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Summary. In the article we present in the Mizar system [1], [2] the for-
malized proofs for Hurwitz’ theorem [4, 1891] and Minkowski’s theorem [5]. Both
theorems are well explained as a basic result of the theory of Diophantine appro-
ximations appeared in [3], [6].

A formal proof of Dirichlet’s theorem, namely an inequation |θ−y/x| ¬ 1/x2

has infinitely many integer solutions (x, y) where θ is an irrational number, was
given in [8]. A finer approximation is given by Hurwitz’ theorem: |θ − y/x| ¬
1/
√

5x2 .
Minkowski’s theorem concerns an inequation of a product of non-homogeneous

binary linear forms such that |a1x + b1y + c1| · |a2x + b2y + c2| ¬ ∆/4 where
∆ = |a1b2 − a2b1| 6= 0, has at least one integer solution.
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1. Preliminaries

From now on r1, r2, r3 denote non negative real numbers, n, m1 denote
natural numbers, s denotes a real number, i, j, i1, j1 denote integers, r denotes
an irrational real number, and q denotes a rational number.

Now we state the propositions:

(1) If r1 · r2 ¬ r3, then r1 ¬
√
r3 or r2 ¬

√
r3.

(2)
√
r1 · r2 = r1+r2

2 if and only if r1 = r2.
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(3) r1 · r2 = ( r1+r22 )2 if and only if r1 = r2. The theorem is a consequence of
(2).

(4) If i1 and j1 are relatively prime, then there exist integers s, t such that
s · i1 + t · j1 = 1.

(5) If 1 < s and s+ 1
s <
√

5, then s <
√

5+1
2 and 1

s >
√

5−1
2 .

(6) If q = i1
m1

andm1 6= 0 and i1 andm1 are relatively prime, then i1 = num q

and m1 = den q.

Let f be a function. The functor ZeroPointSet(f) yielding a set is defined
by the term

(Def. 1) dom f \ support f . Now we state the proposition:

(7) Let us consider a function f , and objects o1. Then o1 ∈ ZeroPointSet(f)
if and only if o1 ∈ dom f and f(o1) = 0.

2. Hurwitz’ Theorem [4, 1891]

Let r be an irrational real number and n be a natural number. Note that
(cd r)(n) is positive and natural. Now we state the propositions:

(8) Suppose n > 1 and |r − (cn r)(n)
(cd r)(n) | ­

1√
5·((cd r)(n)2) and |r − (cn r)(n+1)

(cd r)(n+1) | ­
1√

5·((cd r)(n+1)2)
. Then

√
5 > (cd r)(n+1)

(cd r)(n) + 1
(cd r)(n+1)
(cd r)(n)

.

(9) If i = (cn r)(n) and j = (cd r)(n), then i and j are relatively prime.

(10) Suppose n > 1. Then

(i) |r − (cn r)(n)
(cd r)(n) | <

1√
5·((cd r)(n)2) , or

(ii) |r − (cn r)(n+1)
(cd r)(n+1) | <

1√
5·((cd r)(n+1)2)

, or

(iii) |r − (cn r)(n+2)
(cd r)(n+2) | <

1√
5·((cd r)(n+2)2)

.

The theorem is a consequence of (8) and (5).

Let us consider r. The functor HWZSet(r) yielding a subset of Q is defined
by the term

(Def. 2) {p, where p is a rational number : |r − p| < 1√
5·((den p)2)

}.

The functor HWZSet1(r) yielding a subset of N is defined by the term

(Def. 3) {x, where x is a natural number : there exists a rational number p such
that p ∈ HWZSet(r) and x = den p}.

The functor TRANQN yielding a function from Q into N is defined by

(Def. 4) for every rational number x, it(x) = denx.

(11) (TRANQN)◦(HWZSet(r)) = HWZSet1(r).
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(12) If HWZSet(r) is finite, then HWZSet1(r) is finite. The theorem is a con-
sequence of (11).

Let us consider r. One can check that HWZSet1(r) is non empty.

(13) Let us consider a natural number h. If h ∈ HWZSet1(r), then h > 0.

Let us consider r. Note that HWZSet1(r) is infinite.

(14) Hurwitz’s theorem (number theory):
{q : |r−q| < 1√

5·((den q)2)
} is infinite. The theorem is a consequence of (12).

From now on c0, c1, c2, u, a0, b0 denote real numbers.
Let a0, b0, c0 be real numbers. The functor LF(a0, b0, c0) yielding a function

from Z× Z into R is defined by

(Def. 5) for every integers x, y, it(x, y) = a0 · x+ b0 · y + c0.

3. Minkowski’s Theorem [5, Zweites Kapitel, §11, 1907]

Now we state the proposition:

(15) Let us consider an element ρ of R, and integers p, q. Suppose p and
q are relatively prime. Then there exist elements x, y of Z such that
|p · x− q · y + ρ| ¬ 1

2 . The theorem is a consequence of (4).

In the sequel a, b denote real numbers and n denotes an integer.

(16) If n ¬ b ¬ n+ 1, then |n− b| · |n+ 1− b| ¬ 1
4 .

(17) If a is not an integer and (n = bac or n = bac+ 1), then |a− n| < 1.

(18) Suppose |n− a| · |n+ 1− a| ¬ 1
4 and |n− b| · |n+ 1− b| ¬ 1

4 . Then

(i) |n− a| · |n− b| ¬ 1
4 , or

(ii) |n+ 1− a| · |n+ 1− b| ¬ 1
4 .

The theorem is a consequence of (1).

(19) Suppose |a− n| · |b− n| · |a− n− 1| · |b− n− 1| ¬ |a−b|
2

4 . Then

(i) |a− n| · |b− n| ¬ |a−b|2 , or

(ii) |a− n− 1| · |b− n− 1| ¬ |a−b|2 .

The theorem is a consequence of (1).

(20) Suppose (n− b) · (n+ 1− a) > 0 and (a− n) · (n+ 1− b) > 0. Then

(i) (n− b) · (n+ 1− a) + (a− n) · (n+ 1− b) = a− b, and

(ii) |a− n| · |b− n| · |a− n− 1| · |b− n− 1| ¬ |a−b|
2

4 .

(21) If b < n < a < n+ 1, then |a−n| · |b−n| · |a−n−1| · |b−n−1| ¬ |a−b|
2

4 .
The theorem is a consequence of (20).
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(22) Suppose (n− a) · (n+ 1− b) > 0 and (b− n) · (n+ 1− a) > 0. Then

(i) (n− a) · (n+ 1− b) + (b− n) · (n+ 1− a) = b− a, and

(ii) |a− n| · |b− n| · |a− n− 1| · |b− n− 1| ¬ |a−b|
2

4 .

(23) If n+1 < b and n < a < n+1, then |a−n| · |b−n| · |a−n−1| · |b−n−1| ¬
|a−b|2

4 . The theorem is a consequence of (22).

(24) Suppose a is not an integer and bac ¬ b ¬ bac + 1. Then there exists
an integer u such that

(i) |a− u| < 1, and

(ii) |a− u| · |b− u| ¬ 1
4 .

The theorem is a consequence of (16), (18), and (17).

(25) Suppose |a−bac|·|b−bac| ­ |a−b|2 and |a−(bac+1)|·|b−(bac+1)| ­ |a−b|2 .
Then

(i) a is an integer, or

(ii) bac ¬ b.
The theorem is a consequence of (21), (19), and (3).

(26) Suppose a is not an integer and bac > b. Then there exists an integer u
such that

(i) |a− u| < 1, and

(ii) |a− u| · |b− u| < |a−b|
2 .

The theorem is a consequence of (17) and (25).

(27) Suppose |a−bac|·|b−bac| ­ |a−b|2 and |a−(bac+1)|·|b−(bac+1)| ­ |a−b|2 .
Then

(i) a is an integer, or

(ii) bac+ 1 ­ b.
The theorem is a consequence of (23), (19), and (3).

(28) Suppose a is not an integer and bac+1 < b. Then there exists an integer
u such that

(i) |a− u| < 1, and

(ii) |a− u| · |b− u| < |a−b|
2 .

The theorem is a consequence of (17) and (27).

(29) There exists an integer u such that

(i) |a− u| < 1, and

(ii) |a− u| · |b− u| ¬ 1
4 or |a− u| · |b− u| < |a−b|

2 .
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The theorem is a consequence of (24), (26), and (28).

In the sequel a1, a2, b1, b2, c1, c2 denote elements of R, ε denotes a positive
real number, r1 denotes a non negative real number, and q, q1 denote elements
of Q. Now we state the propositions:

(30) There exists an element q of Q such that

(i) den q > br1c+ 1, and

(ii) q ∈ HWZSet(r).

Proof: Reconsider m = br1c+1 as a natural number. There exists n such
that n ∈ HWZSet1(r) and n > m by (13), [7, (3)]. Consider n such that
n ∈ HWZSet1(r) and n > m. �

(31) Suppose |a1 ·b2−a2 ·b1| 6= 0 and q 6= q1 and a2 · (den q)+b2 · (num q) = 0.
Then a2 · (den q1) + b2 · (num q1) 6= 0.

(32) Suppose |a1 · b2 − a2 · b1| 6= 0. Then there exists an element q of Q such
that

(i) den q > br1c+ 1, and

(ii) q ∈ HWZSet(r), and

(iii) a2 · (den q) + b2 · (num q) 6= 0.

The theorem is a consequence of (30) and (31).

(33) Let us consider real numbers a1, b1, and integers n1, d1. Suppose d1 > 0
and |a1b1 + n1

d1
| < 1√

5·(d12)
. Then there exists a real number d such that

(i) n1d1 = −a1b1 + d
d1
2 , and

(ii) |d| < 1√
5
.

(34) Suppose |a1·b2−a2·b1| 6= 0 and a1b1 is irrational. Then there exist elements
x, y of Z such that

(i) |(LF(a1, b1, c1))(x, y)| · |(LF(a2, b2, c2))(x, y)| < |a1·b2−a2·b1|
4 , and

(ii) |(LF(a1, b1, c1))(x, y)| < ε.

The theorem is a consequence of (32), (15), (29), and (33).

(35) Suppose |a1·b2−a2·b1| 6= 0 and a2b2 is irrational. Then there exist elements
x, y of Z such that

(i) |(LF(a2, b2, c2))(x, y)| · |(LF(a1, b1, c1))(x, y)| < |a1·b2−a2·b1|
4 , and

(ii) |(LF(a2, b2, c2))(x, y)| < ε.

The theorem is a consequence of (34).

(36) Suppose ZeroPointSet(LF(a1, b1, c1)) 6= ∅. Then there exist elements x, y
of Z such that |(LF(a1, b1, c1))(x, y)| · |(LF(a2, b2, c2))(x, y)| ¬ |a1·b2−a2·b1|4 .
The theorem is a consequence of (7).
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(37) Suppose ZeroPointSet(LF(a2, b2, c2)) 6= ∅. Then there exist elements x, y
of Z such that |(LF(a1, b1, c1))(x, y)| · |(LF(a2, b2, c2))(x, y)| ¬ |a1·b2−a2·b1|4 .
The theorem is a consequence of (7).

(38) Suppose |a1·b2−a2·b1| 6= 0 and b1 6= 0 and a1b1 is rational. Then there exist
elements x, y of Z such that |(LF(a1, b1, c1))(x, y)|·|(LF(a2, b2, c2))(x, y)| ¬
|a1·b2−a2·b1|

4 . The theorem is a consequence of (15).

(39) Suppose |a1·b2−a2·b1| 6= 0 and b2 6= 0 and a2b2 is rational. Then there exist
elements x, y of Z such that |(LF(a1, b1, c1))(x, y)|·|(LF(a2, b2, c2))(x, y)| ¬
|a1·b2−a2·b1|

4 . The theorem is a consequence of (38).

(40) Suppose |a1 · b2 − a2 · b1| 6= 0 and b1 = 0. Then there exist elements x, y
of Z such that |(LF(a1, b1, c1))(x, y)| · |(LF(a2, b2, c2))(x, y)| ¬ |a1·b2−a2·b1|4 .
The theorem is a consequence of (35), (37), and (39).

(41) Suppose |a1 ·b2−a2 ·b1| 6= 0. Then there exist elements x, y of Z such that
|(LF(a1, b1, c1))(x, y)| · |(LF(a2, b2, c2))(x, y)| ¬ |a1·b2−a2·b1|

4 . The theorem
is a consequence of (34), (36), (40), and (38).
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