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Summary. In this article we further extend the algebraic theory of polyno-
mial rings in Mizar [I} 2, [3]. We deal with roots and multiple roots of polynomials
and show that both the real numbers and finite domains are not algebraically
closed [B] [7]. We also prove the identity theorem for polynomials and that the
number of multiple roots is bounded by the polynomial’s degree [4 [6].
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1. PRELIMINARIES

From now on n denotes a natural number.
Note that there exists a natural number which is non trivial and non prime.
Now we state the proposition:
(1) Let us consider an even natural number n, and an element x of Rp. Then
ac” } ORF'
PROOF: Define P[natural number] = 2>%1 > Og_. For every element z of
Ry, 22 > Og,,. For every natural number k, P[k]. O
Let us consider a ring R and an element a of R. Now we state the proposi-
tions:
(2) 2xa=a+a.
(3) a®>=a-a.
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Let F be a field and a be an element of F'. Note that - reduces to a.

One can check that Z/2 is non trivial and almost left invertible.

Let n be a non trivial, non prime natural number. Note that Z/n is non
integral domain-like and Z/6 is non degenerated.

2. SOME MORE PROPERTIES OF POLYNOMIALS

Let R be a non degenerated ring. Observe that every non zero polynomial
over R is non-zero and every polynomial over R which is monic is also non zero.

Let p be a non zero polynomial over R. One can check that degp is natural.

Let R be a ring, p be a zero polynomial over R, and ¢ be a polynomial over
R. Let us observe that p * ¢ is zero and ¢ * p is zero.

Let us observe that p + ¢ reduces to ¢ and ¢ + p reduces to q.

Let p be a polynomial over R. One can check that p *x 0.R reduces to 0.R
and p x 1.R reduces to p and 0.R * p reduces to 0.R and 1.R * p reduces to p.

One can check that 1g - p reduces to p.

Now we state the propositions:

(4) Let us consider an integral domain R, a polynomial p over R, and a non
zero element a of R. Then deg(a - p) = degp.

(5) Let us consider an integral domain R, a polynomial p over R, and an ele-
ment a of R. Then LC(a - p) =a-LCp.

(6) Let us consider an integral domain R, and an element a of R. Then
LC(alR) = a. The theorem is a consequence of (5).

(7) Let us consider an integral domain R, a polynomial p over R, and ele-
ments v, z of R. Then eval(v - p,z) = v - eval(p, z). The theorem is a con-
sequence of (4).

(8) Let us consider a ring R, and elements a, b of R. Then eval(a|R,b) = a.

Let R be an integral domain and p, ¢ be monic polynomials over R. Let us
note that p * ¢ is monic.

Let a be an element of R and k be a natural number. One can check that
(rpoly(1,a))* is non zero and monic.

Now we state the propositions:

(9) Let us consider a non degenerated ring R, an element a of R, and a non
zero element k£ of N. Then LCrpoly(k,a) = 1g.
(10) Let us consider a non degenerated, well unital, non empty double loop
structure R, and an element a of R. Then (—a, 1r) = rpoly(1,a).
(11) Let us consider an integral domain R, a polynomial p over R, and an ele-
ment x of R. Then eval(p,z) = Og if and only if rpoly(1,x) | p.
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(12) Let us consider an integral domain F', polynomials p, ¢ over F, and
an element a of F. Suppose rpoly(1,a) | p * g. Then

(i) rpoly(1,a) | p, or
(ii) rpoly(1,a) | g.
The theorem is a consequence of (11).

(13) Let us consider an integral domain R, a polynomial p over R, and a non
zero polynomial ¢ over R. If p | ¢, then degp < degg.

(14) Let us consider a non degenerated commutative ring R, a polynomial ¢
over R, a non zero polynomial p over R, and a non zero element b of R. If
q|p,then q|b-p.

(15) Let us consider a field F', a polynomial ¢ over F', a non zero polynomial
p over F, and a non zero element b of F. Then ¢ | p if and only if ¢ | b- p.
The theorem is a consequence of (14).

Let us consider an integral domain R, a non zero polynomial p over R,
an element a of R, and a non zero element b of R. Now we state the propositions:

(16) rpoly(1,a) | p if and only if rpoly(1,a) | b- p. The theorem is a consequ-
ence of (11), (7), and (14).

(17) (rpoly(1,a))™ | p if and only if (rpoly(1,a))™ | b- p.

PROOF: Define P[natural number] = if (rpoly(1,a))®* | b p, then
(rpoly(1,a))% | p. For every natural number k, P[k]. O
Let R be an integral domain, p be a non zero polynomial over R, and b be
a non zero element of R. Let us note that b - p is non zero.

3. ON ROOTS OF POLYNOMIALS

Let R be a non degenerated ring. One can check that 1.R and has not roots.

Let a be a non zero element of R. One can verify that a[R and has not
roots and every polynomial over R which is non zero and has roots is also non
constant and every polynomial over R which and has not roots is also non zero.

Let a be an element of R. One can check that rpoly(1,a) is non zero and
has roots and there exists a polynomial over R which is non zero and has not
roots and there exists a polynomial over R which is non zero and has roots.

Let R be an integral domain, p be a polynomial over R with non roots, and
a be a non zero element of R. Let us note that a - p and has not roots.

Let p be a polynomial over R with roots and a be an element of R. Note
that a - p has roots.

Let R be a non degenerated commutative ring and ¢ be a polynomial over
R. One can verify that p * ¢ has roots.
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Let R be an integral domain and p, ¢ be polynomials over R with non roots.
One can check that p * ¢ and has not roots.

Let R be a non degenerated commutative ring, a be an element of R, and
k be a non zero element of N. Let us note that rpoly(k,a) is non constant and
monic and has roots.

Let R be a non degenerated ring. Let us observe that there exists a polyno-
mial over R which is non constant and monic.

Let R be an integral domain, a be an element of R, £ be a non zero natural
number, and n be a non zero element of N. Note that (rpoly(n,a))* is non
constant and monic and has roots.

Let R be a ring and p be a polynomial over R with roots. Note that Roots(p)
is non empty.

Let R be a non degenerated ring and p be a polynomial over R with non
roots. Let us observe that Roots(p) is empty.

Let R be an integral domain. One can check that there exists a polynomial
over R which is monic and has roots and there exists a polynomial over R which
is monic and has not roots.

Now we state the propositions:

(18) Let us consider a non degenerated ring R, and an element a of R. Then
Roots(rpoly(1,a)) = {a}.

(19) Let us consider an integral domain F', a polynomial p over F', and a non
zero element b of F'. Then Roots(b - p) = Roots(p). The theorem is a con-
sequence of (7).

(20) There exist polynomials p, g over Z/6 such that Roots(p*q) € Roots(p)U
Roots(q).

(21) Let us consider an integral domain R, and elements a, b of R. Then
rpoly(1,a) | rpoly(1,b) if and only if @ = b. The theorem is a consequence
of (18).

(22) Let us consider an integral domain R, and a non zero polynomial p over
R. Then Ws(p) < degp.

4. MORE ABOUT BAGS

_ Let X be a non empty set and B be a bag of X. We introduce the notation
B as a synonym of > B.

Observe that there exists a bag of X which is zero and there exists a bag of
X which is non zero.

Let b1 be a bag of X and by be a bag of X. One can check that b; + bo is
X-defined and by + by is total.
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Let us consider a non empty set X and a bag b of X. Now we state the
propositions:
(23) b =0 if and only if support b = (.
(24) b is zero if and only if support b = 0.
(25) b is zero if and only if rngb = {0}.
Let X be a non empty set, by be a non zero bag of X, and b, be a bag of X.
One can check that b1 + bs is non zero.
(26) Let us consider a non empty set X, a bag b of X, and an element z of
X. Suppose support b = {z}. Then b = ({z}, b(x)) -bag.
(27) Let us consider a non empty set X, a non empty bag b of X, and an ele-

ment x of X. Then support b = {z} if and only if b = ({z}, b(z))-bag and
b(x) # 0. The theorem is a consequence of (26).

Let X be a set and S be a finite subset of X. The functor Bag(S) yielding
a bag of X is defined by the term
(Def. 1) (S,1)-bag.
Let X be a non empty set and S be a non empty, finite subset of X. Observe
that Bag(S) is non zero.
Let b be a bag of X and a be an element of X. The functor b\ a yielding
a bag of X is defined by the term
(Def. 2) b+ (a,0).
Let us consider a non empty set X, a bag b of X, and an element a of X.
Now we state the propositions:

(28) b\ a=0if and only if a ¢ support b.

(29) support(b\ a) = support b\ {a}.

(30) (b\a)+ ({a},b(a))-bag = b.

(31) Let us consider a non empty set X, an element a of X, and an element

n of N. Then ({a},n)-bag = n. The theorem is a consequence of (23).

5. ON MULTIPLE ROOTS OF POLYNOMIALS

Let R be an integral domain and p be a non zero polynomial over R with
roots. One can verify that BRoots(p) is non zero.
Now we state the propositions:
(32) Let us consider a non degenerated commutative ring R, a non zero po-
lynomial p over R, and an element a of R. Then multiplicity(p,a) = 0 if
and only if rpoly(1,a) { p.
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(33) Let us consider an integral domain R, a non zero polynomial p over
R, and an element a of R. Then multiplicity(p,a) = n if and only if
(rpoly(1,a))” | p and (rpoly(1,a))™*! { p. The theorem is a consequence
of (10).

(34) Let us consider an integral domain R, and an element a of R. Then
multiplicity (rpoly(1,a),a) = 1. The theorem is a consequence of (13) and
(33).

(35) Let us consider an integral domain R, and elements a, b of R. If b # a,
then multiplicity (rpoly(1,a), b) = 0. The theorem is a consequence of (21)
and (32).

(36) Let us consider an integral domain R, a non zero polynomial p over R,
a non zero element b of R, and an element a of R. Then multiplicity(p,a) =
multiplicity (b - p, a). The theorem is a consequence of (33), (14), and (17).

(37) Let us consider an integral domain R, a non zero polynomial p over R,
and a non zero element b of R. Then BRoots(b - p) = BRoots(p). The
theorem is a consequence of (36).

(38) Let us consider an integral domain R, and a non zero polynomial p over
R without roots. Then BRoots(p) = EmptyBag(the carrier of R).

(39) Let us consider an integral domain R, and a non zero element a of R.
Then BRoots(a[R) = 0. The theorem is a consequence of (23).

(40) Let us consider an integral domain R, and an element a of R. Then

BRoots(rpoly(1,a)) = 1. The theorem is a consequence of (10).

(41) Let us consider an integral domain R, and non zero polynomials p, ¢
over R. Then BRoots(p * ¢) = BRoots(p) + BRoots(q).

(42) Let us consider an integral domain R, and a non zero polynomial p over
R. Then BRoots(p) < degp.
PROOF: Define Plnatural number] = for every non zero polynomial p over
R such that degp = $; holds BRoots(p) < degp. P[0]. For every natural
number k, P[k]. O
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6. THE PoOLYNOMIAL X" +1

Let R be a unital, non empty double loop structure and n be a natural
number. The functor npoly(R,n) yielding a sequence of R is defined by the
term

(Def. 3) 0.R+:[0 — 1g,n+— 1g].
One can check that npoly (R, n) is finite-Support and npoly(R, n) is non zero.

Let us consider a unital, non degenerated double loop structure R. Now we
state the propositions:

(43) degnpoly(R,n) = n.
(44) LCnpoly(R,n) = 1g.

(45) Let us consider a non degenerated ring R, and an element x of R. Then
eval(npoly(R,0),z) = 1g.

(46) Let us consider a non degenerated ring R, a non zero natural number n,
and an element x of R. Then eval(npoly(R,n),z) = z" + 1g.

PROOF: Set ¢ = npoly(R,n). Consider F' being a finite sequence of ele-
ments of R such that eval(q,z) = >~ F and len F = leng and for every
element j of N such that j € dom F holds F(j) = ¢(j—'1)-powerp(z, j—'1).
Consider f; being a sequence of the carrier of R such that Y F' = fi(len F)
and f1(0) = Or and for every natural number j and for every element v
of R such that j < lenF and v = F(5+ 1) holds fi(j + 1) = fi(j) + v.
Define Plelement of N] = $; = 0 and f1($1) = 0g or 0 < $; < len F' and
fi($1) =1g or §; =len F and f1($1) = 2™ + 1g. For every element j of N
such that 0 < j <len F holds P[j]. O

(47) Let us consider an even natural number n, and an element x of Ry.
Then eval(npoly(Rg,n),x) > Og,. The theorem is a consequence of (45),
(1), and (46).

(48) Let us consider an odd natural number n. Then eval(npoly (Rp, n), —1r;)
= Og,. The theorem is a consequence of (46).

(49) eval(npoly(Z/2,2),17/3) = 0z/2. The theorem is a consequence of (46)
and (2).
Let n be an even natural number. Let us note that npoly(Rg,n) and has not
roots.

Let n be an odd natural number. Observe that npoly(Rp,n) has roots and
npoly(Z/2,2) has roots.
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7. THE POLYNOMIALS (2 —aq) * (x — ag) * ... x (x — ay)

Let R be a ring.
A product of linear polynomials of R is a polynomial over R and is defined
by
(Def. 4) there exists a non empty finite sequence F of elements of PolyRing(R)
such that it = [ F' and for every natural number ¢ such that ¢ € dom F
there exists an element a of R such that F'(i) = rpoly(1,a).
Let R be an integral domain. One can verify that every product of linear
polynomials of R is non constant and monic and has roots.
Now we state the propositions:

(50) Let us consider an integral domain R, and a product of linear polyno-
mials p of R. Then LCp = 1p.

(51) Let us consider an integral domain R, and an element a of R. Then
rpoly(1,a) is a product of linear polynomials of R.

(52) Let us consider an integral domain R, and products of linear polynomials
p, q of R. Then p * ¢ is a product of linear polynomials of R.

Let R be an integral domain and B be a non zero bag of the carrier of R.
A product of linear polynomials of R and B is a product of linear polynomials
of R and is defined by
(Def. 5) degit = B and for every element a of R, multiplicity(it,a) = B(a).
Let us consider an integral domain R, a non zero bag B of the carrier of R,
a product of linear polynomials p of R and B, and an element a of R. Now we
state the propositions:

(53) If a € support B, then eval(p,a) = Og. The theorem is a consequence of
(11).

(54) (i) (rpoly(1,a)”® | p, and
(ii) (rpoly(1,a))P@*! {p.

The theorem is a consequence of (33).
Let us consider an integral domain R, a non zero bag B of the carrier of R,
and a product of linear polynomials p of R and B. Now we state the propositions:

(55) BRoots(p) = B.

(56) degp = BRoots(p). The theorem is a consequence of (55).

(57) Let us consider an integral domain R, and an element a of R. Then
rpoly(1,a) is a product of linear polynomials of R and Bag({a}). The
theorem is a consequence of (51), (34), and (35).

(58) Let us consider an integral domain R, non zero bags By, Bs of the carrier
of R, a product of linear polynomials p of R and B1, and a product of linear
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polynomials g of R and Bs. Then p * ¢ is a product of linear polynomials
of R and B;j + Bs. The theorem is a consequence of (52), (56), and (55).

(59) Let us consider an integral domain R. Then every product of linear
polynomials of R is a product of linear polynomials of R and BRoots(p).
PROOF: Define P[natural number| = for every product of linear polyno-
mials p of R such that degp = $; holds p is a product of linear polynomials
of R and BRoots(p). P[1]. For every natural number k such that k£ > 1
holds P[k]. O

Let R be an integral domain and S be a non empty, finite subset of R.
A product of linear polynomials of R and S is a product of linear polynomials
of R and Bag(.S). Now we state the proposition:

(60) Let us consider an integral domain R, a non empty, finite subset S of R,
and a product of linear polynomials p of R and S. Then degp = S.
Let us consider an integral domain R, a non empty, finite subset S of R,
a product of linear polynomials p of R and S, and an element a of R. Now we
state the propositions:

(61) If a € S, then rpoly(1,a) | p and (rpoly(1,a))? { p. The theorem is
a consequence of (54).

(62) If a €S, then eval(p,a) = Og. The theorem is a consequence of (61).

(63) Let us consider an integral domain R, a non empty, finite subset S of R,
and a product of linear polynomials p of R and S. Then Roots(p) = S.
The theorem is a consequence of (62), (22), and (60).

8. MAIN THEOREMS

Now we state the proposition:

(64) Let us consider an integral domain R, and a non zero polynomial p over

R with roots. Then there exists a product of linear polynomials ¢ of R and
BRoots(p) and there exists a polynomial r over R with non roots such that
p = ¢ *r and Roots(q) = Roots(p).
PROOF: Define P[natural number| = for every non zero polynomial p
over R with roots such that degp = $; there exists a product of linear
polynomials ¢ of R and BRoots(p) and there exists a polynomial r over R
with non roots such that p = ¢« r and Roots(¢q) = Roots(p). P[1] by (11),
[9, (1)], (51), [8, (23), (27), (24)]. For every natural number k such that
1 < k holds P[k|. Consider d being a natural number such that degp = d.
O

Let us consider an integral domain R and a non zero polynomial p over R.
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(65) Roots(p) < BRoots(p). The theorem is a consequence of (64), (56), (55),
(22), and (38).

(66) BRoots(p) = degp if and only if there exists an element a of R and
there exists a product of linear polynomials g of R such that p = a-q. The
theorem is a consequence of (64), (56), (55), (59), (4), (37), and (38).

Now we state the proposition:

(67) Let us consider an integral domain R, and polynomials p, ¢ over R.
Suppose there exists a subset S of R such that S = max(degp, degq) + 1
and for every element a of R such that a € S holds eval(p, a) = eval(q, a).
Then p = ¢q. The theorem is a consequence of (22).

Let F' be an algebraic closed field. Note that every non constant polynomial
over F has roots and R is non algebraic closed and every finite integral domain
is non algebraic closed and every ring which is algebraic closed is also almost
right invertible.

Now we state the propositions:

(68) Let us consider an algebraic closed field F', and a non constant poly-
nomial p over F'. Then there exists an element a of F' and there exists
a product of linear polynomials ¢ of F' and BRoots(p) such that a-q = p.
The theorem is a consequence of (64).

(69) Let us consider an algebraic closed field F. Then every non constant,
monic polynomial over F' is a product of linear polynomials of F' and
BRoots(p). The theorem is a consequence of (68).

(70) Let us consider a field F'. Then F' is algebraic closed if and only if every
non constant, monic polynomial over F' is a product of linear polynomials
of F. The theorem is a consequence of (69).
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