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Poland

Summary. In this article we further extend the algebraic theory of polyno-
mial rings in Mizar [1, 2, 3]. We deal with roots and multiple roots of polynomials
and show that both the real numbers and finite domains are not algebraically
closed [5, 7]. We also prove the identity theorem for polynomials and that the
number of multiple roots is bounded by the polynomial’s degree [4, 6].
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1. Preliminaries

From now on n denotes a natural number.
Note that there exists a natural number which is non trivial and non prime.
Now we state the proposition:

(1) Let us consider an even natural number n, and an element x of RF. Then
xn ­ 0RF .
Proof: Define P[natural number] ≡ x2·$1 ­ 0RF . For every element x of
RF, x2 ­ 0RF . For every natural number k, P[k]. �

Let us consider a ring R and an element a of R. Now we state the proposi-
tions:

(2) 2 ? a = a+ a.

(3) a2 = a · a.
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Let F be a field and a be an element of F . Note that a1F reduces to a.
One can check that Z/2 is non trivial and almost left invertible.
Let n be a non trivial, non prime natural number. Note that Z/n is non

integral domain-like and Z/6 is non degenerated.

2. Some More Properties of Polynomials

Let R be a non degenerated ring. Observe that every non zero polynomial
over R is non-zero and every polynomial over R which is monic is also non zero.

Let p be a non zero polynomial over R. One can check that deg p is natural.
Let R be a ring, p be a zero polynomial over R, and q be a polynomial over

R. Let us observe that p ∗ q is zero and q ∗ p is zero.
Let us observe that p+ q reduces to q and q + p reduces to q.
Let p be a polynomial over R. One can check that p ∗ 0.R reduces to 0.R

and p ∗ 1.R reduces to p and 0.R ∗ p reduces to 0.R and 1.R ∗ p reduces to p.
One can check that 1R · p reduces to p.
Now we state the propositions:

(4) Let us consider an integral domain R, a polynomial p over R, and a non
zero element a of R. Then deg(a · p) = deg p.

(5) Let us consider an integral domain R, a polynomial p over R, and an ele-
ment a of R. Then LC(a · p) = a · LC p.

(6) Let us consider an integral domain R, and an element a of R. Then
LC(a�R) = a. The theorem is a consequence of (5).

(7) Let us consider an integral domain R, a polynomial p over R, and ele-
ments v, x of R. Then eval(v · p, x) = v · eval(p, x). The theorem is a con-
sequence of (4).

(8) Let us consider a ring R, and elements a, b of R. Then eval(a�R, b) = a.

Let R be an integral domain and p, q be monic polynomials over R. Let us
note that p ∗ q is monic.

Let a be an element of R and k be a natural number. One can check that
(rpoly(1, a))k is non zero and monic.

Now we state the propositions:

(9) Let us consider a non degenerated ring R, an element a of R, and a non
zero element k of N. Then LC rpoly(k, a) = 1R.

(10) Let us consider a non degenerated, well unital, non empty double loop
structure R, and an element a of R. Then 〈−a, 1R〉 = rpoly(1, a).

(11) Let us consider an integral domain R, a polynomial p over R, and an ele-
ment x of R. Then eval(p, x) = 0R if and only if rpoly(1, x) | p.
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(12) Let us consider an integral domain F , polynomials p, q over F , and
an element a of F . Suppose rpoly(1, a) | p ∗ q. Then

(i) rpoly(1, a) | p, or

(ii) rpoly(1, a) | q.
The theorem is a consequence of (11).

(13) Let us consider an integral domain R, a polynomial p over R, and a non
zero polynomial q over R. If p | q, then deg p ¬ deg q.

(14) Let us consider a non degenerated commutative ring R, a polynomial q
over R, a non zero polynomial p over R, and a non zero element b of R. If
q | p, then q | b · p.

(15) Let us consider a field F , a polynomial q over F , a non zero polynomial
p over F , and a non zero element b of F . Then q | p if and only if q | b · p.
The theorem is a consequence of (14).

Let us consider an integral domain R, a non zero polynomial p over R,
an element a of R, and a non zero element b of R. Now we state the propositions:

(16) rpoly(1, a) | p if and only if rpoly(1, a) | b · p. The theorem is a consequ-
ence of (11), (7), and (14).

(17) (rpoly(1, a))n | p if and only if (rpoly(1, a))n | b · p.
Proof: Define P[natural number] ≡ if (rpoly(1, a))$1 | b · p, then
(rpoly(1, a))$1 | p. For every natural number k, P[k]. �

Let R be an integral domain, p be a non zero polynomial over R, and b be
a non zero element of R. Let us note that b · p is non zero.

3. On Roots of Polynomials

Let R be a non degenerated ring. One can check that 1.R and has not roots.
Let a be a non zero element of R. One can verify that a�R and has not

roots and every polynomial over R which is non zero and has roots is also non
constant and every polynomial over R which and has not roots is also non zero.

Let a be an element of R. One can check that rpoly(1, a) is non zero and
has roots and there exists a polynomial over R which is non zero and has not
roots and there exists a polynomial over R which is non zero and has roots.

Let R be an integral domain, p be a polynomial over R with non roots, and
a be a non zero element of R. Let us note that a · p and has not roots.

Let p be a polynomial over R with roots and a be an element of R. Note
that a · p has roots.

Let R be a non degenerated commutative ring and q be a polynomial over
R. One can verify that p ∗ q has roots.
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Let R be an integral domain and p, q be polynomials over R with non roots.
One can check that p ∗ q and has not roots.

Let R be a non degenerated commutative ring, a be an element of R, and
k be a non zero element of N. Let us note that rpoly(k, a) is non constant and
monic and has roots.

Let R be a non degenerated ring. Let us observe that there exists a polyno-
mial over R which is non constant and monic.

Let R be an integral domain, a be an element of R, k be a non zero natural
number, and n be a non zero element of N. Note that (rpoly(n, a))k is non
constant and monic and has roots.

Let R be a ring and p be a polynomial over R with roots. Note that Roots(p)
is non empty.

Let R be a non degenerated ring and p be a polynomial over R with non
roots. Let us observe that Roots(p) is empty.

Let R be an integral domain. One can check that there exists a polynomial
over R which is monic and has roots and there exists a polynomial over R which
is monic and has not roots.

Now we state the propositions:

(18) Let us consider a non degenerated ring R, and an element a of R. Then
Roots(rpoly(1, a)) = {a}.

(19) Let us consider an integral domain F , a polynomial p over F , and a non
zero element b of F . Then Roots(b · p) = Roots(p). The theorem is a con-
sequence of (7).

(20) There exist polynomials p, q over Z/6 such that Roots(p∗q) 6⊆ Roots(p)∪
Roots(q).

(21) Let us consider an integral domain R, and elements a, b of R. Then
rpoly(1, a) | rpoly(1, b) if and only if a = b. The theorem is a consequence
of (18).

(22) Let us consider an integral domain R, and a non zero polynomial p over

R. Then Roots(p) ¬ deg p.

4. More about Bags

Let X be a non empty set and B be a bag of X. We introduce the notation
B as a synonym of

∑
B.

Observe that there exists a bag of X which is zero and there exists a bag of
X which is non zero.

Let b1 be a bag of X and b2 be a bag of X. One can check that b1 + b2 is
X-defined and b1 + b2 is total.
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Let us consider a non empty set X and a bag b of X. Now we state the
propositions:

(23) b = 0 if and only if support b = ∅.
(24) b is zero if and only if support b = ∅.
(25) b is zero if and only if rng b = {0}.

Let X be a non empty set, b1 be a non zero bag of X, and b2 be a bag of X.
One can check that b1 + b2 is non zero.

(26) Let us consider a non empty set X, a bag b of X, and an element x of
X. Suppose support b = {x}. Then b = ({x}, b(x)) -bag.

(27) Let us consider a non empty set X, a non empty bag b of X, and an ele-
ment x of X. Then support b = {x} if and only if b = ({x}, b(x)) -bag and
b(x) 6= 0. The theorem is a consequence of (26).

Let X be a set and S be a finite subset of X. The functor Bag(S) yielding
a bag of X is defined by the term

(Def. 1) (S, 1) -bag.

Let X be a non empty set and S be a non empty, finite subset of X. Observe
that Bag(S) is non zero.

Let b be a bag of X and a be an element of X. The functor b \ a yielding
a bag of X is defined by the term

(Def. 2) b+· (a, 0).

Let us consider a non empty set X, a bag b of X, and an element a of X.
Now we state the propositions:

(28) b \ a = b if and only if a /∈ support b.

(29) support(b \ a) = support b \ {a}.
(30) (b \ a) + ({a}, b(a)) -bag = b.

(31) Let us consider a non empty set X, an element a of X, and an element

n of N. Then ({a}, n) -bag = n. The theorem is a consequence of (23).

5. On Multiple Roots of Polynomials

Let R be an integral domain and p be a non zero polynomial over R with
roots. One can verify that BRoots(p) is non zero.

Now we state the propositions:

(32) Let us consider a non degenerated commutative ring R, a non zero po-
lynomial p over R, and an element a of R. Then multiplicity(p, a) = 0 if
and only if rpoly(1, a) - p.
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(33) Let us consider an integral domain R, a non zero polynomial p over
R, and an element a of R. Then multiplicity(p, a) = n if and only if
(rpoly(1, a))n | p and (rpoly(1, a))n+1 - p. The theorem is a consequence
of (10).

(34) Let us consider an integral domain R, and an element a of R. Then
multiplicity(rpoly(1, a), a) = 1. The theorem is a consequence of (13) and
(33).

(35) Let us consider an integral domain R, and elements a, b of R. If b 6= a,
then multiplicity(rpoly(1, a), b) = 0. The theorem is a consequence of (21)
and (32).

(36) Let us consider an integral domain R, a non zero polynomial p over R,
a non zero element b of R, and an element a of R. Then multiplicity(p, a) =
multiplicity(b · p, a). The theorem is a consequence of (33), (14), and (17).

(37) Let us consider an integral domain R, a non zero polynomial p over R,
and a non zero element b of R. Then BRoots(b · p) = BRoots(p). The
theorem is a consequence of (36).

(38) Let us consider an integral domain R, and a non zero polynomial p over
R without roots. Then BRoots(p) = EmptyBag(the carrier of R).

(39) Let us consider an integral domain R, and a non zero element a of R.

Then BRoots(a�R) = 0. The theorem is a consequence of (23).

(40) Let us consider an integral domain R, and an element a of R. Then

BRoots(rpoly(1, a)) = 1. The theorem is a consequence of (10).

(41) Let us consider an integral domain R, and non zero polynomials p, q

over R. Then BRoots(p ∗ q) = BRoots(p) + BRoots(q).

(42) Let us consider an integral domain R, and a non zero polynomial p over

R. Then BRoots(p) ¬ deg p.
Proof: Define P[natural number] ≡ for every non zero polynomial p over

R such that deg p = $1 holds BRoots(p) ¬ deg p. P[0]. For every natural
number k, P[k]. �
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6. The Polynomial Xn + 1

Let R be a unital, non empty double loop structure and n be a natural
number. The functor npoly(R,n) yielding a sequence of R is defined by the
term

(Def. 3) 0.R+·[0 7−→ 1R, n 7−→ 1R].

One can check that npoly(R,n) is finite-Support and npoly(R,n) is non zero.

Let us consider a unital, non degenerated double loop structure R. Now we
state the propositions:

(43) deg npoly(R,n) = n.

(44) LC npoly(R,n) = 1R.

(45) Let us consider a non degenerated ring R, and an element x of R. Then
eval(npoly(R, 0), x) = 1R.

(46) Let us consider a non degenerated ring R, a non zero natural number n,
and an element x of R. Then eval(npoly(R,n), x) = xn + 1R.

Proof: Set q = npoly(R,n). Consider F being a finite sequence of ele-
ments of R such that eval(q, x) =

∑
F and lenF = len q and for every

element j of N such that j ∈ domF holds F (j) = q(j−′1)·powerR(x, j−′1).
Consider f1 being a sequence of the carrier of R such that

∑
F = f1(lenF )

and f1(0) = 0R and for every natural number j and for every element v
of R such that j < lenF and v = F (j + 1) holds f1(j + 1) = f1(j) + v.
Define P[element of N] ≡ $1 = 0 and f1($1) = 0R or 0 < $1 < lenF and
f1($1) = 1R or $1 = lenF and f1($1) = xn + 1R. For every element j of N
such that 0 ¬ j ¬ lenF holds P[j]. �

(47) Let us consider an even natural number n, and an element x of RF.
Then eval(npoly(RF, n), x) > 0RF . The theorem is a consequence of (45),
(1), and (46).

(48) Let us consider an odd natural number n. Then eval(npoly(RF, n),−1RF)

= 0RF . The theorem is a consequence of (46).

(49) eval(npoly(Z/2, 2), 1Z/2) = 0Z/2. The theorem is a consequence of (46)
and (2).

Let n be an even natural number. Let us note that npoly(RF, n) and has not
roots.

Let n be an odd natural number. Observe that npoly(RF, n) has roots and
npoly(Z/2, 2) has roots.
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7. The Polynomials (x− a1) ∗ (x− a2) ∗ . . . ∗ (x− an)

Let R be a ring.
A product of linear polynomials of R is a polynomial over R and is defined

by

(Def. 4) there exists a non empty finite sequence F of elements of PolyRing(R)
such that it =

∏
F and for every natural number i such that i ∈ domF

there exists an element a of R such that F (i) = rpoly(1, a).

Let R be an integral domain. One can verify that every product of linear
polynomials of R is non constant and monic and has roots.

Now we state the propositions:

(50) Let us consider an integral domain R, and a product of linear polyno-
mials p of R. Then LC p = 1R.

(51) Let us consider an integral domain R, and an element a of R. Then
rpoly(1, a) is a product of linear polynomials of R.

(52) Let us consider an integral domain R, and products of linear polynomials
p, q of R. Then p ∗ q is a product of linear polynomials of R.

Let R be an integral domain and B be a non zero bag of the carrier of R.
A product of linear polynomials of R and B is a product of linear polynomials

of R and is defined by

(Def. 5) deg it = B and for every element a of R, multiplicity(it , a) = B(a).

Let us consider an integral domain R, a non zero bag B of the carrier of R,
a product of linear polynomials p of R and B, and an element a of R. Now we
state the propositions:

(53) If a ∈ supportB, then eval(p, a) = 0R. The theorem is a consequence of
(11).

(54) (i) (rpoly(1, a))B(a) | p, and

(ii) (rpoly(1, a))B(a)+1 - p.
The theorem is a consequence of (33).

Let us consider an integral domain R, a non zero bag B of the carrier of R,
and a product of linear polynomials p of R and B. Now we state the propositions:

(55) BRoots(p) = B.

(56) deg p = BRoots(p). The theorem is a consequence of (55).

(57) Let us consider an integral domain R, and an element a of R. Then
rpoly(1, a) is a product of linear polynomials of R and Bag({a}). The
theorem is a consequence of (51), (34), and (35).

(58) Let us consider an integral domain R, non zero bags B1, B2 of the carrier
of R, a product of linear polynomials p of R and B1, and a product of linear
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polynomials q of R and B2. Then p ∗ q is a product of linear polynomials
of R and B1 +B2. The theorem is a consequence of (52), (56), and (55).

(59) Let us consider an integral domain R. Then every product of linear
polynomials of R is a product of linear polynomials of R and BRoots(p).
Proof: Define P[natural number] ≡ for every product of linear polyno-
mials p of R such that deg p = $1 holds p is a product of linear polynomials
of R and BRoots(p). P[1]. For every natural number k such that k ­ 1
holds P[k]. �

Let R be an integral domain and S be a non empty, finite subset of R.
A product of linear polynomials of R and S is a product of linear polynomials

of R and Bag(S). Now we state the proposition:

(60) Let us consider an integral domain R, a non empty, finite subset S of R,
and a product of linear polynomials p of R and S. Then deg p = S .

Let us consider an integral domain R, a non empty, finite subset S of R,
a product of linear polynomials p of R and S, and an element a of R. Now we
state the propositions:

(61) If a ∈ S, then rpoly(1, a) | p and (rpoly(1, a))2 - p. The theorem is
a consequence of (54).

(62) If a ∈ S, then eval(p, a) = 0R. The theorem is a consequence of (61).

(63) Let us consider an integral domain R, a non empty, finite subset S of R,
and a product of linear polynomials p of R and S. Then Roots(p) = S.
The theorem is a consequence of (62), (22), and (60).

8. Main Theorems

Now we state the proposition:

(64) Let us consider an integral domain R, and a non zero polynomial p over
R with roots. Then there exists a product of linear polynomials q of R and
BRoots(p) and there exists a polynomial r over R with non roots such that
p = q ∗ r and Roots(q) = Roots(p).
Proof: Define P[natural number] ≡ for every non zero polynomial p
over R with roots such that deg p = $1 there exists a product of linear
polynomials q of R and BRoots(p) and there exists a polynomial r over R
with non roots such that p = q ∗ r and Roots(q) = Roots(p). P[1] by (11),
[9, (1)], (51), [8, (23), (27), (24)]. For every natural number k such that
1 ¬ k holds P[k]. Consider d being a natural number such that deg p = d.
�

Let us consider an integral domain R and a non zero polynomial p over R.
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(65) Roots(p) ¬ BRoots(p). The theorem is a consequence of (64), (56), (55),
(22), and (38).

(66) BRoots(p) = deg p if and only if there exists an element a of R and
there exists a product of linear polynomials q of R such that p = a · q. The
theorem is a consequence of (64), (56), (55), (59), (4), (37), and (38).

Now we state the proposition:

(67) Let us consider an integral domain R, and polynomials p, q over R.
Suppose there exists a subset S of R such that S = max(deg p,deg q) + 1
and for every element a of R such that a ∈ S holds eval(p, a) = eval(q, a).
Then p = q. The theorem is a consequence of (22).

Let F be an algebraic closed field. Note that every non constant polynomial
over F has roots and RF is non algebraic closed and every finite integral domain
is non algebraic closed and every ring which is algebraic closed is also almost
right invertible.

Now we state the propositions:

(68) Let us consider an algebraic closed field F , and a non constant poly-
nomial p over F . Then there exists an element a of F and there exists
a product of linear polynomials q of F and BRoots(p) such that a · q = p.
The theorem is a consequence of (64).

(69) Let us consider an algebraic closed field F . Then every non constant,
monic polynomial over F is a product of linear polynomials of F and
BRoots(p). The theorem is a consequence of (68).

(70) Let us consider a field F . Then F is algebraic closed if and only if every
non constant, monic polynomial over F is a product of linear polynomials
of F . The theorem is a consequence of (69).
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