, 0,0,0\right)\right) \cdot(\operatorname{symmetric} 3(a, a,-a, 0,0,0))=I_{\mathbb{R}_{\mathrm{F}}}^{3 \times 3}$. The theorem is a consequence of (48).
(50) $\quad(\operatorname{symmetric} 3(1,1,-1,0,0,0)) \cdot(\operatorname{symmetric} 3(1,1,-1,0,0,0))=I_{\mathbb{R}_{F}}^{3 \times 3}$. The theorem is a consequence of (48).
(51) Let us consider a non zero real number a, and a square matrix N over \mathbb{R}_{F} of dimension 3 . If $N=\operatorname{symmetric} 3(a, a,-a, 0,0,0)$, then N is invertible. The theorem is a consequence of (48) and (49).
(i) symmetric $3(1,1,-1,0,0,0)$ is an invertible square matrix over \mathbb{R}_{F} of dimension 3 , and
(ii) $(\operatorname{symmetric} 3(1,1,-1,0,0,0))^{\smile}=\operatorname{symmetric} 3(1,1,-1,0,0,0)$.

The theorem is a consequence of (50).
(53) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3 , a square matrix N_{1} over \mathbb{R}_{F} of dimension 3 , and square matrices M, N_{2} over \mathbb{R} of dimension 3 . Suppose $M=\operatorname{symmetric} 3(1,1,-1,0,0,0)$ and $N_{1}=M$ and $N_{2}=\left(\mathbb{R}_{\mathrm{F}} \rightarrow \mathbb{R}\right) N^{\smile}$. Then $N^{\mathrm{T}} \cdot N_{1} \cdot N=\left(\left(\mathbb{R}_{\mathrm{F}} \rightarrow \mathbb{R}\right)((\mathbb{R} \rightarrow\right.$ $\left.\left.\left.\mathbb{R}_{\mathrm{F}}\right) N_{2}^{\mathrm{T}}\right)^{\smile}\right) \cdot M \cdot\left(\left(\mathbb{R}_{\mathrm{F}} \rightarrow \mathbb{R}\right)\left(\left(\mathbb{R} \rightarrow \mathbb{R}_{\mathrm{F}}\right) N_{2}\right)^{\smile}\right)$.
Proof: $\left(\mathbb{R}_{F} \rightarrow \mathbb{R}\right)\left(\left(\mathbb{R} \rightarrow \mathbb{R}_{F}\right) N_{2}^{\mathrm{T}}\right)^{\smile}=N^{\mathrm{T}}$ by [15, (13), (16)].
(54) Let us consider a natural number n, an element a of \mathbb{R}_{F}, a real number r, a square matrix A over \mathbb{R}_{F} of dimension n, and a square matrix r_{1} over \mathbb{R} of dimension n. If $a=r$ and $A=r_{1}$, then $a \cdot A=r \cdot r_{1}$.
(55) Let us consider a natural number n, an element a of \mathbb{R}_{F}, and square matrices A, B over \mathbb{R}_{F} of dimension n. If $n>0$, then $(a \cdot A) \cdot B=a \cdot(A \cdot B)$. The theorem is a consequence of (54).
(56) $\operatorname{symmetric} 3(a, a,-a, 0,0,0)=a \cdot(\operatorname{symmetric} 3(1,1,-1,0,0,0))$. The theorem is a consequence of (46).
(57) If $M=\operatorname{symmetric} 3(a, a,-a, 0,0,0)$, then $M \cdot M \cdot M=$ $a \cdot a \cdot a \cdot(\operatorname{symmetric} 3(1,1,-1,0,0,0))$. The theorem is a consequence of (47), (55), and (56).

Let us consider a natural number n, a real number a, a square matrix M over \mathbb{R} of dimension n, and a finite sequence x of elements of \mathbb{R}. Now we state the propositions:
(58) If $n>0$ and len $x=n$, then $M \cdot(a \cdot x)=(a \cdot M) \cdot x$.
(59) If $n>0$ and len $x=n$, then $a \cdot(M \cdot x)=(a \cdot M) \cdot x$. The theorem is a consequence of (58).
(60) Let us consider a natural number n, and a square matrix N over \mathbb{R} of dimension n. Suppose N is invertible. Then
(i) N^{T} is invertible, and
(ii) $\operatorname{Inv} N^{\mathrm{T}}=(\operatorname{Inv} N)^{\mathrm{T}}$.
(61) Let us consider a non zero real number r, and matrices N, O, M over \mathbb{R} of dimension 3×3. Suppose N is invertible and $M=r \cdot O$ and $M=N^{\mathrm{T}} \cdot O \cdot N$. Then $(\operatorname{Inv} N)^{\mathrm{T}} \cdot O \cdot(\operatorname{Inv} N)=\frac{1}{r} \cdot O$. The theorem is a consequence of (60).
(62) Let us consider a real number r, square matrices M, N over \mathbb{R}_{F} of dimension 3 , and square matrices M_{1}, N_{2} over \mathbb{R} of dimension 3 . Suppose $M_{1}=M$ and $N_{2}=N$ and N is symmetric and $M_{1}=r \cdot N_{2}$. Then M is symmetric.
Let us consider a real number r and square matrices O, M over \mathbb{R} of dimension 3 . Now we state the propositions:
(63) Suppose $O=\operatorname{symmetric} 3(1,1,-1,0,0,0)$ and $M=r \cdot O$. Then
(i) $O \cdot M=r \cdot\left(1_{\mathbb{R}} \operatorname{matrix}(3)\right)$, and
(ii) $M \cdot O=r \cdot\left(1_{\mathbb{R}} \operatorname{matrix}(3)\right)$.

The theorem is a consequence of (50).
(64) If $O=\operatorname{symmetric} 3(1,1,-1,0,0,0)$ and $M=r \cdot O$, then $\left(M^{\mathrm{T}} \cdot O\right)^{\mathrm{T}} \cdot O$. $\left(M^{\mathrm{T}} \cdot O\right)=r^{2} \cdot O$.
Proof: Reconsider $M_{1}=M$ as a square matrix over \mathbb{R}_{F} of dimension 3 . M_{1} is symmetric. $r \cdot\left(1_{\mathbb{R}} \operatorname{matrix}(3)\right) \cdot O \cdot\left(r \cdot\left(1_{\mathbb{R}} \operatorname{matrix}(3)\right)\right)=r^{2} \cdot O$.
(65) Let us consider square matrices O, N over \mathbb{R} of dimension 3 . Then $\left(N^{\mathrm{T}}\right.$. $O)^{\mathrm{T}} \cdot O \cdot\left(N^{\mathrm{T}} \cdot O\right)=\left(O^{\mathrm{T}} \cdot\left(N \cdot O \cdot N^{\mathrm{T}}\right)\right) \cdot O$.
(66) Let us consider square matrices N_{2}, M_{1} over \mathbb{R} of dimension 3, and finite sequences p_{1}, p_{2}, p_{3} of elements of \mathbb{R}. Suppose $p_{1}=\langle 1,0,0\rangle$ and $p_{2}=\langle 0$, $1,0\rangle$ and $p_{3}=\langle 0,0,1\rangle$ and $N_{2} \cdot p_{1}=M_{1} \cdot p_{1}$ and $N_{2} \cdot p_{2}=M_{1} \cdot p_{2}$ and $N_{2} \cdot p_{3}=M_{1} \cdot p_{3}$. Then $N_{2}=M_{1}$.
(67) Let us consider a non zero real number a, and an element u of $\mathcal{E}_{\mathrm{T}}^{3}$. If $a \cdot u=0_{\mathcal{E}_{\mathrm{T}}^{3}}$, then u is zero.
(68) Let us consider non zero elements u, v of $\mathcal{E}_{\mathrm{T}}^{3}$, and real numbers a, b. Suppose $(a \neq 0$ or $b \neq 0)$ and $a \cdot u+b \cdot v=0_{\mathcal{E}_{\mathrm{T}}^{3}}$. Then u and v are proportional.
Proof: Reconsider $a_{1}=a \cdot u, b_{1}=b \cdot v$ as an element of $\mathcal{E}_{\mathrm{T}}^{3}$. Consider c being a real number such that $c \neq 0$ and $a_{1}=c \cdot b_{1} . a \neq 0$ and $b \neq 0$ by [11, (3), (1)].
(69) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3 , and points P, Q, R of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $P \neq Q$ and (the homography of $N)(P)=Q$ and (the homography of $N)(Q)=P$ and P, Q and R are collinear. Then (the homography of $N)(($ the homography of $N)(R))=R$.
Proof: Consider u_{1}, v_{1} being elements of $\mathcal{E}_{\mathrm{T}}^{3}, u_{4}$ being a finite sequence of elements of \mathbb{R}_{F}, p_{1} being a finite sequence of elements of \mathbb{R}^{1} such that $P=$ the direction of u_{1} and u_{1} is not zero and $u_{1}=u_{4}$ and $p_{1}=N \cdot u_{4}$ and $v_{1}=\operatorname{M2F}\left(p_{1}\right)$ and v_{1} is not zero and (the homography of $\left.N\right)(P)=$ the direction of v_{1}. Consider u_{2}, v_{2} being elements of $\mathcal{E}_{\mathrm{T}}^{3}, u_{5}$ being a finite sequence of elements of $\mathbb{R}_{\mathrm{F}}, p_{2}$ being a finite sequence of elements of \mathbb{R}^{1} such that $Q=$ the direction of u_{2} and u_{2} is not zero and $u_{2}=u_{5}$ and $p_{2}=N \cdot u_{5}$ and $v_{2}=\operatorname{M2F}\left(p_{2}\right)$ and v_{2} is not zero and (the homography of $N)(Q)=$ the direction of v_{2}. Consider u_{3} being an element of $\mathcal{E}_{\mathrm{T}}^{3}$ such that u_{3} is not zero and $R=$ the direction of u_{3}. Consider l_{1} being a real number such that $l_{1} \neq 0$ and $v_{2}=l_{1} \cdot u_{1}$. Consider l_{2} being a real number
such that $l_{2} \neq 0$ and $v_{1}=l_{2} \cdot u_{2} .\langle | u_{1}, u_{2}, u_{3}| \rangle=0$. Consider a, b, c being real numbers such that $a \cdot u_{1}+b \cdot u_{2}+c \cdot u_{3}=0_{\mathcal{E}_{T}^{3}}$ and $(a \neq 0$ or $b \neq 0$ or $c \neq 0) . c \neq 0$. (The homography of $N \cdot N)(R)=\widetilde{R} . \square$
(70) Let us consider a natural number n, elements u, v of $\mathcal{E}_{\mathrm{T}}^{n}$, and real numbers a, b. If $(1-a) \cdot u+a \cdot v=(1-b) \cdot v+b \cdot u$, then $(1-(a+b)) \cdot u=(1-(a+b)) \cdot v$. Proof: Reconsider $r_{1}=u, r_{2}=v$ as an element of \mathcal{R}^{n}. $(1-a) \cdot r_{1}+a$. $r_{2}-a \cdot r_{2}=(1-a) \cdot r_{1} \cdot(1-b) \cdot r_{2}-a \cdot r_{2}+b \cdot r_{1}-b \cdot r_{1}=(1-b) \cdot r_{2}-a \cdot r_{2}$.
(71) The projective space over $\mathcal{E}_{\mathrm{T}}^{3}$ is proper.

The real projective plane yielding a non empty, proper projective plane defined in terms of collinearity is defined by the term
(Def. 4) the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$.
From now on P, Q, R denote points of Inc-ProjSp(the real projective plane), L denotes a line of Inc-ProjSp(the real projective plane), and p, q, r denote points of the real projective plane.

Now we state the propositions:
(72) Let us consider an element L of L (the real projective plane). Then there exists p and there exists q such that $p \neq q$ and $L=\operatorname{Line}(p, q)$.
(73) There exists p and there exists q such that $p \neq q$ and $L=\operatorname{Line}(p, q)$.
(74) If $R=r$ and $L=\operatorname{Line}(p, q)$, then R lies on L iff p, q and r are collinear.
(75) Inc-ProjSp(the real projective plane) is an incidence projective plane. Proof: Inc-ProjSp(the real projective plane) is 2-dimensional.
(76) Let us consider lines L_{1}, L_{2} of the real projective plane. Then L_{1} meets L_{2}. The theorem is a consequence of (75).
In the sequel u, v, w denote non zero elements of $\mathcal{E}_{\mathrm{T}}^{3}$.
(77) Suppose $p=$ the direction of u and $q=$ the direction of v and $R=$ the direction of w and $L=\operatorname{Line}(p, q)$. Then R lies on L if and only if $\langle | u, v, w| \rangle=0$. The theorem is a consequence of (74).
(78) Let us consider elements p, q of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $p \neq q$ and $p=$ the direction of u and $q=$ the direction of v. Then $u \times v$ is not zero.

Let p, q be points of the real projective plane. Assume $p \neq q$. The functor $\mathrm{L} 2 \mathrm{P}(p, q)$ yielding a point of the real projective plane is defined by
(Def. 5) there exist non zero elements u, v of $\mathcal{E}_{\mathrm{T}}^{3}$ such that $p=$ the direction of u and $q=$ the direction of v and $i t=$ the direction of $u \times v$.
Now we state the propositions:
(79) Let us consider points p, q of the real projective plane. Suppose $p \neq q$. Then
(i) $\mathrm{L} 2 \mathrm{P}(q, p)=\mathrm{L} 2 \mathrm{P}(p, q)$, and
(ii) $p \neq \mathrm{L} 2 \mathrm{P}(p, q)$.

Proof: Consider u_{1}, v_{1} being non zero elements of $\mathcal{E}_{\mathrm{T}}^{3}$ such that $p=$ the direction of u_{1} and $q=$ the direction of v_{1} and $\mathrm{L} 2 \mathrm{P}(p, q)=$ the direction of $u_{1} \times v_{1}$. Consider u_{2}, v_{2} being non zero elements of $\mathcal{E}_{\mathrm{T}}^{3}$ such that $q=$ the direction of u_{2} and $p=$ the direction of v_{2} and $\mathrm{L} 2 \mathrm{P}(q, p)=$ the direction of $u_{2} \times v_{2}$. Consider a being a real number such that $a \neq 0$ and $u_{1}=a \cdot v_{2}$. Consider b being a real number such that $b \neq 0$ and $v_{1}=b \cdot u_{2} . a \cdot v_{2} \times b \cdot u_{2}=(-a \cdot b) \cdot\left(u_{2} \times v_{2}\right) . u_{1} \times v_{1}$ is not zero. $u_{2} \times v_{2}$ is not zero. $p \neq \mathrm{L} 2 \mathrm{P}(p, q)$.
(80) Let us consider an invertible square matrix N over \mathbb{R}_{F} of dimension 3 . Then $\operatorname{dom}($ the homography of $N)=$ the projective points over $\mathcal{E}_{\mathrm{T}}^{3}$.

2. Absolute

Let a, b, c, d, e, f be real numbers. The interior of the conic for a, b, c, d, e and f yielding a subset of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$ is defined by the term
(Def. 6) $\left\{P\right.$, where P is a point of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$: for every element u of $\mathcal{E}_{\mathrm{T}}^{3}$ such that u is not zero and $P=$ the direction of u holds $\operatorname{qfconic}(a, b, c, d, e, f, u)$ is negative $\}$.
Now we state the proposition:
(81) Let us consider real numbers a, b, c, d, e, f, and non zero elements u_{1}, u_{2} of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose the direction of $u_{1}=$ the direction of u_{2} and $\operatorname{qfconic}(a, b, c, d$, $\left.e, f, u_{1}\right)$ is negative. Then $\operatorname{qfconic}\left(a, b, c, d, e, f, u_{2}\right)$ is negative.
The absolute yielding a non empty subset of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$ is defined by the term
(Def. 7) conic $(1,1,-1,0,0,0)$.
Now we state the proposition:
(82) Let us consider a square matrix O over \mathbb{R} of dimension 3 , an element P of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$, and a finite sequence p of elements of \mathbb{R}. Suppose $O=\operatorname{symmetric} 3(1,1,-1,0,0,0)$ and $P=$ the direction of u and $u=$ p. Then $P \in$ the absolute if and only if SumAll QuadraticForm $(p, O, p)=$ 0 . The theorem is a consequence of (40).
Let us consider an element P of the absolute. Now we state the propositions:
(83) If $P=$ the direction of u, then $u(3) \neq 0$.

Proof: Consider Q being a point of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$ such that $P=Q$ and for every element u of $\mathcal{E}_{\mathrm{T}}^{3}$ such that u is not zero and
$Q=$ the direction of u holds qfconic $(1,1,-1,0,0,0, u)=0 . u(3) \neq 0$ by [8, (3), (4)].
(84) If $P=$ the direction of u and $u(3)=1$, then $[u(1), u(2)] \in \operatorname{circle}(0,0,1)$. The theorem is a consequence of (13).
(85) Let us consider a point P of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $P=$ the direction of u and $u(3)=1$ and $[u(1), u(2)] \in \operatorname{circle}(0,0,1)$. Then P is an element of the absolute.
(86) Let us consider a point P of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$, and a non zero element u of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose $P=$ the direction of u and $u(3)=1$. Then $[u(1), u(2)] \in \operatorname{circle}(0,0,1)$ if and only if P is an element of the absolute.
Let P be an element of the absolute. The absolute to unit circle of P yielding an element of circle $(0,0,1)$ is defined by
(Def. 8) there exists a non zero element u of $\mathcal{E}_{\mathrm{T}}^{3}$ such that $P=$ the direction of u and $u(3)=1$ and it $=[u(1), u(2)]$.
Now we state the proposition:
(87) The carrier of TopUnitCircle $2=\operatorname{circle}(0,0,1)$.

Proof: The carrier of TopUnitCircle $2 \subseteq \operatorname{circle}(0,0,1)$. circle $(0,0,1) \subseteq$ the carrier of TopUnitCircle 2 by [9, (52)], [10, (9)].
Let u be a non zero element of $\mathcal{E}_{\mathrm{T}}^{2}$. Assume $u \in \operatorname{circle}(0,0,1)$. The unit circle to absolute of u yielding an element of the absolute is defined by the term
(Def. 9) the direction of $[u(1), u(2), 1]$.
Now we state the proposition:
(88) Let us consider an element u of $\mathcal{E}_{\mathrm{T}}^{3}$. Suppose qfconic $(1,1,-1,0,0,0, u)=$ 0 and $u(3)=1$. Then $[u(1), u(2)] \in \operatorname{Sphere}\left(0_{\mathcal{E}_{T}^{2}}, 1\right)$. The theorem is a consequence of (13).
Let us consider an element P of the absolute. Now we state the propositions:
(89) There exists u such that
(i) $u(1)^{2}+u(2)^{2}=1$, and
(ii) $u(3)=1$, and
(iii) $P=$ the direction of u.

The theorem is a consequence of (83), (84), and (14).
(90) There exists an element Q of the absolute such that $P \neq Q$.

Proof: Consider Q being a point of the projective space over $\mathcal{E}_{\mathrm{T}}^{3}$ such that $P=Q$ and for every element u of $\mathcal{E}_{\mathrm{T}}^{3}$ such that u is not zero and $Q=$ the direction of u holds $\operatorname{qfconic}(1,1,-1,0,0,0, u)=0$. Consider u being an element of $\mathcal{E}_{\mathrm{T}}^{3}$ such that u is not zero and the direction of $u=P . u(3) \neq$ 0 . $[u(1), u(2),-u(3)]$ is not zero. Reconsider $v=[u(1), u(2),-u(3)]$ as
a non zero element of $\mathcal{E}_{\mathrm{T}}^{3}$. Reconsider $R=$ the direction of v as an element of the projective space over $\mathcal{E}_{\mathrm{T}}^{3} . R \neq P$. For every element w of $\mathcal{E}_{\mathrm{T}}^{3}$ such that w is not zero and $R=$ the direction of w holds $\operatorname{qfconic}(1,1,-1,0,0,0, w)=$ 0 .
(91) Let us consider real numbers a, b. Suppose $a^{2}+b^{2}=1$. Then $[-b, a, 0]$ is not zero.
(92) Let us consider elements P, Q, R of the absolute. If P, Q, R are mutually different, then P, Q and R are not collinear.
Proof: Consider u_{12} being an element of $\mathcal{E}_{\mathrm{T}}^{3}$ such that u_{12} is not zero and $P=$ the direction of u_{12}. Consider u_{16} being an element of $\mathcal{E}_{\mathrm{T}}^{3}$ such that u_{16} is not zero and $Q=$ the direction of u_{16}. Consider u_{20} being an element of $\mathcal{E}_{\mathrm{T}}^{3}$ such that u_{20} is not zero and $R=$ the direction of u_{20}. Reconsider $u_{13}=\left(u_{12}\right)_{\mathbf{1}}, u_{14}=\left(u_{12}\right)_{\mathbf{2}}, u_{15}=\left(u_{12}\right)_{\mathbf{3}}, u_{17}=\left(u_{16}\right)_{\mathbf{1}}, u_{18}=\left(u_{16}\right)_{\mathbf{2}}$, $u_{19}=\left(u_{16}\right)_{\mathbf{3}}, u_{21}=\left(u_{20}\right)_{\mathbf{1}}, u_{22}=\left(u_{20}\right)_{\mathbf{2}}, u_{23}=\left(u_{20}\right)_{\mathbf{3}}$ as a real number. $u_{12}(3) \neq 0$ and $u_{16}(3) \neq 0$ and $u_{20}(3) \neq 0$. Reconsider $v_{5}=\frac{u_{13}}{u_{15}}, v_{6}=\frac{u_{14}}{u_{15}}$, $v_{8}=\frac{u_{17}}{u_{19}}, v_{9}=\frac{u_{18}}{u_{19}}, v_{11}=\frac{u_{21}}{u_{23}}, v_{12}=\frac{u_{22}}{u_{23}}$ as a real number. Reconsider $v_{4}=$ $\left[v_{5}, v_{6}, 1\right], v_{7}=\left[v_{8}, v_{9}, 1\right], v_{10}=\left[v_{11}, v_{12}, 1\right]$ as a non zero element of $\mathcal{E}_{\mathrm{T}}^{3}$. $P=$ the direction of v_{4} and $Q=$ the direction of v_{7} and $R=$ the direction of v_{10}. Consider t_{1}, t_{2}, t_{3} being elements of $\mathcal{E}_{\mathrm{T}}^{3}$ such that $P=$ the direction of t_{1} and $Q=$ the direction of t_{2} and $R=$ the direction of t_{3} and t_{1} is not zero and t_{2} is not zero and t_{3} is not zero and there exist real numbers a_{1}, b_{1}, c_{1} such that $a_{1} \cdot t_{1}+b_{1} \cdot t_{2}+c_{1} \cdot t_{3}=0_{\mathcal{E}_{\mathrm{T}}^{3}}$ and $\left(a_{1} \neq 0\right.$ or $b_{1} \neq 0$ or $\left.c_{1} \neq 0\right)$. Consider a_{1}, b_{1}, c_{1} being real numbers such that $a_{1} \cdot t_{1}+b_{1} \cdot t_{2}+c_{1} \cdot t_{3}=0_{\mathcal{E}_{\mathrm{T}}^{3}}$ and $a_{1} \neq 0$ or $b_{1} \neq 0$ or $c_{1} \neq 0$. Consider l_{1} being a real number such that $l_{1} \neq 0$ and $t_{1}=l_{1} \cdot v_{4}$. Consider l_{2} being a real number such that $l_{2} \neq 0$ and $t_{2}=l_{2} \cdot v_{7}$. Consider l_{3} being a real number such that $l_{3} \neq 0$ and $t_{3}=l_{3} \cdot v_{10}$. Reconsider $A=\left[\left(v_{4}\right)_{\mathbf{1}},\left(v_{4}\right)_{\mathbf{2}}\right], B=\left[\left(v_{7}\right)_{\mathbf{1}},\left(v_{7}\right)_{\mathbf{2}}\right], C=\left[\left(v_{10}\right)_{\mathbf{1}}\right.$, $\left.\left(v_{10}\right)_{\mathbf{2}}\right]$ as an element of $\mathcal{E}_{\mathrm{T}}^{2} . A \neq B . A \neq C . B \neq C . A \in \operatorname{Sphere}\left(0_{\mathcal{E}_{\mathrm{T}}^{2}}, 1\right)$. $\operatorname{qfconic}\left(1,1,-1,0,0,0, v_{7}\right)=0 . B \in \operatorname{Sphere}\left(0_{\mathcal{E}_{\mathrm{T}}^{2}}, 1\right) . C \in \operatorname{Sphere}\left(0_{\mathcal{E}_{\mathrm{T}}^{2}}, 1\right)$.
(93) Let us consider a non zero real number r, and invertible square matrices O, N, M over \mathbb{R}_{F} of dimension 3 . Suppose $O=\operatorname{symmetric} 3(1,1,-1,0,0,0)$ and $M=\operatorname{symmetric} 3(r, r,-r, 0,0,0)$ and
$M=N^{\mathrm{T}} \cdot O \cdot N$ and (the homography of $\left.M\right)^{\circ}($ the absolute $)=$ the absolute. Then (the homography of $N)^{\circ}($ the absolute $)=$ the absolute.
Proof: (The homography of $N)^{\circ}$ (the absolute) \subseteq the absolute.
The absolute \subseteq (the homography of $N)^{\circ}$ (the absolute) by [12, (50)].

References

[1] Norbert A'Campo and Athanase Papadopoulos. On Klein's so-called non-Euclidean geometry. arXiv preprint arXiv:1406.7309, 2014.
[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[3] Eugenio Beltrami. Saggio di interpetrazione della geometria non-euclidea. Giornale di Matematiche, 6:284-322, 1868.
[4] Eugenio Beltrami. Essai d'interprétation de la géométrie non-euclidéenne. In Annales scientifiques de l'École Normale Supérieure. Trad. par J. Hoüel, volume 6, pages 251288. Elsevier, 1869.
[5] Karol Borsuk and Wanda Szmielew. Podstawy geometrii. Państwowe Wydawnictwo Naukowe, Warszawa, 1955 (in Polish).
[6] Adam Grabowski. Tarski's geometry modelled in Mizar computerized proof assistant. In Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016, Gdańsk, Poland, September 11-14, 2016, pages 373-381, 2016. doi $10.15439 / 2016 \mathrm{~F} 290$
[7] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi $10.1007 / \mathrm{s} 10817-015-9345-1$
[8] Kanchun, Hiroshi Yamazaki, and Yatsuka Nakamura. Cross products and tripple vector products in 3-dimensional Euclidean space. Formalized Mathematics, 11(4):381-383, 2003.
[9] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in $\mathcal{E}_{\mathrm{T}}^{n}$, Formalized Mathematics, 12(3):301-306, 2004.
[10] Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. Formalized Mathematics, 13(1):117-124, 2005.
[11] Akihiro Kubo. Lines in n-dimensional Euclidean spaces, Formalized Mathematics, 11(4): 371-376, 2003.
[12] Xiquan Liang, Piqing Zhao, and Ou Bai. Vector functions and their differentiation formulas in 3-dimensional Euclidean spaces. Formalized Mathematics, 18(1):1-10, 2010. doi $10.2478 /$ v10037-010-0001-2
[13] Timothy James McKenzie Makarios. A mechanical verification of the independence of Tarski's Euclidean Axiom. Victoria University of Wellington, New Zealand, 2012. Master's thesis.
[14] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4): 535-545, 1991.
[15] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices Formalized Mathematics, 13(4):541-547, 2005.

[^0]: ${ }^{1}$ https://www.isa-afp.org/entries/Tarskis_Geometry.html
 2 https://github.com/jrh13/hol-light/blob/master/100/independence.ml
 (C) 2018 University of Bialystok

