Introduction to Diophantine Approximation. Part II

Yasushige Watase
Suginami-ku Matsunoki 3-21-6 Tokyo
Japan

Abstract

Summary. In the article we present in the Mizar system [1], 2] the formalized proofs for Hurwitz' theorem [4, 1891] and Minkowski's theorem [5]. Both theorems are well explained as a basic result of the theory of Diophantine approximations appeared in 3, 6].

A formal proof of Dirichlet's theorem, namely an inequation $|\theta-y / x| \leqslant 1 / x^{2}$ has infinitely many integer solutions (x, y) where θ is an irrational number, was given in [8]. A finer approximation is given by Hurwitz' theorem: $|\theta-y / x| \leqslant$ $1 / \sqrt{5} x^{2}$.

Minkowski's theorem concerns an inequation of a product of non-homogeneous binary linear forms such that $\left|a_{1} x+b_{1} y+c_{1}\right| \cdot\left|a_{2} x+b_{2} y+c_{2}\right| \leqslant \Delta / 4$ where $\Delta=\left|a_{1} b_{2}-a_{2} b_{1}\right| \neq 0$, has at least one integer solution.

MSC: 11J20 11J25 03B35
Keywords: Diophantine approximation; rational approximation; Dirichlet; Hurwitz; Minkowski

MML identifier: DIOPHAN2, version: 8.1.06 5.45.1311

1. Preliminaries

From now on r_{1}, r_{2}, r_{3} denote non negative real numbers, n, m_{1} denote natural numbers, s denotes a real number, i, j, i_{1}, j_{1} denote integers, r denotes an irrational real number, and q denotes a rational number.

Now we state the propositions:
(1) If $r_{1} \cdot r_{2} \leqslant r_{3}$, then $r_{1} \leqslant \sqrt{r_{3}}$ or $r_{2} \leqslant \sqrt{r_{3}}$.
(2) $\sqrt{r_{1} \cdot r_{2}}=\frac{r_{1}+r_{2}}{2}$ if and only if $r_{1}=r_{2}$.
(3) $r_{1} \cdot r_{2}=\left(\frac{r_{1}+r_{2}}{2}\right)^{2}$ if and only if $r_{1}=r_{2}$. The theorem is a consequence of (2).
(4) If i_{1} and j_{1} are relatively prime, then there exist integers s, t such that $s \cdot i_{1}+t \cdot j_{1}=1$.
(5) If $1<s$ and $s+\frac{1}{s}<\sqrt{5}$, then $s<\frac{\sqrt{5}+1}{2}$ and $\frac{1}{s}>\frac{\sqrt{5}-1}{2}$.
(6) If $q=\frac{i_{1}}{m_{1}}$ and $m_{1} \neq 0$ and i_{1} and m_{1} are relatively prime, then $i_{1}=\operatorname{num} q$ and $m_{1}=\operatorname{den} q$.
Let f be a function. The functor ZeroPointSet (f) yielding a set is defined by the term
(Def. 1) $\operatorname{dom} f \backslash \operatorname{support} f$. Now we state the proposition:
(7) Let us consider a function f, and objects o_{1}. Then $o_{1} \in \operatorname{ZeroPointSet}(f)$ if and only if $o_{1} \in \operatorname{dom} f$ and $f\left(o_{1}\right)=0$.

2. Hurwitz' Theorem [4, 1891]

Let r be an irrational real number and n be a natural number. Note that $(c d r)(n)$ is positive and natural. Now we state the propositions:
(8) Suppose $n>1$ and $\left|r-\frac{(c n r)(n)}{(c d r)(n)}\right| \geqslant \frac{1}{\sqrt{5} \cdot\left((c d r)(n)^{2}\right)}$ and $\left|r-\frac{(c n r)(n+1)}{(c d r)(n+1)}\right| \geqslant$ $\frac{1}{\sqrt{5} \cdot\left((c d r)(n+1)^{2}\right)}$. Then $\sqrt{5}>\frac{(c d r)(n+1)}{(c d r)(n)}+\frac{1}{\frac{(c d r)(n+1)}{(c d r)(n)}}$.
(9) If $i=(c n r)(n)$ and $j=(c d r)(n)$, then i and j are relatively prime.
(10) Suppose $n>1$. Then
(i) $\left|r-\frac{(c n r)(n)}{(c d r)(n)}\right|<\frac{1}{\sqrt{5} \cdot\left((c d r)(n)^{2}\right)}$, or
(ii) $\left|r-\frac{(c n r)(n+1)}{(c d r)(n+1)}\right|<\frac{1}{\sqrt{5} \cdot\left((c d r)(n+1)^{2}\right)}$, or
(iii) $\left|r-\frac{(c n r)(n+2)}{(c d r)(n+2)}\right|<\frac{1}{\sqrt{5} \cdot\left((c d r)(n+2)^{2}\right)}$.

The theorem is a consequence of (8) and (5).
Let us consider r. The functor HWZSet (r) yielding a subset of \mathbb{Q} is defined by the term
(Def. 2) $\quad\left\{p\right.$, where p is a rational number : $\left.|r-p|<\frac{1}{\sqrt{5} \cdot\left((\operatorname{den} p)^{2}\right)}\right\}$.
The functor HWZSet1 (r) yielding a subset of \mathbb{N} is defined by the term
(Def. 3) $\{x$, where x is a natural number : there exists a rational number p such that $p \in \operatorname{HWZSet}(r)$ and $x=\operatorname{den} p\}$.
The functor TRANQN yielding a function from \mathbb{Q} into \mathbb{N} is defined by
(Def. 4) for every rational number $x, i t(x)=\operatorname{den} x$.
(11) $(\operatorname{TRANQN})^{\circ}(\operatorname{HWZSet}(r))=\operatorname{HWZSet} 1(r)$.
(12) If $\operatorname{HWZSet}(r)$ is finite, then $\operatorname{HWZSet}^{(}(r)$ is finite. The theorem is a consequence of (11).
Let us consider r. One can check that HWZSet1 (r) is non empty.
(13) Let us consider a natural number h. If $h \in \operatorname{HWZSet} 1(r)$, then $h>0$.

Let us consider r. Note that HWZSet1 (r) is infinite.
(14) HURWITZ's THEOREM (NUMBER THEORY):
$\left\{q:|r-q|<\frac{1}{\sqrt{5} \cdot\left((\operatorname{den} q)^{2}\right)}\right\}$ is infinite. The theorem is a consequence of (12).
From now on $c_{0}, c_{1}, c_{2}, u, a_{0}, b_{0}$ denote real numbers.
Let a_{0}, b_{0}, c_{0} be real numbers. The functor $\operatorname{LF}\left(a_{0}, b_{0}, c_{0}\right)$ yielding a function from $\mathbb{Z} \times \mathbb{Z}$ into \mathbb{R} is defined by
(Def. 5) for every integers $x, y, i t(x, y)=a_{0} \cdot x+b_{0} \cdot y+c_{0}$.

3. Minkowski's Theorem [5, Zweites Kapitel, §11, 1907]

Now we state the proposition:
(15) Let us consider an element ρ of \mathbb{R}, and integers p, q. Suppose p and q are relatively prime. Then there exist elements x, y of \mathbb{Z} such that $|p \cdot x-q \cdot y+\rho| \leqslant \frac{1}{2}$. The theorem is a consequence of (4).
In the sequel a, b denote real numbers and n denotes an integer.
(16) If $n \leqslant b \leqslant n+1$, then $|n-b| \cdot|n+1-b| \leqslant \frac{1}{4}$.
(17) If a is not an integer and $(n=\lfloor a\rfloor$ or $n=\lfloor a\rfloor+1)$, then $|a-n|<1$.
(18) Suppose $|n-a| \cdot|n+1-a| \leqslant \frac{1}{4}$ and $|n-b| \cdot|n+1-b| \leqslant \frac{1}{4}$. Then
(i) $|n-a| \cdot|n-b| \leqslant \frac{1}{4}$, or
(ii) $|n+1-a| \cdot|n+1-b| \leqslant \frac{1}{4}$.

The theorem is a consequence of (1).
(19) Suppose $|a-n| \cdot|b-n| \cdot|a-n-1| \cdot|b-n-1| \leqslant \frac{|a-b|^{2}}{4}$. Then
(i) $|a-n| \cdot|b-n| \leqslant \frac{|a-b|}{2}$, or
(ii) $|a-n-1| \cdot|b-n-1| \leqslant \frac{|a-b|}{2}$.

The theorem is a consequence of (1).
(20) Suppose $(n-b) \cdot(n+1-a)>0$ and $(a-n) \cdot(n+1-b)>0$. Then
(i) $(n-b) \cdot(n+1-a)+(a-n) \cdot(n+1-b)=a-b$, and
(ii) $|a-n| \cdot|b-n| \cdot|a-n-1| \cdot|b-n-1| \leqslant \frac{|a-b|^{2}}{4}$.
(21) If $b<n<a<n+1$, then $|a-n| \cdot|b-n| \cdot|a-n-1| \cdot|b-n-1| \leqslant \frac{|a-b|^{2}}{4}$. The theorem is a consequence of (20).
(22) Suppose $(n-a) \cdot(n+1-b)>0$ and $(b-n) \cdot(n+1-a)>0$. Then
(i) $(n-a) \cdot(n+1-b)+(b-n) \cdot(n+1-a)=b-a$, and
(ii) $|a-n| \cdot|b-n| \cdot|a-n-1| \cdot|b-n-1| \leqslant \frac{|a-b|^{2}}{4}$.
(23) If $n+1<b$ and $n<a<n+1$, then $|a-n| \cdot|b-n| \cdot|a-n-1| \cdot|b-n-1| \leqslant$ $\frac{|a-b|^{2}}{4}$. The theorem is a consequence of (22).
(24) Suppose a is not an integer and $\lfloor a\rfloor \leqslant b \leqslant\lfloor a\rfloor+1$. Then there exists an integer u such that
(i) $|a-u|<1$, and
(ii) $|a-u| \cdot|b-u| \leqslant \frac{1}{4}$.

The theorem is a consequence of (16), (18), and (17).
(25) Suppose $|a-\lfloor a\rfloor| \cdot|b-\lfloor a\rfloor| \geqslant \frac{|a-b|}{2}$ and $|a-(\lfloor a\rfloor+1)| \cdot|b-(\lfloor a\rfloor+1)| \geqslant \frac{|a-b|}{2}$. Then
(i) a is an integer, or
(ii) $\lfloor a\rfloor \leqslant b$.

The theorem is a consequence of (21), (19), and (3).
(26) Suppose a is not an integer and $\lfloor a\rfloor>b$. Then there exists an integer u such that
(i) $|a-u|<1$, and
(ii) $|a-u| \cdot|b-u|<\frac{|a-b|}{2}$.

The theorem is a consequence of (17) and (25).
(27) Suppose $|a-\lfloor a\rfloor| \cdot|b-\lfloor a\rfloor| \geqslant \frac{|a-b|}{2}$ and $|a-(\lfloor a\rfloor+1)| \cdot|b-(\lfloor a\rfloor+1)| \geqslant \frac{|a-b|}{2}$. Then
(i) a is an integer, or
(ii) $\lfloor a\rfloor+1 \geqslant b$.

The theorem is a consequence of (23), (19), and (3).
(28) Suppose a is not an integer and $\lfloor a\rfloor+1<b$. Then there exists an integer u such that
(i) $|a-u|<1$, and
(ii) $|a-u| \cdot|b-u|<\frac{|a-b|}{2}$.

The theorem is a consequence of (17) and (27).
(29) There exists an integer u such that
(i) $|a-u|<1$, and
(ii) $|a-u| \cdot|b-u| \leqslant \frac{1}{4}$ or $|a-u| \cdot|b-u|<\frac{|a-b|}{2}$.

The theorem is a consequence of (24), (26), and (28).
In the sequel $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}$ denote elements of \mathbb{R}, ϵ denotes a positive real number, r_{1} denotes a non negative real number, and q, q_{1} denote elements of \mathbb{Q}. Now we state the propositions:
(30) There exists an element q of \mathbb{Q} such that
(i) $\operatorname{den} q>\left\lfloor r_{1}\right\rfloor+1$, and
(ii) $q \in \operatorname{HWZSet}(r)$.

Proof: Reconsider $m=\left\lfloor r_{1}\right\rfloor+1$ as a natural number. There exists n such that $n \in \operatorname{HWZSet1}(r)$ and $n>m$ by (13), [7, (3)]. Consider n such that $n \in \operatorname{HWZSet} 1(r)$ and $n>m$.
(31) Suppose $\left|a_{1} \cdot b_{2}-a_{2} \cdot b_{1}\right| \neq 0$ and $q \neq q_{1}$ and $a_{2} \cdot(\operatorname{den} q)+b_{2} \cdot(\operatorname{num} q)=0$. Then $a_{2} \cdot\left(\operatorname{den} q_{1}\right)+b_{2} \cdot\left(\operatorname{num} q_{1}\right) \neq 0$.
(32) Suppose $\left|a_{1} \cdot b_{2}-a_{2} \cdot b_{1}\right| \neq 0$. Then there exists an element q of \mathbb{Q} such that
(i) $\operatorname{den} q>\left\lfloor r_{1}\right\rfloor+1$, and
(ii) $q \in \operatorname{HWZSet}(r)$, and
(iii) $a_{2} \cdot(\operatorname{den} q)+b_{2} \cdot(\operatorname{num} q) \neq 0$.

The theorem is a consequence of (30) and (31).
(33) Let us consider real numbers a_{1}, b_{1}, and integers n_{1}, d_{1}. Suppose $d_{1}>0$ and $\left|\frac{a_{1}}{b_{1}}+\frac{n_{1}}{d_{1}}\right|<\frac{1}{\sqrt{5} \cdot\left(d_{1}{ }^{2}\right)}$. Then there exists a real number d such that
(i) $\frac{n_{1}}{d_{1}}=-\frac{a_{1}}{b_{1}}+\frac{d}{d_{1}{ }^{2}}$, and
(ii) $|d|<\frac{1}{\sqrt{5}}$.
(34) Suppose $\left|a_{1} \cdot b_{2}-a_{2} \cdot b_{1}\right| \neq 0$ and $\frac{a_{1}}{b_{1}}$ is irrational. Then there exist elements x, y of \mathbb{Z} such that
(i) $\left|\left(\operatorname{LF}\left(a_{1}, b_{1}, c_{1}\right)\right)(x, y)\right| \cdot\left|\left(\operatorname{LF}\left(a_{2}, b_{2}, c_{2}\right)\right)(x, y)\right|<\frac{\left|a_{1} \cdot b_{2}-a_{2} \cdot b_{1}\right|}{4}$, and
(ii) $\left|\left(\operatorname{LF}\left(a_{1}, b_{1}, c_{1}\right)\right)(x, y)\right|<\epsilon$.

The theorem is a consequence of (32), (15), (29), and (33).
(35) Suppose $\left|a_{1} \cdot b_{2}-a_{2} \cdot b_{1}\right| \neq 0$ and $\frac{a_{2}}{b_{2}}$ is irrational. Then there exist elements x, y of \mathbb{Z} such that
(i) $\left|\left(\operatorname{LF}\left(a_{2}, b_{2}, c_{2}\right)\right)(x, y)\right| \cdot\left|\left(\operatorname{LF}\left(a_{1}, b_{1}, c_{1}\right)\right)(x, y)\right|<\frac{\left|a_{1} \cdot b_{2}-a_{2} \cdot b_{1}\right|}{4}$, and
(ii) $\left|\left(\operatorname{LF}\left(a_{2}, b_{2}, c_{2}\right)\right)(x, y)\right|<\epsilon$.

The theorem is a consequence of (34).
(36) Suppose ZeroPointSet $\left(\operatorname{LF}\left(a_{1}, b_{1}, c_{1}\right)\right) \neq \emptyset$. Then there exist elements x, y of \mathbb{Z} such that $\left|\left(\operatorname{LF}\left(a_{1}, b_{1}, c_{1}\right)\right)(x, y)\right| \cdot\left|\left(\operatorname{LF}\left(a_{2}, b_{2}, c_{2}\right)\right)(x, y)\right| \leqslant \frac{\left|a_{1} \cdot b_{2}-a_{2} \cdot b_{1}\right|}{4}$. The theorem is a consequence of (7).
(37) Suppose ZeroPointSet($\left.\operatorname{LF}\left(a_{2}, b_{2}, c_{2}\right)\right) \neq \emptyset$. Then there exist elements x, y of \mathbb{Z} such that $\left|\left(\operatorname{LF}\left(a_{1}, b_{1}, c_{1}\right)\right)(x, y)\right| \cdot\left|\left(\operatorname{LF}\left(a_{2}, b_{2}, c_{2}\right)\right)(x, y)\right| \leqslant \frac{\left|a_{1} \cdot b_{2}-a_{2} \cdot b_{1}\right|}{4}$. The theorem is a consequence of (7).
(38) Suppose $\left|a_{1} \cdot b_{2}-a_{2} \cdot b_{1}\right| \neq 0$ and $b_{1} \neq 0$ and $\frac{a_{1}}{b_{1}}$ is rational. Then there exist elements x, y of \mathbb{Z} such that $\left|\left(\operatorname{LF}\left(a_{1}, b_{1}, c_{1}\right)\right)(x, y)\right| \cdot\left|\left(\operatorname{LF}\left(a_{2}, b_{2}, c_{2}\right)\right)(x, y)\right| \leqslant$ $\frac{\left|a_{1} \cdot b_{2}-a_{2} \cdot b_{1}\right|}{4}$. The theorem is a consequence of (15).
(39) Suppose $\left|a_{1} \cdot b_{2}-a_{2} \cdot b_{1}\right| \neq 0$ and $b_{2} \neq 0$ and $\frac{a_{2}}{b_{2}}$ is rational. Then there exist elements x, y of \mathbb{Z} such that $\left|\left(\operatorname{LF}\left(a_{1}, b_{1}, c_{1}\right)\right)(x, y)\right| \cdot\left|\left(\operatorname{LF}\left(a_{2}, b_{2}, c_{2}\right)\right)(x, y)\right| \leqslant$ $\frac{\left|a_{1} \cdot b_{2}-a_{2} \cdot b_{1}\right|}{4}$. The theorem is a consequence of (38).
(40) Suppose $\left|a_{1} \cdot b_{2}-a_{2} \cdot b_{1}\right| \neq 0$ and $b_{1}=0$. Then there exist elements x, y of \mathbb{Z} such that $\left|\left(\operatorname{LF}\left(a_{1}, b_{1}, c_{1}\right)\right)(x, y)\right| \cdot\left|\left(\operatorname{LF}\left(a_{2}, b_{2}, c_{2}\right)\right)(x, y)\right| \leqslant \frac{\left|a_{1} \cdot b_{2}-a_{2} \cdot b_{1}\right|}{4}$. The theorem is a consequence of (35), (37), and (39).
(41) Suppose $\left|a_{1} \cdot b_{2}-a_{2} \cdot b_{1}\right| \neq 0$. Then there exist elements x, y of \mathbb{Z} such that $\left|\left(\operatorname{LF}\left(a_{1}, b_{1}, c_{1}\right)\right)(x, y)\right| \cdot\left|\left(\operatorname{LF}\left(a_{2}, b_{2}, c_{2}\right)\right)(x, y)\right| \leqslant \frac{\left|a_{1} \cdot b_{2}-a_{2} \cdot b_{1}\right|}{4}$. The theorem is a consequence of $(34),(36),(40)$, and (38).

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi 10.1007/s10817-015-9345-1
[3] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, 6th edition, 2008.
[4] Adolf Hurwitz. Ueber die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche Mathematısche Annalen, 39(2):279-284, B.G.Teubner Verlag, Leipzig, 1891.
[5] Hermann Minkowski. Diophantische Approximationen: eine Einführung in die Zahlentheorie. Teubner, Leipzig, 1907.
[6] Ivan Niven. Diophantine Approximation. Dover, 2008.
[7] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences Formalized Mathematics, 9(4):825-829, 2001.
[8] Yasushige Watase. Introduction to Diophantine approximation. Formalized Mathematics, 23(2):101-106, 2015. doi 10.1515/forma-2015-0010

Received November 29, 2017

The English version of this volume of Formalized Mathematics was financed under agreement 548/P-DUN/2016 with the funds from the Polish Minister of Science and Higher Education for the dissemination of science.

