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Summary. In the article we present in the Mizar system [I], [2] the for-
malized proofs for Hurwitz’ theorem [4] 1891] and Minkowski’s theorem [5]. Both
theorems are well explained as a basic result of the theory of Diophantine appro-
ximations appeared in [3], [6].

A formal proof of Dirichlet’s theorem, namely an inequation |6 —y /x| < 1/2?
has infinitely many integer solutions (x,y) where 0 is an irrational number, was
given in [§]. A finer approximation is given by Hurwitz’ theorem: |0 — y/z| <
1/v/522 .

Minkowski’s theorem concerns an inequation of a product of non-homogeneous
binary linear forms such that |a1z + b1y + c1| - |a2z + b2y + c2| < A/4 where
A = |a1ba — a2b1| # 0, has at least one integer solution.
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1. PRELIMINARIES

From now on 71, r, 3 denote non negative real numbers, n, m; denote
natural numbers, s denotes a real number, i, j, i1, j1 denote integers, r denotes
an irrational real number, and ¢ denotes a rational number.

Now we state the propositions:

(1) Ifry-re <73, then 1y < /3 or rp < /3.
(2) r1-72 = "2 if and only if 71 = ro.
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(3) ri-ro= (%)2 if and only if r; = r9. The theorem is a consequence of
(2).

(4) If i1 and j; are relatively prime, then there exist integers s, ¢ such that
s-11+t-51=1.

(5) If1<5ands+%<\/5,thens<@and%>@.

(6) Ifqg= ;n—ll and m1 # 0 and 41 and m, are relatively prime, then ¢; = num g
and mq = deng.

Let f be a function. The functor ZeroPointSet(f) yielding a set is defined
by the term
(Def. 1) dom f \ support f. Now we state the proposition:

(7) Let us consider a function f, and objects 0;. Then 01 € ZeroPointSet( f)
if and only if 0; € dom f and f(01) = 0.

2. HurwiTZz’ THEOREM [4], 1891]

Let r be an irrational real number and n be a natural number. Note that

(cdr)(n) is positive and natural. Now we state the propositions:

(enr)(n+1)

(enr)
and |T " (edr)(n+1) ‘ =

(8) Suppose n > 1 and |T B cdr)(n

| - f((cd )(n)?)
m. Then /5 > C((iz)gz:)l) + (C(i;)rl(;z :)D .

(9) Ifi=(enr)(n) and j = (cdr)(n), then ¢ and j are relatively prime.
(10) Suppose n > 1. Then

(i) |r— {0t

1
5 ((edr)(m)?)
1
V5 (edr)(nt1)?)
1
| < Feanmoy

The theorem is a consequence of (8) and (5).

Let us consider r. The functor HWZSet(r) yielding a subset of Q is defined
by the term

or

)
(i) |r — {5 or
_ (enr)
(iii) |r (ed)

. . . . 1
(Def. 2) {p, where p is a rational number : |r — p| < 7\/5.(((1&11))2)}.
The functor HWZSet1(r) yielding a subset of N is defined by the term

(Def. 3) {z, where z is a natural number : there exists a rational number p such
that p € HWZSet(r) and z = denp}.
The functor TRANQN yielding a function from Q into N is defined by
(Def. 4) for every rational number z, it(x) = denz.
(11) (TRANQN)°(HWZSet(r)) = HWZSet1(r).
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(12) If HWZSet(r) is finite, then HWZSet1(r) is finite. The theorem is a con-
sequence of (11).

Let us consider r. One can check that HWZSet1(r) is non empty.
(13) Let us consider a natural number h. If h € HWZSet1(r), then h > 0.
Let us consider r. Note that HWZSet1(r) is infinite.

(14) HURWITZ’S THEOREM (NUMBER THEORY):

o 1 .. . .
{g:|r—q| < 7\/5.(((161“1)2)} is infinite. The theorem is a consequence of (12).

From now on ¢y, c¢1, c2, u, ag, by denote real numbers.
Let ag, by, cop be real numbers. The functor LF (ag, by, ¢p) yielding a function
from Z x Z into R is defined by

(Def. 5) for every integers z, y, it(x,y) = ag - x + by - y + co.

3. MINKOWSKI’S THEOREM [5, ZWEITES KAPITEL, §11, 1907]

Now we state the proposition:

15) Let us consider an element p of R, and integers p, q. Suppose p and
p g
q are relatively prime. Then there exist elements z, y of Z such that
p-x—q-y+p| <31 The theorem is a consequence of (4).
PIS 2

In the sequel a, b denote real numbers and n denotes an integer.
(16) Ifn<b<n+1 then|n—>b/-ln+1-b <1
(17) 1If a is not an integer and (n = |a] or n = |a| + 1), then |a — n| < 1.
(18) Suppose [n—a|-|n+1—a| <1and|n—b|-|n+1—b] < 3. Then
(i) In—a|-jn—0b <%, or
(i) [n+1—al-|n+1-0b|< 1.
The theorem is a consequence of (1).
(19) Suppose [a —n|-[b—n|-la—n—1]-]b—n—1| < %. Then
(i) la—n|-|b—n| <Y or

T la—0|
(ii) la—n—1]-]b—n—1] < 52

The theorem is a consequence of (1).
(20) Suppose (n —b)-(n+1—a)>0and (a —n)-(n+1—>)>0. Then
(i) (n=b)-(n+1—a)+(a—n)-(n+1—-0>) =a—b, and

|a—b
-

(i) l[a=n|-b—n|-la=n—-1]-1b—n—-1| <

la—b[?

(21) Ifb<n<a<n+l1, then|la—n|[-[b—n|-la—n—1]-b—n—-1] < =
The theorem is a consequence of (20).
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(22) Suppose (n—a)-(n+1—5b)>0and (b—n)-(n+1—a)>0. Then
(i) (mn—a)-(n+1=b)+0b—n)-(n+1—a)=>b—a, and
(i) la—n|-Pp—n|-la—n—1]-p—n—1] < =t

(23) Ifn+1<bandn <a<n+1,then|a—n|-|b—n|-la—n—1]-]b—n—1] <

%. The theorem is a consequence of (22).

(24) Suppose a is not an integer and |a| < b < |a| + 1. Then there exists
an integer u such that

(i) la —u| <1, and
(i) |a —u|-|b—u| <1
The theorem is a consequence of (16), (18), and (17).

(25) Suppose |a—|a]|-|b—|a]| > |a % and la—(la]+1)[-[b—([a]+1)] > ‘a;b‘-
Then

(i) a is an integer, or

(i) |e] <D
The theorem is a consequence of (21), (19), and (3).

(26) Suppose a is not an integer and |a] > b. Then there exists an integer u
such that

(i) la—u| <1, and

(ii) la—u|-|b—u| < |a i,
The theorem is a consequence of (17) and (25).

(27) Suppose [a—a]|-b—a]| > 3% and |a—(la)+1)|- b= (la]+1)| > 57
Then

(i) a is an integer, or
(i) la] +1>0.
The theorem is a consequence of (23), (19), and (3).
(28) Suppose a is not an integer and |a|+1 < b. Then there exists an integer
u such that
(i) Ja —u| <1, and
(i) fo—ul - [ —u] < 5"
The theorem is a consequence of (17) and (27).
(29) There exists an integer u such that
(i) la —u| <1, and

(i) Ja—ul-[b—ul <% orla—u|-|b—ul < |a o
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The theorem is a consequence of (24), (26), and (28).

In the sequel a1, a9, b1, bs, c1, co denote elements of R, € denotes a positive
real number, r; denotes a non negative real number, and ¢, ¢; denote elements
of Q. Now we state the propositions:

(30) There exists an element ¢ of Q such that
(i) deng > |r1| +1, and
(ii) ¢ € HWZSet(r).
PROOF: Reconsider m = |r; |+1 as a natural number. There exists n such

that n € HWZSet1(r) and n > m by (13), [7, (3)]. Consider n such that
n € HWZSet1(r) and n > m. O

(31) Suppose |a1-be—az-b1| # 0 and g # ¢ and ay - (den q) +bs - (numq) = 0.
Then ag - (dengqp) + by - (num gy ) # 0.

(32) Suppose |aj - ba — ag - b1| # 0. Then there exists an element g of Q such
that

(i) deng > |r1| + 1, and
(ii) ¢ € HWZSet(r), and
(iii) a2 - (dengq) + ba - (numgq) # 0.
The theorem is a consequence of (30) and (31).

(33) Let us consider real numbers aq, by, and integers ny, di. Suppose d; > 0

and |3 + 31| < m. Then there exists a real number d such that
(i) 4+ =—§ + 7%, and
.. 1
(ii) |d| < 7

(34) Suppose |a1-by—az-b1| # 0 and ¢! is irrational. Then there exist elements
x, y of Z such that

(i) [(LF(a1, b1, 1)) (@, 9)| - |(LF (az, by, e2)) (2, )| < 225220 and
(ii) |(LF(a1,b1,c1))(z,9)| <e.
The theorem is a consequence of (32), (15), (29), and (33).

(35) Suppose |a1-by—az-b1| # 0 and §2 is irrational. Then there exist elements
x, y of Z such that

(i) I(LF (a2, ba, c2)) (@, )] - | (LF (a1, by, e1)) (2, y) | < 1227220, and
(ii) |(LF(azg,be,c2))(z,y)| < €.
The theorem is a consequence of (34).
(36) Suppose ZeroPointSet(LF (a1, b1,c¢1)) # (). Then there exist elements z, y

of Z such that |(LF(ax, by, 1)) (2, y)| - | (LF (a2, ba, c2)) ()| < lertegeetil
The theorem is a consequence of (7).
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(37) Suppose ZeroPointSet(LF (asg, ba, c2)) # 0. Then there exist elements z, y
of Z such that [(LF (a1, bi, 1)) (, y)| - |(LF (ag, by, ¢2)) (w, y)| < b2z ozl
The theorem is a consequence of (7).

(38) Suppose |ai-ba—az-bi| # 0and by # 0 and g—ll is rational. Then there exist
elements x, y of Z such that |(LF (a1, b1, c1))(x, y)|-|(LF (ag, ba, c2))(z,y)| <

ml'biia?bll. The theorem is a consequence of (15).

(39) Suppose |ai-ba—az-bi| # 0 and by # 0 and ‘;—; is rational. Then there exist
elements x, y of Z such that |(LF (a1, b1, c1))(x, y)|-|(LF(ag, ba, ¢2))(z,y)| <
\a1-b24%a2-b1|' The theorem is a consequence of (38).

(40) Suppose |a; - by — ag - b1| # 0 and by = 0. Then there exist elements z, y
of Z such that |(LF(a1,b1,c1))(x,y)| - |(LF(az, bz, c2))(z,y)| < W.
The theorem is a consequence of (35), (37), and (39).

(41) Suppose |a;-by—ag-b1| # 0. Then there exist elements z, y of Z such that
((LF (a1, b1, 1)) (@, )| - |(LF (ag, ba, ¢2)) (2, y)| < 1922792010 The theorem
is a consequence of (34), (36), (40), and (38).
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