Integral of Non Positive Functions

Noboru Endou
National Institute of Technology, Gifu College
2236-2 Kamimakuwa, Motosu, Gifu, Japan

Abstract

Summary. In this article, we formalize in the Mizar system [1, 7 the Lebesgue type integral and convergence theorems for non positive functions [8, [2] . Many theorems are based on our previous results [5] [6].

MSC: 28A25 03B35
Keywords: integration of non positive function
MML identifier: MESFUN11, version: 8.1.06 5.44.1305

1. Preliminaries

Let X be a non empty set and f be a non-negative partial function from X to $\overline{\mathbb{R}}$. Observe that $-f$ is non-positive.

Let f be a non-positive partial function from X to $\overline{\mathbb{R}}$. One can check that $-f$ is non-negative.

Now we state the propositions:
(1) Let us consider a non empty set X, a non-positive partial function f from X to $\overline{\mathbb{R}}$, and a set E. Then $f \upharpoonright E$ is non-positive.
(2) Let us consider a non empty set X, a set A, a real number r, and a partial function f from X to $\overline{\mathbb{R}}$. Then $(r \cdot f) \upharpoonright A=r \cdot(f \upharpoonright A)$.
(3) Let us consider a non empty set X, a set A, and a partial function f from X to $\overline{\mathbb{R}}$. Then $-f \upharpoonright A=(-f) \upharpoonright A$. The theorem is a consequence of (2).
(4) Let us consider a non empty set X, a partial function f from X to $\overline{\mathbb{R}}$, and a real number c. Suppose f is non-positive. Then
(i) if $0 \leqslant c$, then $c \cdot f$ is non-positive, and
(ii) if $c \leqslant 0$, then $c \cdot f$ is non-negative.
(5) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, and a partial function f from X to $\overline{\mathbb{R}}$. Then
(i) $\max _{+}(f)$ is non-negative, and
(ii) $\max _{-}(f)$ is non-negative, and
(iii) $|f|$ is non-negative.
(6) Let us consider a non empty set X, a partial function f from X to $\overline{\mathbb{R}}$, and an object x. Then
(i) $f(x) \leqslant\left(\max _{+}(f)\right)(x)$, and
(ii) $f(x) \geqslant-\left(\max _{-}(f)\right)(x)$.
(7) Let us consider a non empty set X, a partial function f from X to $\overline{\mathbb{R}}$, and a positive real number r. Then LE-dom $(f, r)=\operatorname{LE}-\operatorname{dom}\left(\max _{+}(f), r\right)$.
(8) Let us consider a non empty set X, a partial function f from X to $\overline{\mathbb{R}}$, and a non positive real number r. Then LE-dom $(f, r)=\operatorname{GT}-\operatorname{dom}\left(\max _{-}(f),-r\right)$.
(9) Let us consider a non empty set X, partial functions f, g from X to $\overline{\mathbb{R}}$, an extended real a, and a real number r. Suppose $r \neq 0$ and $g=r \cdot f$. Then EQ-dom $(f, a)=\operatorname{EQ-dom}(g, a \cdot r)$.
(10) Let us consider a non empty set X, a σ-field S of subsets of X, a partial function f from X to $\overline{\mathbb{R}}$, and an element A of S. Suppose $A \subseteq \operatorname{dom} f$. Then f is measurable on A if and only if $\max _{+}(f)$ is measurable on A and max_ (f) is measurable on A.
Let X be a non empty set, f be a function from X into $\overline{\mathbb{R}}$, and r be a real number. Note that the functor $r \cdot f$ yields a function from X into $\overline{\mathbb{R}}$. Now we state the proposition:
(11) Let us consider a non empty set X, a real number r, and a without $+\infty$ function f from X into $\overline{\mathbb{R}}$. If $r \geqslant 0$, then $r \cdot f$ is without $+\infty$.
Let X be a non empty set, f be a without $+\infty$ function from X into $\overline{\mathbb{R}}$, and r be a non negative real number. Let us note that $r \cdot f$ is without $+\infty$ as a function from X into $\overline{\mathbb{R}}$.

Now we state the proposition:
(12) Let us consider a non empty set X, a real number r, and a without $+\infty$ function f from X into $\overline{\mathbb{R}}$. If $r \leqslant 0$, then $r \cdot f$ is without $-\infty$.
Let X be a non empty set, f be a without $+\infty$ function from X into $\overline{\mathbb{R}}$, and r be a non positive real number. One can check that $r \cdot f$ is without $-\infty$.

Now we state the proposition:
(13) Let us consider a non empty set X, a real number r, and a without $-\infty$ function f from X into $\overline{\mathbb{R}}$. If $r \geqslant 0$, then $r \cdot f$ is without $-\infty$.

Let X be a non empty set, f be a without $-\infty$ function from X into $\overline{\mathbb{R}}$, and r be a non negative real number. One can check that $r \cdot f$ is without $-\infty$.

Now we state the proposition:
(14) Let us consider a non empty set X, a real number r, and a without $-\infty$ function f from X into $\overline{\mathbb{R}}$. If $r \leqslant 0$, then $r \cdot f$ is without $+\infty$.
Let X be a non empty set, f be a without $-\infty$ function from X into $\overline{\mathbb{R}}$, and r be a non positive real number. One can check that $r \cdot f$ is without $+\infty$.

Now we state the proposition:
(15) Let us consider a non empty set X, a real number r, and a without $-\infty$, without $+\infty$ function f from X into $\overline{\mathbb{R}}$. Then $r \cdot f$ is without $-\infty$ and without $+\infty$.
Let X be a non empty set, f be a without $-\infty$, without $+\infty$ function from X into $\overline{\mathbb{R}}$, and r be a real number. Note that $r \cdot f$ is without $-\infty$ and without $+\infty$.

Now we state the propositions:
(16) Let us consider a non empty set X, a positive real number r, and a function f from X into $\overline{\mathbb{R}}$. Then f is without $+\infty$ if and only if $r \cdot f$ is without $+\infty$.
(17) Let us consider a non empty set X, a negative real number r, and a function f from X into $\overline{\mathbb{R}}$. Then f is without $+\infty$ if and only if $r \cdot f$ is without $-\infty$.
(18) Let us consider a non empty set X, a positive real number r, and a function f from X into $\overline{\mathbb{R}}$. Then f is without $-\infty$ if and only if $r \cdot f$ is without $-\infty$.
(19) Let us consider a non empty set X, a negative real number r, and a function f from X into $\overline{\mathbb{R}}$. Then f is without $-\infty$ if and only if $r \cdot f$ is without $+\infty$.
(20) Let us consider a non empty set X, a non zero real number r, and a function f from X into $\overline{\mathbb{R}}$. Then f is without $-\infty$ and without $+\infty$ if and only if $r \cdot f$ is without $-\infty$ and without $+\infty$. The theorem is a consequence of (16), (18), (17), and (19).
(21) Let us consider non empty sets X, Y, a partial function f from X to $\overline{\mathbb{R}}$, and a real number r. Suppose $f=Y \longmapsto r$. Then f is without $-\infty$ and without $+\infty$.
(22) Let us consider a non empty set X, and a function f from X into $\overline{\mathbb{R}}$. Then
(i) $0 \cdot f=X \longmapsto 0$, and
(ii) $0 \cdot f$ is without $-\infty$ and without $+\infty$.

Proof: For every element x of $X,(0 \cdot f)(x)=(X \longmapsto 0)(x)$.
(23) Let us consider a non empty set X, and partial functions f, g from X to $\overline{\mathbb{R}}$. Suppose f is without $-\infty$ and without $+\infty$. Then
(i) $\operatorname{dom}(f+g)=\operatorname{dom} f \cap \operatorname{dom} g$, and
(ii) $\operatorname{dom}(f-g)=\operatorname{dom} f \cap \operatorname{dom} g$, and
(iii) $\operatorname{dom}(g-f)=\operatorname{dom} f \cap \operatorname{dom} g$.

Let us consider a non empty set X and functions f_{1}, f_{2} from X into $\overline{\mathbb{R}}$. Now we state the propositions:
(24) Suppose f_{2} is without $-\infty$ and without $+\infty$. Then
(i) $f_{1}+f_{2}$ is a function from X into $\overline{\mathbb{R}}$, and
(ii) for every element x of $X,\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)$.

The theorem is a consequence of (23).
(25) Suppose f_{1} is without $-\infty$ and without $+\infty$. Then
(i) $f_{1}-f_{2}$ is a function from X into $\overline{\mathbb{R}}$, and
(ii) for every element x of $X,\left(f_{1}-f_{2}\right)(x)=f_{1}(x)-f_{2}(x)$.

The theorem is a consequence of (23).
(26) Suppose f_{2} is without $-\infty$ and without $+\infty$. Then
(i) $f_{1}-f_{2}$ is a function from X into $\overline{\mathbb{R}}$, and
(ii) for every element x of $X,\left(f_{1}-f_{2}\right)(x)=f_{1}(x)-f_{2}(x)$.

The theorem is a consequence of (23).
(27) Let us consider non empty sets X, Y, and partial functions f_{1}, f_{2} from X to $\overline{\mathbb{R}}$. Suppose dom $f_{1} \subseteq Y$ and $f_{2}=Y \longmapsto 0$. Then
(i) $f_{1}+f_{2}=f_{1}$, and
(ii) $f_{1}-f_{2}=f_{1}$, and
(iii) $f_{2}-f_{1}=-f_{1}$.

The theorem is a consequence of (21) and (23).
Let us consider a non empty set X, a σ-field S of subsets of X, a σ-measure M on S, and partial functions f, g from X to $\overline{\mathbb{R}}$. Now we state the propositions:
(28) If f is simple function in S and g is simple function in S, then $f+g$ is simple function in S.
Proof: Consider F being a finite sequence of separated subsets of S, a being a finite sequence of elements of $\overline{\mathbb{R}}$ such that F and a are representation of f. Consider G being a finite sequence of separated subsets of S, b being a finite sequence of elements of $\overline{\mathbb{R}}$ such that G and b are representation of g. Set $l_{1}=\operatorname{len} a$. Set $l_{2}=\operatorname{len} b$. Define $\mathcal{H}($ natural number $)=$
$F\left(\left(\$_{1}-^{\prime} 1 \operatorname{div} l_{2}\right)+1\right) \cap G\left(\left(\$_{1}-^{\prime} 1 \bmod l_{2}\right)+1\right)$. Consider F_{1} being a finite sequence such that len $F_{1}=l_{1} \cdot l_{2}$ and for every natural number k such that $k \in \operatorname{dom} F_{1}$ holds $F_{1}(k)=\mathcal{H}(k)$. For every natural numbers k, l such that $k, l \in \operatorname{dom} F_{1}$ and $k \neq l$ holds $F_{1}(k)$ misses $F_{1}(l) . \operatorname{dom}(f+g)=\bigcup \operatorname{rng} F_{1}$. For every natural number k and for every elements x, y of X such that $k \in \operatorname{dom} F_{1}$ and $x, y \in F_{1}(k)$ holds $(f+g)(x)=(f+g)(y)$.
(29) If f is simple function in S and g is simple function in S, then $f-g$ is simple function in S. The theorem is a consequence of (28).
(30) Let us consider a non empty set X, a σ-field S of subsets of X, and a partial function f from X to $\overline{\mathbb{R}}$. If f is simple function in S, then $-f$ is simple function in S.
(31) Let us consider a non empty set X, and a non-negative partial function f from X to $\overline{\mathbb{R}}$. Then $f=\max _{+}(f)$.
Proof: For every element x of X such that $x \in \operatorname{dom} f$ holds $f(x)=$ $\left(\max _{+}(f)\right)(x)$.
(32) Let us consider a non empty set X, and a non-positive partial function f from X to $\overline{\mathbb{R}}$. Then $f=-\max _{-}(f)$.
Proof: For every element x of X such that $x \in \operatorname{dom} f$ holds $f(x)=$ $\left(-\max _{-}(f)\right)(x)$.
(33) Let us consider a non empty set C, a partial function f from C to $\overline{\mathbb{R}}$, and a real number c. Suppose $c \leqslant 0$. Then
(i) $\max _{+}(c \cdot f)=(-c) \cdot \max _{-}(f)$, and
(ii) $\max _{-}(c \cdot f)=(-c) \cdot \max _{+}(f)$.

Proof: For every element x of C such that $x \in$ dom $\max _{+}(c \cdot f)$ holds $\left(\max _{+}(c \cdot f)\right)(x)=\left((-c) \cdot \max _{-}(f)\right)(x)$. For every element x of C such that $x \in$ dom max_ $(c \cdot f)$ holds $\left(\right.$ max_ $\left._{-}(c \cdot f)\right)(x)=\left((-c) \cdot \max _{+}(f)\right)(x)$.
(34) Let us consider a non empty set X, and a partial function f from X to $\overline{\mathbb{R}}$. Then $\max _{+}(f)=\max _{-}(-f)$. The theorem is a consequence of (33).
(35) Let us consider a non empty set X, a partial function f from X to $\overline{\mathbb{R}}$, and real numbers r_{1}, r_{2}. Then $r_{1} \cdot\left(r_{2} \cdot f\right)=\left(r_{1} \cdot r_{2}\right) \cdot f$.
(36) Let us consider a non empty set X, and partial functions f, g from X to $\overline{\mathbb{R}}$. If $f=-g$, then $g=-f$. The theorem is a consequence of (35).
Let X be a non empty set, F be a sequence of partial functions from X into $\overline{\mathbb{R}}$, and r be a real number. The functor $r \cdot F$ yielding a sequence of partial functions from X into $\overline{\mathbb{R}}$ is defined by
(Def. 1) for every natural number $n, i t(n)=r \cdot F(n)$.
The functor $-F$ yielding a sequence of partial functions from X into $\overline{\mathbb{R}}$ is defined by the term
(Def. 2) $\quad(-1) \cdot F$.
Now we state the proposition:
(37) Let us consider a non empty set X, a sequence F of partial functions from X into $\overline{\mathbb{R}}$, and a natural number n. Then $(-F)(n)=-F(n)$.
Let us consider a non empty set X, a sequence F of partial functions from X into $\overline{\mathbb{R}}$, and an element x of X. Now we state the propositions:
(38) $(-F) \# x=-F \# x$. The theorem is a consequence of (37).
(39) (i) $F \# x$ is convergent to $+\infty$ iff $(-F) \# x$ is convergent to $-\infty$, and
(ii) $F \# x$ is convergent to $-\infty$ iff $(-F) \# x$ is convergent to $+\infty$, and
(iii) $F \# x$ is convergent to a finite limit iff $(-F) \# x$ is convergent to a finite limit, and
(iv) $F \# x$ is convergent $\operatorname{iff}(-F) \# x$ is convergent, and
(v) if $F \# x$ is convergent, then $\lim ((-F) \# x)=-\lim (F \# x)$.

The theorem is a consequence of (38).
Let us consider a non empty set X and a sequence F of partial functions from X into $\overline{\mathbb{R}}$. Now we state the propositions:
(40) If F has the same dom, then $-F$ has the same dom. The theorem is a consequence of (37).
(41) If F is additive, then $-F$ is additive. The theorem is a consequence of (37).
(42) Let us consider a non empty set X, a sequence F of partial functions from X into $\overline{\mathbb{R}}$, and a natural number n. Then $\left(\sum_{\alpha=0}^{\kappa}(-F)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)=$ $\left(-\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(n)$.
Proof: Define \mathcal{P} [natural number] $\equiv\left(\sum_{\alpha=0}^{\kappa}(-F)(\alpha)\right)_{\kappa \in \mathbb{N}}\left(\$_{1}\right)=$
$\left(-\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}\right)\left(\$_{1}\right) . \mathcal{P}[0]$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $k, \mathcal{P}[k]$.
(43) Let us consider a sequence s of extended reals, and a natural number n.

Then $\left(\sum_{\alpha=0}^{\kappa}(-s)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)=-\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
Proof: Define \mathcal{P} [natural number] $\equiv\left(\sum_{\alpha=0}^{\kappa}(-s)(\alpha)\right)_{\kappa \in \mathbb{N}}\left(\$_{1}\right)=$
$-\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}\left(\$_{1}\right)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $k, \mathcal{P}[k]$.
Let us consider a sequence s of extended reals. Now we state the propositions:
(44) $\quad\left(\sum_{\alpha=0}^{\kappa}(-s)(\alpha)\right)_{\kappa \in \mathbb{N}}=-\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}$. The theorem is a consequence of (43).
(45) If s is summable, then $-s$ is summable. The theorem is a consequence of (44).

Let us consider a non empty set X and a sequence F of partial functions from X into $\overline{\mathbb{R}}$. Now we state the propositions:
(46) If for every natural number $n, F(n)$ is without $+\infty$, then F is additive.
(47) If for every natural number $n, F(n)$ is without $-\infty$, then F is additive.
(48) Let us consider a non empty set X, a sequence F of partial functions from X into $\overline{\mathbb{R}}$, and an element x of X. Suppose $F \# x$ is summable. Then
(i) $(-F) \# x$ is summable, and
(ii) $\sum((-F) \# x)=-\sum(F \# x)$.

The theorem is a consequence of (45), (38), and (44).
(49) Let us consider a non empty set X, a σ-field S of subsets of X, and a sequence F of partial functions from X into $\overline{\mathbb{R}}$. Suppose F is additive and has the same dom and for every element x of X such that $x \in \operatorname{dom}(F(0))$ holds $F \# x$ is summable. Then $\lim \left(\sum_{\alpha=0}^{\kappa}(-F)(\alpha)\right)_{\kappa \in \mathbb{N}}=-\lim \left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}$. Proof: Set $G=-F$. For every element n of $\mathbb{N},\left(\sum_{\alpha=0}^{\kappa} G(\alpha)\right)_{\kappa \in \mathbb{N}}(n)=$ $\left(-\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(n)$. For every element x of X such that $x \in \operatorname{dom} \lim$ $\left(\sum_{\alpha=0}^{\kappa} G(\alpha)\right)_{\kappa \in \mathbb{N}}$ holds $\left(\lim \left(\sum_{\alpha=0}^{\kappa} G(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(x)=$ $\left(-\lim \left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(x)$.
(50) Let us consider a non empty set X, a σ-field S of subsets of X, sequences F, G of partial functions from X into $\overline{\mathbb{R}}$, and an element E of S. Suppose $E \subseteq \operatorname{dom}(F(0))$ and F is additive and has the same dom and for every natural number $n, G(n)=F(n) \upharpoonright E$. Then $\lim \left(\sum_{\alpha=0}^{\kappa} G(\alpha)\right)_{\kappa \in \mathbb{N}}=$ $\lim \left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}} \upharpoonright E$.
Proof: For every element x of X such that $x \in E$ holds $F \# x=G \# x$. Set $P_{1}=\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}$. Set $P_{2}=\left(\sum_{\alpha=0}^{\kappa} G(\alpha)\right)_{\kappa \in \mathbb{N}}$. For every element x of X such that $x \in \operatorname{dom} \lim P_{2}$ holds $\left(\lim P_{2}\right)(x)=\left(\lim P_{1}\right)(x)$. For every element x of X such that $x \in \operatorname{dom}\left(\lim P_{2} \upharpoonright E\right)$ holds $\left(\lim P_{2} \upharpoonright E\right)(x)=$ $\left(\lim P_{1} \upharpoonright E\right)(x)$.

2. Integral of Non Positive Measurable Functions

Now we state the propositions:
(51) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, and a non-negative partial function f from X to $\overline{\mathbb{R}}$. Then $\int^{\prime} \max -(-f) \mathrm{d} M=\int^{\prime} f \mathrm{~d} M$. The theorem is a consequence of (32), (36), and (35).
(52) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and an element A of S.

Suppose $A=\operatorname{dom} f$ and f is measurable on A. Then $\int-f \mathrm{~d} M=-\int f \mathrm{~d} M$. The theorem is a consequence of (36), (10), (5), and (34).
(53) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a non-negative partial function f from X to $\overline{\mathbb{R}}$, and an element E of S. Suppose $E=\operatorname{dom} f$ and f is measurable on E. Then
(i) $\int \max _{-}(f) \mathrm{d} M=0$, and
(ii) $\int^{+} \max _{-}(f) \mathrm{d} M=0$.

Proof: max_ (f) is measurable on E. For every object x such that $x \in$ dom max_ (f) holds $\left(\max _{-}(f)\right)(x)=0$.
Let us consider a non empty set X, a σ-field S of subsets of X, a σ-measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and an element E of S. Now we state the propositions:
(54) If $E=\operatorname{dom} f$ and f is measurable on E, then $\int f \mathrm{~d} M=\int \max _{+}(f) \mathrm{d} M-$ $\int \max _{-}(f) \mathrm{d} M$. The theorem is a consequence of (10) and (5).
(55) If $E \subseteq \operatorname{dom} f$ and f is measurable on E, then $\int(-f) \upharpoonright E \mathrm{~d} M=-\int f \upharpoonright E \mathrm{~d} M$. The theorem is a consequence of (3) and (52).
(56) Let us consider a non empty set X, a σ-field S of subsets of X, and a partial function f from X to $\overline{\mathbb{R}}$. Suppose there exists an element A of S such that $A=\operatorname{dom} f$ and f is measurable on A and (f qua extended real-valued function) is non-positive. Then there exists a sequence F of partial functions from X into $\overline{\mathbb{R}}$ such that
(i) for every natural number $n, F(n)$ is simple function in S and $\operatorname{dom}(F(n))=\operatorname{dom} f$, and
(ii) for every natural number $n, F(n)$ is non-positive, and
(iii) for every natural numbers n, m such that $n \leqslant m$ for every element x of X such that $x \in \operatorname{dom} f$ holds $F(n)(x) \geqslant F(m)(x)$, and
(iv) for every element x of X such that $x \in \operatorname{dom} f$ holds $F \# x$ is convergent and $\lim (F \# x)=f(x)$.
The theorem is a consequence of (37), (30), and (39).
(57) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, an element E of S, and a non-positive partial function f from X to $\overline{\mathbb{R}}$. Suppose there exists an element A of S such that $A=\operatorname{dom} f$ and f is measurable on A. Then
(i) $\int f \mathrm{~d} M=-\int^{+} \max _{-}(f) \mathrm{d} M$, and
(ii) $\int f \mathrm{~d} M=-\int^{+}-f \mathrm{~d} M$, and
(iii) $\int f \mathrm{~d} M=-\int-f \mathrm{~d} M$.

Proof: Consider A being an element of S such that $A=\operatorname{dom} f$ and f is measurable on $A . f=-\max _{-}(f) .-f=\max _{-}(f)$. For every element x of X such that $x \in \operatorname{dom} \max _{+}(f)$ holds $\left(\max _{+}(f)\right)(x)=0$.
(58) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, and a non-positive partial function f from X to $\overline{\mathbb{R}}$. Suppose f is simple function in S. Then
(i) $\int f \mathrm{~d} M=-\int^{\prime}-f \mathrm{~d} M$, and
(ii) $\int f \mathrm{~d} M=-\int^{\prime} \max _{-}(f) \mathrm{d} M$.

The theorem is a consequence of (30), (57), (32), and (36).
Let us consider a non empty set X, a σ-field S of subsets of X, a σ-measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and a real number c. Now we state the propositions:
(59) If f is simple function in S and f is non-negative, then $\int c \cdot f \mathrm{~d} M=$ $c \cdot \int^{\prime} f \mathrm{~d} M$.
(60) Suppose f is simple function in S and f is non-positive. Then
(i) $\int c \cdot f \mathrm{~d} M=-c \cdot \int^{\prime}-f \mathrm{~d} M$, and
(ii) $\int c \cdot f \mathrm{~d} M=-\left(c \cdot \int^{\prime}-f \mathrm{~d} M\right)$.

The theorem is a consequence of (35), (30), and (59).
(61) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, and a partial function f from X to $\overline{\mathbb{R}}$. Suppose there exists an element A of S such that $A=\operatorname{dom} f$ and f is measurable on A and f is non-positive. Then $0 \geqslant \int f \mathrm{~d} M$. The theorem is a consequence of (57).
(62) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and elements A, B, E of S. Suppose $E=\operatorname{dom} f$ and f is measurable on E and f is non-positive and A misses B. Then $\int f \upharpoonright(A \cup B) \mathrm{d} M=\int f \upharpoonright A \mathrm{~d} M+\int f \upharpoonright B \mathrm{~d} M$. The theorem is a consequence of (3) and (52).
(63) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and elements A, E of S. Suppose $E=\operatorname{dom} f$ and f is measurable on E and f is non-positive. Then $0 \geqslant \int f \upharpoonright A \mathrm{~d} M$. The theorem is a consequence of (61) and (1).
(64) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and elements A, B, E of S. Suppose $E=\operatorname{dom} f$ and f is measurable on E and f is non-positive and $A \subseteq B$. Then $\int f\left\lceil A \mathrm{~d} M \geqslant \int f\lceil B \mathrm{~d} M\right.$. The theorem is a consequence of (3) and (52).
3. Convergence Theorems for Non Positive Function's Integration

Now we state the propositions:
(65) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, an element E of S, and a partial function f from X to $\overline{\mathbb{R}}$. Suppose $E=\operatorname{dom} f$ and f is measurable on E and f is non-positive and $M(E \cap \mathrm{EQ}-\operatorname{dom}(f,-\infty)) \neq 0$. Then $\int f \mathrm{~d} M=-\infty$. The theorem is a consequence of (9) and (52).
(66) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, an element E of S, and partial functions f, g from X to $\overline{\mathbb{R}}$. Suppose $E \subseteq \operatorname{dom} f$ and $E \subseteq \operatorname{dom} g$ and f is measurable on E and g is measurable on E and f is non-positive and for every element x of X such that $x \in E$ holds $g(x) \leqslant f(x)$. Then $\int g \upharpoonright E \mathrm{~d} M \leqslant \int f \upharpoonright E \mathrm{~d} M$. The theorem is a consequence of (3) and (52).
(67) Let us consider a non empty set X, a sequence F of partial functions from X into $\overline{\mathbb{R}}$, a σ-field S of subsets of X, an element E of S, and a natural number m. Suppose F has the same dom and $E=\operatorname{dom}(F(0))$ and for every natural number $n, F(n)$ is measurable on E and $F(n)$ is without $+\infty$. Then $\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}(m)$ is measurable on E. The theorem is a consequence of $(37),(42)$, and (46).
(68) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a sequence F of partial functions from X into $\overline{\mathbb{R}}$, an element E of S, a sequence I of extended reals, and a natural number m. Suppose $E=\operatorname{dom}(F(0))$ and F is additive and has the same dom and for every natural number $n, F(n)$ is measurable on E and $F(n)$ is non-positive and $I(n)=\int F(n) \mathrm{d} M$. Then $\int\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}(m) \mathrm{d} M=$ $\left(\sum_{\alpha=0}^{\kappa} I(\alpha)\right)_{\kappa \in \mathbb{N}}(m)$.
Proof: Set $G=-F$. Set $J=-I . G(0)=-F(0) . G$ has the same dom. For every natural number $n, F(n)$ is measurable on E and $F(n)$ is without $+\infty$. For every natural number $n, G(n)$ is measurable on E and $G(n)$ is non-negative and $J(n)=\int G(n) \mathrm{d} M . \int\left(\sum_{\alpha=0}^{\kappa} G(\alpha)\right)_{\kappa \in \mathbb{N}}(m) \mathrm{d} M=$ $\left(\sum_{\alpha=0}^{\kappa} J(\alpha)\right)_{\kappa \in \mathbb{N}}(m) . \int\left(-\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(m) \mathrm{d} M=\left(\sum_{\alpha=0}^{\kappa} J(\alpha)\right)_{\kappa \in \mathbb{N}}(m)$. $\int\left(-\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}\right)(m) \mathrm{d} M=-\left(\sum_{\alpha=0}^{\kappa} I(\alpha)\right)_{\kappa \in \mathbb{N}}(m)$. $\int-\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}(m) \mathrm{d} M=-\left(\sum_{\alpha=0}^{\kappa} I(\alpha)\right)_{\kappa \in \mathbb{N}}(m)$. $-\int\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}(m) \mathrm{d} M=-\left(\sum_{\alpha=0}^{\kappa} I(\alpha)\right)_{\kappa \in \mathbb{N}}(m)$.
(69) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, a sequence F of partial functions from X into $\overline{\mathbb{R}}$, an element E of S, and a partial function f from X to $\overline{\mathbb{R}}$. Suppose $E \subseteq \operatorname{dom} f$ and f is non-positive and f is measurable on E and for every natural
number $n, F(n)$ is simple function in S and $F(n)$ is non-positive and $E \subseteq \operatorname{dom}(F(n))$ and for every element x of X such that $x \in E$ holds $F \# x$ is summable and $f(x)=\sum(F \# x)$. Then there exists a sequence I of extended reals such that
(i) for every natural number $n, I(n)=\int F(n) \upharpoonright E \mathrm{~d} M$, and
(ii) I is summable, and
(iii) $\int f \upharpoonright E \mathrm{~d} M=\sum I$.

Proof: Set $g=-f$. Set $G=-F . G$ is additive. For every natural number $n, G(n)$ is simple function in S and $G(n)$ is non-negative and $E \subseteq \operatorname{dom}(G(n))$. For every element x of X such that $x \in E$ holds $G \# x$ is summable and $g(x)=\sum(G \# x)$. Consider J being a sequence of extended reals such that for every natural number $n, J(n)=\int G(n) \upharpoonright E \mathrm{~d} M$ and J is summable and $\int g \upharpoonright E \mathrm{~d} M=\sum J$. For every natural number n, $I(n)=\int F(n) \upharpoonright E \mathrm{~d} M . \int g \upharpoonright E \mathrm{~d} M=-\int f \upharpoonright E \mathrm{~d} M . \lim \left(\sum_{\alpha=0}^{\kappa} I(\alpha)\right)_{\kappa \in \mathbb{N}}=$ $-\int g \upharpoonright E \mathrm{~d} M$.
(70) Let us consider a non empty set X, a σ-field S of subsets of X, a σ measure M on S, an element E of S, and a partial function f from X to $\overline{\mathbb{R}}$. Suppose $E \subseteq \operatorname{dom} f$ and f is non-positive and f is measurable on E. Then there exists a sequence F of partial functions from X into $\overline{\mathbb{R}}$ such that
(i) F is additive, and
(ii) for every natural number $n, F(n)$ is simple function in S and $F(n)$ is non-positive and $F(n)$ is measurable on E, and
(iii) for every element x of X such that $x \in E$ holds $F \# x$ is summable and $f(x)=\sum(F \# x)$, and
(iv) there exists a sequence I of extended reals such that for every natural number $n, I(n)=\int F(n) \upharpoonright E \mathrm{~d} M$ and I is summable and $\int f \upharpoonright E \mathrm{~d} M=$ $\sum I$.
Proof: Set $g=-f$. Consider G being a sequence of partial functions from X into $\overline{\mathbb{R}}$ such that G is additive and for every natural number $n, G(n)$ is simple function in S and $G(n)$ is non-negative and $G(n)$ is measurable on E and for every element x of X such that $x \in E$ holds $G \# x$ is summable and $g(x)=\sum(G \# x)$ and there exists a sequence J of extended reals such that for every natural number $n, J(n)=\int G(n) \upharpoonright E \mathrm{~d} M$ and J is summable and $\int g \upharpoonright E \mathrm{~d} M=\sum J$. For every natural number $n, F(n)$ is simple function in S and $F(n)$ is non-positive and $F(n)$ is measurable on E. For every element x of X such that $x \in E$ holds $F \# x$ is summable and $f(x)=\sum(F \# x)$. There exists a sequence I of extended reals such that
for every natural number $n, I(n)=\int F(n) \upharpoonright E \mathrm{~d} M$ and I is summable and $\int f \upharpoonright E \mathrm{~d} M=\sum I$.
Let us consider a non empty set X, a σ-field S of subsets of X, a σ-measure M on S, a sequence F of partial functions from X into $\overline{\mathbb{R}}$, and an element E of S. Now we state the propositions:
(71) Suppose $E=\operatorname{dom}(F(0))$ and F has the same dom and for every natural number $n, F(n)$ is non-positive and $F(n)$ is measurable on E. Then there exists a sequence F_{1} of $(X \dot{\rightarrow} \overline{\mathbb{R}})^{\mathbb{N}}$ such that for every natural number n, for every natural number $m, F_{1}(n)(m)$ is simple function in S and $\operatorname{dom}\left(F_{1}(n)(m)\right)=\operatorname{dom}(F(n))$ and for every natural number $m, F_{1}(n)(m)$ is non-positive and for every natural numbers j, k such that $j \leqslant k$ for every element x of X such that $x \in \operatorname{dom}(F(n))$ holds $F_{1}(n)(j)(x) \geqslant F_{1}(n)(k)(x)$ and for every element x of X such that $x \in \operatorname{dom}(F(n))$ holds $F_{1}(n) \# x$ is convergent and $\lim \left(F_{1}(n) \# x\right)=F(n)(x)$.
Proof: Define $\mathcal{Q}[$ element of \mathbb{N}, set $] \equiv$ for every sequence G of partial functions from X into $\overline{\mathbb{R}}$ such that $\$_{2}=G$ holds for every natural number $m, G(m)$ is simple function in S and $\operatorname{dom}(G(m))=\operatorname{dom}\left(F\left(\$_{1}\right)\right)$ and for every natural number $m, G(m)$ is non-positive and for every natural numbers j, k such that $j \leqslant k$ for every element x of X such that $x \in$ $\operatorname{dom}\left(F\left(\$_{1}\right)\right)$ holds $G(j)(x) \geqslant G(k)(x)$ and for every element x of X such that $x \in \operatorname{dom}\left(F\left(\$_{1}\right)\right)$ holds $G \# x$ is convergent and $\lim (G \# x)=F\left(\$_{1}\right)(x)$. For every element n of \mathbb{N}, there exists a sequence G of partial functions from X into $\overline{\mathbb{R}}$ such that for every natural number $m, G(m)$ is simple function in S and $\operatorname{dom}(G(m))=\operatorname{dom}(F(n))$ and for every natural number $m, G(m)$ is non-positive and for every natural numbers j, k such that $j \leqslant k$ for every element x of X such that $x \in \operatorname{dom}(F(n))$ holds $G(j)(x) \geqslant$ $G(k)(x)$ and for every element x of X such that $x \in \operatorname{dom}(F(n))$ holds $G \# x$ is convergent and $\lim (G \# x)=F(n)(x)$. For every element n of \mathbb{N}, there exists an element G of $(X \dot{\overrightarrow{\mathbb{R}}})^{\mathbb{N}}$ such that $\mathcal{Q}[n, G]$. Consider F_{1} being a sequence of $(X \rightarrow \overline{\mathbb{R}})^{\mathbb{N}}$ such that for every element n of $\mathbb{N}, \mathcal{Q}\left[n, F_{1}(n)\right]$. For every natural number n, for every natural number $m, F_{1}(n)(m)$ is simple function in S and $\operatorname{dom}\left(F_{1}(n)(m)\right)=\operatorname{dom}(F(n))$ and for every natural number $m, F_{1}(n)(m)$ is non-positive and for every natural numbers j, k such that $j \leqslant k$ for every element x of X such that $x \in \operatorname{dom}(F(n))$ holds $F_{1}(n)(j)(x) \geqslant F_{1}(n)(k)(x)$ and for every element x of X such that $x \in$ $\operatorname{dom}(F(n))$ holds $F_{1}(n) \# x$ is convergent and $\lim \left(F_{1}(n) \# x\right)=F(n)(x)$.
(72) Suppose $E=\operatorname{dom}(F(0))$ and F is additive and has the same dom and for every natural number $n, F(n)$ is measurable on E and $F(n)$ is nonpositive. Then there exists a sequence I of extended reals such that for every natural number $n, I(n)=\int F(n) \mathrm{d} M$ and $\int\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \mathrm{d} M=$
$\left(\sum_{\alpha=0}^{\kappa} I(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$.
Proof: Set $G=-F . G(0)=-F(0) . G$ has the same dom. For every natural number $n, G(n)$ is measurable on E and $G(n)$ is non-negative. Consider J being a sequence of extended reals such that for every natural number n, $J(n)=\int G(n) \mathrm{d} M$ and $\int\left(\sum_{\alpha=0}^{\kappa} G(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \mathrm{d} M=\left(\sum_{\alpha=0}^{\kappa} J(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$. For every natural number $n, F(n)$ is measurable on E and $F(n)$ is without $+\infty$.
(73) Suppose $E \subseteq \operatorname{dom}(F(0))$ and F is additive and has the same dom and for every natural number $n, F(n)$ is non-positive and $F(n)$ is measurable on E and for every element x of X such that $x \in E$ holds $F \# x$ is summable. Then there exists a sequence I of extended reals such that
(i) for every natural number $n, I(n)=\int F(n) \upharpoonright E \mathrm{~d} M$, and
(ii) I is summable, and
(iii) $\int \lim \left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}} \upharpoonright E \mathrm{~d} M=\sum I$.

Proof: Set $G=-F . G(0)=-F(0) . G$ is additive. G has the same dom. For every natural number $n, G(n)$ is non-negative and $G(n)$ is measurable on E. For every element x of X such that $x \in E$ holds $G \# x$ is summable. Consider J being a sequence of extended reals such that for every natural number $n, J(n)=\int G(n) \upharpoonright E \mathrm{~d} M$ and J is summable and $\int \lim \left(\sum_{\alpha=0}^{\kappa} G(\alpha)\right)_{\kappa \in \mathbb{N}} \backslash E \mathrm{~d} M=\sum J$. For every natural number $n, I(n)=$ $\int F(n) \upharpoonright E \mathrm{~d} M$. Define \mathcal{H} (natural number) $=F\left(\$_{1}\right) \upharpoonright E$. Consider H being a sequence of partial functions from X into $\overline{\mathbb{R}}$ such that for every natural number $n, H(n)=\mathcal{H}(n) . \lim \left(\sum_{\alpha=0}^{\kappa} H(\alpha)\right)_{\kappa \in \mathbb{N}}=\lim \left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}} \backslash E$. Define $\mathcal{K}($ natural number $)=G\left(\$_{1}\right) \upharpoonright E$. Consider K being a sequence of partial functions from X into $\overline{\mathbb{R}}$ such that for every natural number n, $K(n)=\mathcal{K}(n) \cdot \lim \left(\sum_{\alpha=0}^{\kappa} K(\alpha)\right)_{\kappa \in \mathbb{N}}=\lim \left(\sum_{\alpha=0}^{\kappa} G(\alpha)\right)_{\kappa \in \mathbb{N}} \backslash E$. For every element n of $\mathbb{N}, H(n)=(-K)(n) \cdot \lim \left(\sum_{\alpha=0}^{\kappa} H(\alpha)\right)_{\kappa \in \mathbb{N}}=$ $-\lim \left(\sum_{\alpha=0}^{\kappa} K(\alpha)\right)_{\kappa \in \mathbb{N}}$. For every natural number $n, K(n)$ is measurable on E and $K(n)$ is without $-\infty . \int\left(-\lim \left(\sum_{\alpha=0}^{\kappa} K(\alpha)\right)_{\kappa \in \mathbb{N}}\right) \upharpoonright E \mathrm{~d} M=$ $-\int \lim \left(\sum_{\alpha=0}^{\kappa} K(\alpha)\right)_{\kappa \in \mathbb{N}} \upharpoonright E \mathrm{~d} M$.
(74) Suppose $E=\operatorname{dom}(F(0))$ and $F(0)$ is non-positive and F has the same dom and for every natural number $n, F(n)$ is measurable on E and for every natural numbers n, m such that $n \leqslant m$ for every element x of X such that $x \in E$ holds $F(n)(x) \geqslant F(m)(x)$ and for every element x of X such that $x \in E$ holds $F \# x$ is convergent. Then there exists a sequence I of extended reals such that
(i) for every natural number $n, I(n)=\int F(n) \mathrm{d} M$, and
(ii) I is convergent, and
(iii) $\int \lim F \mathrm{~d} M=\lim I$.

Proof: Set $G=-F . G(0)=-F(0)$. For every natural number $n, G(n)$ is measurable on E by [4, (63)], (37). For every natural numbers n, m such that $n \leqslant m$ for every element x of X such that $x \in E$ holds $G(n)(x) \leqslant G(m)(x)$. For every element x of X such that $x \in E$ holds $G \# x$ is convergent. Consider J being a sequence of extended reals such that for every natural number $n, J(n)=\int G(n) \mathrm{d} M$ and J is convergent and $\int \lim G \mathrm{~d} M=\lim J$. Set $I=-J$. For every natural number $n, I(n)=$ $\int F(n) \mathrm{d} M$. For every element x of X such that $x \in \operatorname{dom} \lim G$ holds $(\lim G)(x)=(-\lim F)(x)$ by (38), [3, (17)]. $\int \lim G \mathrm{~d} M=-\int \lim F \mathrm{~d} M$.

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1. Springer, 2007.
[3] Noboru Endou. Extended real-valued double sequence and its convergence. Formalized Mathematics, 23(3):253-277, 2015. doi 10.1515/forma-2015-0021.
[4] Noboru Endou. Fubini's theorem on measure. Formalized Mathematics, 25(1):1-29, 2017. doi 10.1515/forma-2017-0001.
[5] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006. doi 10.2478/v10037-006-0008-x.
[6] Noboru Endou, Keiko Narita, and Yasunari Shidama. The Lebesgue monotone convergence theorem. Formalized Mathematics, 16(2):167-175, 2008. doi 10.2478/v10037-008-0023-1.
[7] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi 10.1007/s10817-015-9345-1
[8] P. R. Halmos. Measure Theory. Springer-Verlag, 1974.
Received September 3, 2017

The English version of this volume of Formalized Mathematics was financed under agreement 548/P-DUN/2016 with the funds from the Polish Minister of Science and Higher Education for the dissemination of science.

