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Summary. In this article, we formalize in the Mizar system [1, 4] the F.
Riesz theorem. In the first section, we defined Mizar functor ClstoCmp, compact
topological spaces as closed interval subset of real numbers. Then using the former
definition and referring to the article [10] and the article [5], we defined the
normed spaces of continuous functions on closed interval subset of real numbers,
and defined the normed spaces of bounded functions on closed interval subset of
real numbers. We also proved some related properties.

In Sec.2, we proved some lemmas for the proof of F. Riesz theorem. In Sec.3,
we proved F. Riesz theorem, about the dual space of the space of continuous
functions on closed interval subset of real numbers, finally. We applied Hahn-
Banach theorem (36) in [7], to the proof of the last theorem. For the description
of theorems of this section, we also referred to the article [8] and the article [6].
These formalizations are based on [2], [3], [9], and [11].
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1. The Normed Space of Continuous Functions on Closed Interval

Now we state the propositions:

(1) Let us consider a real number d. Then | sgn d| ¬ 1.

(2) Let us consider a real number x. Then |x| = sgnx · x.
c© 2017 University of Białystok
CC-BY-SA License ver. 3.0 or later
ISSN 1426–2630(Print), 1898-9934(Online)179

http://www.degruyter.com/view/j/forma
http://zbmath.org/classification/?q=cc:46E15
http://zbmath.org/classification/?q=cc:46B10
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/dualsp05.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/


180 keiko narita, kazuhisa nakasho, and yasunari shidama

Let A be a non empty, closed interval subset of R. The functor Cls2Cmp(A)
yielding a strict, compact, non empty topological space is defined by

(Def. 1) there exist real numbers a, b such that a ¬ b and [a, b] = A and it =
[a, b]T.

Now we state the propositions:

(3) Let us consider a strict, non empty subspace X of R1, a real map f of
X, a partial function g from R to R, a point x of X, and a real number
x0. Suppose g = f and x = x0. Then for every subset V of R such that
f(x) ∈ V and V is open there exists a subset W of X such that x ∈ W
and W is open and f◦W ⊆ V if and only if g is continuous in x0.

(4) Let us consider a strict, non empty subspace X of R1, a real map f of
X, and a partial function g from R to R. If g = f , then f is continuous iff
g is continuous. The theorem is a consequence of (3).

(5) Let us consider a non empty, closed interval subsetA of R. Then the carrier
of Cls2Cmp(A) = A.

(6) Let us consider a non empty, closed interval subset A of R, and a function
u. Then u is a point of C(Cls2Cmp(A); R) if and only if domu = A and u
is a continuous partial function from R to R. The theorem is a consequence
of (5) and (4).

(7) Let us consider a non empty, closed interval subset A of R, and a po-
int v of C(Cls2Cmp(A); R). Then v ∈ BoundedFunctions(the carrier of
Cls2Cmp(A)).

2. Preliminaries

Now we state the proposition:

(8) Let us consider a non empty, closed interval subset A of R, and real
numbers a, b. Suppose A = [a, b]. Then there exists a function x from
A into BoundedFunctionsA such that for every real number s such that
s ∈ [a, b] holds if s = a, then x(s) = [a, b] 7−→ 0 and if s 6= a, then
x(s) = ([a, s] 7−→ 1)+·(]s, b] 7−→ 0).
Proof: Define C[object] ≡ $1 = a. Define F(object) = [a, b] 7−→ 0. De-
fine G(object) = ([a, $1(∈ R)] 7−→ 1)+·(]$1(∈ R), b] 7−→ 0). Set B =
BoundedFunctionsA. For every object s such that s ∈ [a, b] holds if C[s],
then F(s) ∈ B and if C[s], then G(s) ∈ B. Consider x being a function
from [a, b] into B such that for every object s such that s ∈ [a, b] holds if
C[s], then x(s) = F(s) and if C[s], then x(s) = G(s). For every real number
s such that s ∈ [a, b] holds if s = a, then x(s) = [a, b] 7−→ 0 and if s 6= a,
then x(s) = ([a, s] 7−→ 1)+·(]s, b] 7−→ 0). �
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Let A be a non empty, closed interval subset of R, D be a partition of A,
m be a function from A into BoundedFunctionsA, and i be a natural number.
Assume i ∈ Seg(lenD+ 1). The functor Dp1(m,D, i) yielding a point of the R-
normed algebra of bounded functions on the carrier of Cls2Cmp(A) is defined
by the term

(Def. 2)

{
m(inf A), if i = 1,
m(D(i− 1)), otherwise.

Let % be a function from A into R. The functor Dp2(%,D, i) yielding a real
number is defined by the term

(Def. 3)

{
%(inf A), if i = 1,
%(D(i− 1)), otherwise.

Now we state the propositions:

(9) Let us consider a non empty, closed interval subset A of R, a partition
D of A, a function m from A into BoundedFunctionsA, and a function %
from A into R. Then there exists a finite sequence s of elements of the R-
normed algebra of bounded functions on the carrier of Cls2Cmp(A) such
that

(i) len s = lenD, and

(ii) for every natural number i such that i ∈ dom s holds s(i) = sgn(Dp2(%,

D, i+ 1)−Dp2(%,D, i)) · (Dp1(m,D, i+ 1)−Dp1(m,D, i)).

Proof: Set V = the R-normed algebra of bounded functions on the carrier
of Cls2Cmp(A). Define P[natural number, set] ≡ $2 = sgn(Dp2(%,D, $1 +
1)−Dp2(%,D, $1)) · (Dp1(m,D, $1 +1)−Dp1(m,D, $1)). Consider s being
a finite sequence of elements of V such that dom s = Seg lenD and for
every natural number i such that i ∈ Seg lenD holds P[i, s(i)]. �

(10) Let us consider a real linear space V , a functional f in V , and a finite
sequence s of elements of V . If f is additive, then f(

∑
s) =

∑
(f · s).

Proof: Define P[natural number] ≡ for every real linear space V for
every functional f in V for every finite sequence s of elements of V such
that len s = $1 and f is additive holds f(

∑
s) =

∑
(f · s). P[0]. For every

natural number n such that P[n] holds P[n+1]. For every natural number
n, P[n]. �

(11) Let us consider a non empty set A. Then every element of the R-normed
algebra of bounded functions on A is a function from A into R.

(12) Let us consider a non empty, closed interval subset A of R, a finite
sequence s of elements of the R-normed algebra of bounded functions on
the carrier of Cls2Cmp(A), a finite sequence z of elements of R, a function
g from A into R, and an element t of A. Suppose len s = len z and g =

∑
s
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and for every natural number k such that k ∈ dom z there exists a function
s1 from A into R such that s1 = s(k) and z(k) = s1(t). Then g(t) =

∑
z.

Proof: Define P[natural number] ≡ for every non empty, closed interval
subset A of R for every finite sequence s of elements of the R-normed
algebra of bounded functions on the carrier of Cls2Cmp(A) for every finite
sequence z of elements of R for every function g from A into R for every
element t of A such that len s = $1 and len s = len z and g =

∑
s and

for every natural number k such that k ∈ dom z there exists a function
s1 from A into R such that s1 = s(k) and z(k) = s1(t) holds g(t) =

∑
z.

P[0]. For every natural number n such that P[n] holds P[n+ 1]. For every
natural number n, P[n]. �

(13) Let us consider a non empty, closed interval subset A of R, a partition
D of A, and an element t of A. Suppose inf A < D(1). Then there exists
an element i of N such that

(i) i ∈ domD, and

(ii) t ∈ divset(D, i), and

(iii) i = 1 or inf divset(D, i) < t ¬ sup divset(D, i).

(14) Let us consider a non empty, closed interval subset A of R, a function
% from A into R, and a real number B. Suppose 0 < vol(A). Suppose for
every partition D of A and for every var-volume K of % and D such that
inf A < D(1) holds

∑
K ¬ B. Let us consider a partition D of A, and

a var-volume K of % and D. Then
∑
K ¬ B.

3. F. Riesz Theorem

Now we state the propositions:

(15) Let us consider a non empty, closed interval subset A of R, a function %
from A into R, and a point f of DualSp C(Cls2Cmp(A); R). Suppose % is
bounded-variation and for every continuous partial function u from R to

R such that domu = A holds f(u) =
∫
%

u(x)dx. Then ‖f‖ ¬ TotalVD(%).

Proof: SetX = C(Cls2Cmp(A); R). For every continuous partial function

u from R to R such that u ∈ the carrier of X holds f(u) =
∫
%

u(x)dx. For

every continuous partial function u from R to R and for every point v of

X such that domu = A and u = v holds |
∫
%

u(x)dx| ¬ ‖v‖ · TotalVD(%).

�
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(16) Let us consider a non empty, closed interval subset A of R, and a point
x of DualSp C(Cls2Cmp(A); R). Suppose 0 < vol(A). Then there exists
a function % from A into R such that

(i) % is bounded-variation, and

(ii) for every continuous partial function u from R to R such that domu =

A holds x(u) =
∫
%

u(x)dx, and

(iii) ‖x‖ = TotalVD(%).

Proof: Set X = C(Cls2Cmp(A); R). Set V = the R-normed algebra of
bounded functions on the carrier of Cls2Cmp(A). Set A1 = the carrier of
Cls2Cmp(A).A1 = A. Reconsider h = x as a Lipschitzian linear functional
in X. Consider f being a Lipschitzian linear functional in V , F being
a point of DualSpV such that f = F and f�(the carrier of X) = h and
‖F‖ = ‖x‖. Consider a, b being real numbers such that a ¬ b and [a, b] = A
and Cls2Cmp(A) = [a, b]T. Consider m being a function from A into
BoundedFunctionsA such that for every real number s such that s ∈ [a, b]
holds if s = a, then m(s) = [a, b] 7−→ 0 and if s 6= a, then m(s) =
([a, s] 7−→ 1)+·(]s, b] 7−→ 0). The carrier of V = BoundedFunctionsA.
Reconsider % = f ·m as a function from A into R. For every partition D
of A and for every var-volume K of % and D such that a < D(1) holds∑
K ¬ ‖x‖. For every partition D of A and for every var-volume K of %

and D,
∑
K ¬ ‖x‖. Consider V1 being a non empty subset of R such that

V1 is upper bounded and V1 = {r, where r is a real number : there exists
a partition t of A and there exists a var-volume F0 of % and t such that
r =
∑
F0} and TotalVD(%) = supV1. For every continuous partial function

u from R to R such that domu = A holds x(u) =
∫
%

u(x)dx. ‖x‖ ¬

TotalVD(%). �
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