Isomorphism Theorem on Vector Spaces over a Ring ${ }^{1}$

Yuichi Futa
Tokyo University of Technology
Tokyo, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Abstract

Summary. In this article, we formalize in the Mizar system [1, 4 some properties of vector spaces over a ring. We formally prove the first isomorphism theorem of vector spaces over a ring. We also formalize the product space of vector spaces. \mathbb{Z}-modules are useful for lattice problems such as LLL (Lenstra, Lenstra and Lovász) [5] base reduction algorithm and cryptographic systems [6, (2).

MSC: 15A03 15A04 03B35
Keywords: isomorphism theorem; vector space
MML identifier: VECTSP12, version: 8.1.06 5.44.1305

1. Bijective Linear Transformation

From now on K, F denote rings, V, W denote vector spaces over K, l denotes a linear combination of V, and T denotes a linear transformation from V to W. Now we state the propositions:
(1) Let us consider a field K, finite dimensional vector spaces V, W over K, a subset A of V, a basis B of V, a linear transformation T from V to W, and a linear combination l of $B \backslash A$. Suppose A is a basis of $\operatorname{ker} T$ and $A \subseteq B$. Then $T\left(\sum l\right)=\sum(T @ * l)$.
(2) Let us consider a field F, vector spaces X, Y over F, a linear transformation T from X to Y, and a subset A of X. Suppose T is bijective. Then A is a basis of X if and only if $T^{\circ} A$ is a basis of Y.

[^0](3) Let us consider a field F, vector spaces X, Y over F, and a linear transformation T from X to Y. Suppose T is bijective. Then X is finite dimensional if and only if Y is finite dimensional.
(4) Let us consider a field F, a finite dimensional vector space X over F, a vector space Y over F, and a linear transformation T from X to Y. Suppose T is bijective. Then
(i) Y is finite dimensional, and
(ii) $\operatorname{dim}(X)=\operatorname{dim}(Y)$.

Proof: For every basis I of $X, \operatorname{dim}(Y)=\overline{\bar{I}}$.
(5) Let us consider a field F, vector spaces X, Y over F, a linear combination l of X, and a linear transformation T from X to Y. If T is one-to-one, then $T^{@} l=T @ * l$.
Proof: For every element y of $Y,\left(T^{@} l\right)(y)=\sum \operatorname{CFS}(l, T, y)$.

2. Properties of Linear Combinations of Modules over a Ring

Now we state the proposition:
(6) Let us consider a field K, a vector space V over K, subspaces W_{1}, W_{2} of V, a basis I_{1} of W_{1}, and a basis I_{2} of W_{2}. If V is the direct sum of W_{1} and W_{2}, then $I_{1} \cap I_{2}=\emptyset$.
Let us consider a field K, a vector space V over K, subspaces W_{1}, W_{2} of V, a basis I_{1} of W_{1}, a basis I_{2} of W_{2}, and a subset I of V. Now we state the propositions:
(7) Suppose V is the direct sum of W_{1} and W_{2} and $I=I_{1} \cup I_{2}$. Then $\operatorname{Lin}(I)=$ the vector space structure of V.
Proof: Reconsider $I_{3}=I_{1}$ as a subset of V. Reconsider $I_{4}=I_{2}$ as a subset of V. For every vector x of $V, x \in W_{1}+W_{2}$ iff $x \in \operatorname{Lin}\left(I_{3}\right)+\operatorname{Lin}\left(I_{4}\right)$.
(8) If V is the direct sum of W_{1} and W_{2} and $I=I_{1} \cup I_{2}$, then I is linearly independent.
Proof: Consider l being a linear combination of I such that $\sum l=0_{V}$ and the support of $l \neq \emptyset . I_{1} \cap I_{2}=\emptyset . I_{1}$ misses I_{2}. Reconsider $I_{3}=I_{1}$, $I_{4}=I_{2}$ as a subset of V. Consider l_{1} being a linear combination of I_{3}, l_{2} being a linear combination of I_{4} such that $l=l_{1}+l_{2}$. Reconsider $l_{3}=l_{1}$ as a linear combination of I. Set $v_{1}=\sum l_{3} . v_{1} \neq 0_{V}$ by [3, (25)].
(9) Let us consider a field K, a vector space V over K, subspaces W_{1}, W_{2} of V, a basis I_{1} of W_{1}, and a basis I_{2} of W_{2}. If $W_{1} \cap W_{2}=\mathbf{0}_{V}$, then $I_{1} \cup I_{2}$ is a basis of $W_{1}+W_{2}$.

Proof: Set $I=I_{1} \cup I_{2}$. Reconsider $W=W_{1}+W_{2}$ as a strict subspace of V. Reconsider $W_{3}=W_{1}, W_{4}=W_{2}$ as a subspace of W. Reconsider $I_{0}=I$ as a subset of W. For every object $x, x \in W_{3} \cap W_{4}$ iff $x \in \mathbf{0}_{V}$. For every object $x, x \in W$ iff $x \in W_{3}+W_{4} . I_{0}$ is base.

3. First Isomophism Theorem

Let us consider a field K, a finite dimensional vector space V over K, and a subspace W of V. Now we state the propositions:
(10) There exists a linear complement S of W and there exists a linear transformation T from S to ${ }^{V} / W$ such that T is bijective and for every vector v of V such that $v \in S$ holds $T(v)=v+W$.
Proof: Set $S=$ the linear complement of W. Set $V_{1}=V / W$. Define \mathcal{P} [vector of V, vector of $\left.V_{1}\right] \equiv \$_{2}=\$_{1}+W$. Consider f_{1} being a function from the carrier of V into the carrier of V_{1} such that for every vector v of $V, \mathcal{P}\left[v, f_{1}(v)\right]$. Set $T=f_{1} \upharpoonright($ the carrier of $S)$. For every vector v of V such that $v \in S$ holds $T(v)=v+W$. The carrier of $V_{1} \subseteq \operatorname{rng} T$. For every objects x_{1}, x_{2} such that $x_{1}, x_{2} \in$ the carrier of S and $T\left(x_{1}\right)=T\left(x_{2}\right)$ holds $x_{1}=x_{2}$.
(i) V / W is finite dimensional, and
(ii) $\operatorname{dim}(V / W)+\operatorname{dim}(W)=\operatorname{dim}(V)$.

The theorem is a consequence of (10) and (4).
Let K be a ring, V, U be vector spaces over K, W be a subspace of V, and f be a linear transformation from V to U. Assume the carrier of $W \subseteq$ the carrier of ker f. The functor ${ }^{f} / W$ yielding a linear transformation from ${ }^{\bar{V}} / W$ to U is defined by
(Def. 1) for every vector A of V / W and for every vector a of V such that $A=a+W$ holds $i t(A)=f(a)$.
The functor CQFunctional f yielding a linear transformation from $V / \operatorname{ker} f$ to U is defined by the term
(Def. 2) $\quad f / \operatorname{ker} f$.
Observe that CQFunctional f is one-to-one.
Now we state the proposition:
(12) Let us consider a ring K, vector spaces V, U over K, and a linear transformation f from V to U. Then there exists a linear transformation T from $V / \operatorname{ker} f$ to $\operatorname{im} f$ such that
(i) $T=$ CQFunctional f, and
(ii) T is bijective.

Proof: Set $T=$ CQFunctional f. For every object $x, x \in \operatorname{rng} T$ iff $x \in$ rng f.
Let K be a ring, V, U, W be vector spaces over K, f be a linear transformation from V to U, and g be a linear transformation from U to W. One can verify that the functor $g \cdot f$ yields a linear transformation from V to W.

4. The Product Space of Vector Spaces

Let K be a ring.
A sequence of vector spaces over K is a non empty finite sequence and is defined by
(Def. 3) for every set S such that $S \in \operatorname{rng} i t$ holds S is a vector space over K.
Note that every sequence of vector spaces over K is Abelian group yielding.
Let G be a sequence of vector spaces over K and j be an element of dom G. One can check that the functor $G(j)$ yields a vector space over K. Let j be an element of dom \bar{G}. One can verify that the functor $G(j)$ yields a vector space over K. The functor multop G yielding a multi-operation of the carrier of K and \bar{G} is defined by
(Def. 4) len $i t=\operatorname{len} \bar{G}$ and for every element j of $\operatorname{dom} \bar{G}, i t(j)=$ the left multiplication of $G(j)$.
The functor ΠG yielding a strict, non empty vector space structure over K is defined by the term
(Def. 5) $\left\langle\Pi \bar{G}, \Pi^{\circ}\left\langle+G_{i}\right\rangle_{i},\left\langle 0_{G_{i}}\right\rangle_{i}, \Pi^{\circ}\right.$ multop $\left.G\right\rangle$.
Let us note that ΠG is Abelian, add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, and scalar unital.

5. Cartesian Product of Vector Spaces

From now on K denotes a ring.
Let K be a ring and G, F be non empty vector space structures over K. The functor prodmlt (G, F) yielding a function from (the carrier of $K) \times(($ the carrier of $G) \times($ the carrier of $F)$) into (the carrier of $G) \times($ the carrier of $F)$ is defined by
(Def. 6) for every element r of K and for every vector g of G and for every vector f of $F, i t(r,\langle g, f\rangle)=\langle r \cdot g, r \cdot f\rangle$.
The functor $G \times F$ yielding a strict, non empty vector space structure over K is defined by the term
(Def. 7) $\langle($ the carrier of $G) \times($ the carrier of $F), \operatorname{prodadd}(G, F), \operatorname{prodzero}(G, F)$, $\operatorname{prodmlt}(G, F)\rangle$.
Let G, F be Abelian, non empty vector space structures over K. Note that $G \times F$ is Abelian.

Let G, F be add-associative, non empty vector space structures over K. One can verify that $G \times F$ is add-associative.

Let G, F be right zeroed, non empty vector space structures over K. One can verify that $G \times F$ is right zeroed.

Let G, F be right complementable, non empty vector space structures over K. One can check that $G \times F$ is right complementable.

Now we state the propositions:
(13) Let us consider non empty vector space structures G, F over K. Then
(i) for every set x, x is a vector of $G \times F$ iff there exists a vector x_{1} of G and there exists a vector x_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$, and
(ii) for every vectors x, y of $G \times F$ and for every vectors x_{1}, y_{1} of G and for every vectors x_{2}, y_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$ and $y=\left\langle y_{1}, y_{2}\right\rangle$ holds $x+y=\left\langle x_{1}+y_{1}, x_{2}+y_{2}\right\rangle$, and
(iii) $0_{G \times F}=\left\langle 0_{G}, 0_{F}\right\rangle$, and
(iv) for every vector x of $G \times F$ and for every vector x_{1} of G and for every vector x_{2} of F and for every element a of K such that $x=\left\langle x_{1}, x_{2}\right\rangle$ holds $a \cdot x=\left\langle a \cdot x_{1}, a \cdot x_{2}\right\rangle$.
(14) Let us consider add-associative, right zeroed, right complementable, non empty vector space structures G, F over K, a vector x of $G \times F$, a vector x_{1} of G, and a vector x_{2} of F. Suppose $x=\left\langle x_{1}, x_{2}\right\rangle$. Then $-x=\left\langle-x_{1}\right.$, $\left.-x_{2}\right\rangle$.
Let K be a ring and G, F be vector distributive, non empty vector space structures over K. Let us note that $G \times F$ is vector distributive.

Let G, F be scalar distributive, non empty vector space structures over K. One can check that $G \times F$ is scalar distributive.

Let G, F be scalar associative, non empty vector space structures over K. Let us note that $G \times F$ is scalar associative.

Let G, F be scalar unital, non empty vector space structures over K. Let us observe that $G \times F$ is scalar unital.

Let G be a vector space over K. One can check that the functor $\langle G\rangle$ yields a sequence of vector spaces over K. Let G, F be vector spaces over K. Let us note that the functor $\langle G, F\rangle$ yields a sequence of vector spaces over K. Now we state the proposition:
(15) Let us consider a vector space X over K. Then there exists a function I from X into $\Pi\langle X\rangle$ such that
(i) I is one-to-one and onto, and
(ii) for every vector x of $X, I(x)=\langle x\rangle$, and
(iii) for every vectors v, w of $X, I(v+w)=I(v)+I(w)$, and
(iv) for every vector v of X and for every element r of the carrier of K, $I(r \cdot v)=r \cdot I(v)$, and
(v) $I\left(0_{X}\right)=0{ }^{0}\langle X\rangle$.

Proof: Set $C_{3}=$ the carrier of X. Consider I being a function from C_{3} into $\prod\left\langle C_{3}\right\rangle$ such that I is one-to-one and onto and for every object x such that $x \in C_{3}$ holds $I(x)=\langle x\rangle$. For every vectors v, w of $X, I(v+w)=$ $I(v)+I(w)$. For every vector v of X and for every element r of the carrier of $K, I(r \cdot v)=r \cdot I(v)$.
Let K be a ring and G, F be sequences of vector spaces over K. One can verify that the functor $G^{\frown} F$ yields a sequence of vector spaces over K. Now we state the propositions:
(16) Let us consider vector spaces X, Y over K. Then there exists a function I from $X \times Y$ into $\Pi\langle X, Y\rangle$ such that
(i) I is one-to-one and onto, and
(ii) for every vector x of X and for every vector y of $Y, I(x, y)=\langle x, y\rangle$, and
(iii) for every vectors v, w of $X \times Y, I(v+w)=I(v)+I(w)$, and
(iv) for every vector v of $X \times Y$ and for every element r of $K, I(r \cdot v)=$ $r \cdot I(v)$, and
(v) $I\left(0_{X \times Y}\right)=0 \prod_{\langle X, Y\rangle}$.

Proof: Set $C_{3}=$ the carrier of X. Set $C_{4}=$ the carrier of Y. Consider I being a function from $C_{3} \times C_{4}$ into $\Pi\left\langle C_{3}, C_{4}\right\rangle$ such that I is one-to-one and onto and for every objects x, y such that $x \in C_{3}$ and $y \in C_{4}$ holds $I(x, y)=\langle x, y\rangle$. For every vectors v, w of $X \times Y, I(v+w)=I(v)+I(w)$. For every vector v of $X \times Y$ and for every element r of $K, I(r \cdot v)=r \cdot I(v)$.
(17) Let us consider sequences of vector spaces X, Y over K. Then there exists a function I from $\Pi X \times \Pi Y$ into $\Pi\left(X^{\wedge} Y\right)$ such that
(i) I is one-to-one and onto, and
(ii) for every vector x of ΠX and for every vector y of ΠY, there exist finite sequences x_{1}, y_{1} such that $x=x_{1}$ and $y=y_{1}$ and $I(x, y)=$ $x_{1}{ }^{\wedge} y_{1}$, and
(iii) for every vectors v, w of $\Pi X \times \Pi Y, I(v+w)=I(v)+I(w)$, and
(iv) for every vector v of $\Pi X \times \Pi Y$ and for every element r of the carrier of $K, I(r \cdot v)=r \cdot I(v)$, and
(v) $I\left(0 \prod_{X \times \prod Y}\right)=0 \prod(X \sim Y)$.

Proof: Reconsider $C_{1}=\bar{X}, C_{2}=\bar{Y}$ as a non-empty, non empty finite sequence. Consider I being a function from $\Pi C_{1} \times \Pi C_{2}$ into $\Pi\left(C_{1}{ }^{\wedge} C_{2}\right)$ such that I is one-to-one and onto and for every finite sequences x, y such that $x \in \prod C_{1}$ and $y \in \Pi C_{2}$ holds $I(x, y)=x^{\wedge} y$. Set $P_{1}=\prod X$. Set $P_{2}=\Pi Y$. For every natural number k such that $k \in \operatorname{dom} \overline{X \sim Y}$ holds $\overline{X \frown Y}(k)=\left(C_{1} \frown C_{2}\right)(k)$. For every vector x of ΠX and for every vector y of ΠY, there exist finite sequences x_{1}, y_{1} such that $x=x_{1}$ and $y=y_{1}$ and $I(x, y)=x_{1} \frown y_{1}$. For every vectors v, w of $P_{1} \times P_{2}, I(v+w)=I(v)+I(w)$. For every vector v of $P_{1} \times P_{2}$ and for every element r of the carrier of K, $I(r \cdot v)=r \cdot I(v)$ by [7, (9)].
(18) Let us consider vector spaces G, F over K. Then
(i) for every set x, x is a vector of $\Pi\langle G, F\rangle$ iff there exists a vector x_{1} of G and there exists a vector x_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$, and
(ii) for every vectors x, y of $\Pi\langle G, F\rangle$ and for every vectors x_{1}, y_{1} of G and for every vectors x_{2}, y_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$ and $y=\left\langle y_{1}\right.$, $\left.y_{2}\right\rangle$ holds $x+y=\left\langle x_{1}+y_{1}, x_{2}+y_{2}\right\rangle$, and
(iii) ${ }^{0} \prod_{\langle G, F\rangle}=\left\langle 0_{G}, 0_{F}\right\rangle$, and
(iv) for every vector x of $\Pi\langle G, F\rangle$ and for every vector x_{1} of G and for every vector x_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$ holds $-x=\left\langle-x_{1},-x_{2}\right\rangle$, and
(v) for every vector x of $\Pi\langle G, F\rangle$ and for every vector x_{1} of G and for every vector x_{2} of F and for every element a of K such that $x=\left\langle x_{1}\right.$, $\left.x_{2}\right\rangle$ holds $a \cdot x=\left\langle a \cdot x_{1}, a \cdot x_{2}\right\rangle$.
Proof: Consider I being a function from $G \times F$ into $\prod\langle G, F\rangle$ such that I is one-to-one and onto and for every vector x of G and for every vector y of F, $I(x, y)=\langle x, y\rangle$ and for every vectors v, w of $G \times F, I(v+w)=I(v)+I(w)$ and for every vector v of $G \times F$ and for every element r of $K, I(r \cdot v)=r \cdot I(v)$ and ${ }^{0} \prod_{\langle G, F\rangle}=I\left(0_{G \times F}\right)$. For every set x, x is a vector of $\Pi\langle G, F\rangle$ iff there exists a vector x_{1} of G and there exists a vector x_{2} of F such that $x=\left\langle x_{1}\right.$, $\left.x_{2}\right\rangle$. For every vectors x, y of $\Pi\langle G, F\rangle$ and for every vectors x_{1}, y_{1} of G and for every vectors x_{2}, y_{2} of F such that $x=\left\langle x_{1}, x_{2}\right\rangle$ and $y=\left\langle y_{1}, y_{2}\right\rangle$ holds $x+y=\left\langle x_{1}+y_{1}, x_{2}+y_{2}\right\rangle .{ }^{0} \prod_{\langle G, F\rangle}=\left\langle 0_{G}, 0_{F}\right\rangle$. For every vector x of $\Pi\langle G, F\rangle$ and for every vector x_{1} of G and for every vector x_{2} of F such
that $x=\left\langle x_{1}, x_{2}\right\rangle$ holds $-x=\left\langle-x_{1},-x_{2}\right\rangle$. For every vector x of $\Pi\langle G, F\rangle$ and for every vector x_{1} of G and for every vector x_{2} of F and for every element a of K such that $x=\left\langle x_{1}, x_{2}\right\rangle$ holds $a \cdot x=\left\langle a \cdot x_{1}, a \cdot x_{2}\right\rangle$.

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Wolfgang Ebeling. Lattices and Codes. Advanced Lectures in Mathematics. Springer Fachmedien Wiesbaden, 2013.
[3] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Submodule of free \mathbb{Z}-module. Formalized Mathematics, 21(4):273-282, 2013. doi 10.2478/forma-2013-0029.
[4] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi 10.1007/s10817-015-9345-1
[5] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4):515-534, 1982. doi 10.1007/BF01457454
[6] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a cryptographic perspective. The International Series in Engineering and Computer Science, 2002.
[7] Yasunari Shidama. Differentiable functions on normed linear spaces. Formalized Mathematics, 20(1):31-40, 2012. doi $10.2478 / \mathrm{v} 10037-012-0005-1$.

Received August 30, 2017

The English version of this volume of Formalized Mathematics was financed under agreement 548/P-DUN/2016 with the funds from the Polish Minister of Science and Higher Education for the dissemination of science.

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI grant number JP15K00183.

