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Gauge Integral
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Summary. Some authors have formalized the integral in the Mizar Ma-
thematical Library (MML). The first article in a series on the Darboux/Riemann
integral was written by Noboru Endou and Artur Korniłowicz: [6]. The Lebesgue
integral was formalized a little later [13] and recently the integral of Riemann-
Stieltjes was introduced in the MML by Keiko Narita, Kazuhisa Nakasho and
Yasunari Shidama [12].

A presentation of definitions of integrals in other proof assistants or proof
checkers (ACL2, COQ, Isabelle/HOL, HOL4, HOL Light, PVS, ProofPower) may
be found in [10] and [4].

Using the Mizar system [1], we define the Gauge integral (Henstock-Kurzweil)
of a real-valued function on a real interval [a, b] (see [2], [3], [15], [14], [11]). In
the next section we formalize that the Henstock-Kurzweil integral is linear.

In the last section, we verified that a real-valued bounded integrable (in sense
Darboux/Riemann [6, 7, 8]) function over a interval a, b is Gauge integrable.

Note that, in accordance with the possibilities of the MML [9], we reuse
a large part of demonstrations already present in another article. Instead of
rewriting the proof already contained in [7] (MML Version: 5.42.1290), we slightly
modified this article in order to use directly the expected results.
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1. Preliminaries

From now on a, b, c, d, e denote real numbers.
Now we state the propositions:
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(1) If a− b ¬ c and b ¬ a, then |b− a| ¬ c.
(2) If b− a ¬ c and a ¬ b, then |b− a| ¬ c.
(3) If a ¬ b ¬ c and |a− d| ¬ e and |c− d| ¬ e, then |b− d| ¬ e.
(4) If for every c such that 0 < c holds |a− b| ¬ c, then a = b.

(5) Let us consider non negative real numbers b, c, d. Suppose d < e
2·b·|c| .

Then

(i) b is positive, and

(ii) c is positive.

(6) If a 6= 0, then a · b2·a = b
2 .

(7) Let us consider non negative real numbers b, c, d. Suppose a ¬ b · c · d
and d < e

2·b·|c| . Then a ¬ e2 . The theorem is a consequence of (5) and (6).

2. Vector Lattice / Riesz Space

Let X be a non empty set and f , g be functions from X into R. The functor
min(f, g) yielding a function from X into R is defined by

(Def. 1) for every element x of X, it(x) = min(f(x), g(x)).

One can verify that the functor is commutative. The functor max(f, g) yielding
a function from X into R is defined by

(Def. 2) for every element x of X, it(x) = max(f(x), g(x)).

Note that the functor is commutative.
Let f , g be positive yielding functions from X into R. One can check that

min(f, g) is positive yielding and max(f, g) is positive yielding.
Let f , g be functions from X into R. We say that f ¬ g if and only if

(Def. 3) for every element x of X, f(x) ¬ g(x).

Now we state the proposition:

(8) Let us consider a non empty set X, and functions f , g from X into R.
Then min(f, g) ¬ f .

Let us consider a non empty, real-membered set X. Now we state the pro-
positions:

(9) If for every real number r such that r ∈ X holds supX = r, then there
exists a real number r such that X = {r}.

(10) If for every real number r such that r ∈ X holds inf X = r, then there
exists a real number r such that X = {r}.

(11) Let us consider a non empty, lower bounded, upper bounded, real-
membered set X. Suppose supX = inf X. Then there exists a real number
r such that X = {r}. The theorem is a consequence of (9).
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3. Some Properties of the χ Function

In the sequel X, Y denote sets, Z denotes a non empty set, r denotes a real
number, s denotes an extended real, A denotes a subset of R, and f denotes
a real-valued function.

Now we state the propositions:

(12) χX,Y is a function from Y into R.

(13) If A ⊆ ]r, s[, then A is lower bounded.

(14) If A ⊆ ]s, r[, then A is upper bounded.

(15) If rng f ⊆ [a, b], then f is bounded.

(16) If a ¬ b, then {a, b} ⊆ [a, b].

(17) χX,Y is bounded. The theorem is a consequence of (16) and (15).

(18) If X misses Y, then for every element x of X, χY,X(x) = 0.

(19) Let us consider a function f from Z into R. Then f is constant if and
only if there exists a real number r such that f = r · χZ,Z .

(20) χX,X is positive yielding.

4. Refinement of Tagged Partition

In the sequel I denotes a non empty, closed interval subset of R, T1 denotes
a tagged partition of I, D denotes a partition of I, T denotes an element of
the set of tagged partitions of D, and f denotes a partial function from I to R.

Now we state the propositions:

(21) If f is lower integrable, then lower sum(f,D) ¬ lower integral f .

(22) If f is upper integrable, then upper integral f ¬ upper sum(f,D).

LetA be a non empty, closed interval subset of R. The functor tagged-divs(A)
yielding a set is defined by

(Def. 4) for every set x, x ∈ it iff x is a tagged partition of A.

One can check that tagged-divs(A) is non empty.
Let T1 be a tagged partition of A. The functor T1-tags yielding a non empty,

non-decreasing finite sequence of elements of R is defined by

(Def. 5) there exists a partition D of A and there exists an element T of the set
of tagged partitions of D such that it = T and T1 = 〈〈D, T 〉〉.

Now we state the propositions:

(23) If T1 = 〈〈D, T 〉〉, then T = T1-tags and D = T1-partition.

(24) len(T1-tags) = len(T1-partition). The theorem is a consequence of (23).
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Let A be a non empty, closed interval subset of R and T1 be a tagged partition
of A. The functor lenT1 yielding an element of N is defined by the term

(Def. 6) len(T1-partition).

The functor domT1 yielding a set is defined by the term

(Def. 7) dom(T1-partition).

Now we state the propositions:

(25) Let us consider a non empty, closed interval subset I of R, a partition D
of I, and an element T of the set of tagged partitions of D. Then rng T ⊆ I.

(26) Let us consider a non empty, closed interval subset I of R, positive
yielding functions j1, j2 from I into R, and a j1-fine tagged partition T1

of I. If j1 ¬ j2, then T1 is a j2-fine tagged partition of I. The theorem is
a consequence of (23), (24), and (25).

5. Definition of the Gauge Integral on a Real Bounded Interval

Let I be a non empty, closed interval subset of R, f be a partial function
from I to R, and T1 be a tagged partition of I. The functor tagged-volume(f, T1)
yielding a finite sequence of elements of R is defined by

(Def. 8) len it = lenT1 and for every natural number i such that i ∈ domT1 holds
it(i) = f((T1-tags)(i)) · vol(divset(T1-partition, i)).

The functor tagged-sum(f, T1) yielding a real number is defined by the term

(Def. 9)
∑

(tagged-volume(f, T1)).

Now we state the proposition:

(27) If Y ⊆ X, then χX,Y = χY,Y .

From now on f denotes a function from I into R.
Now we state the propositions:

(28) If I is non empty and trivial, then vol(I) = 0.

(29) Let us consider a real number r. If I = {r}, then for every partition D

of I, D = 〈r〉.
Let I be a non empty, closed interval subset of R and f be a function from

I into R. We say that f is HK-integrable if and only if

(Def. 10) there exists a real number J such that for every real number ε such
that ε > 0 there exists a positive yielding function j from I into R
such that for every tagged partition T1 of I such that T1 is j-fine holds
| tagged-sum(f, T1)− J | ¬ ε.

Assume f is HK-integrable. The functor HK-integral(f) yielding a real num-
ber is defined by
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(Def. 11) for every real number ε such that ε > 0 there exists a positive yielding
function j from I into R such that for every tagged partition T1 of I such
that T1 is j-fine holds | tagged-sum(f, T1)− it | ¬ ε.

Now we state the propositions:

(30) Let us consider a function f from I into R. Suppose I is trivial. Then

(i) f is HK-integrable, and

(ii) HK-integral(f) = 0.

The theorem is a consequence of (20), (12), and (29).

(31) If A misses I and f = χA,I , then tagged-sum(f, T1) = 0.
Proof: For every natural number i such that i ∈ domT1 holds
(tagged-volume(f, T1))(i) = 0. �

(32) If A misses I and f = χA,I , then f is HK-integrable and
HK-integral(f) = 0. The theorem is a consequence of (12) and (31).

(33) If I ⊆ A and f = χA,I , then f is HK-integrable and HK-integral(f)
= vol(I). The theorem is a consequence of (12) and (27).

Let I be a non empty, closed interval subset of R. One can check that there
exists a function from I into R which is HK-integrable.

6. The Linearity Property of the Gauge Integral

In the sequel f , g denote HK-integrable functions from I into R and r denotes
a real number.

Now we state the propositions:

(34) Let us consider a natural number i. Suppose i ∈ domT1.
Then (tagged-volume(r · f, T1))(i) =
r · f((T1-tags)(i)) · vol(divset(T1-partition, i)).

(35) tagged-volume(r · f, T1) = r · (tagged-volume(f, T1)).
Proof: For every natural number i such that
i ∈ dom(tagged-volume(r · f, T1)) holds (tagged-volume(r · f, T1))(i) =
(r · (tagged-volume(f, T1)))(i). �

(36) Let us consider a natural number i. Suppose i ∈ domT1. Then (tagged-
volume(f + g, T1))(i) = f((T1-tags)(i)) · vol(divset(T1-partition,
i)) + (g((T1-tags)(i)) · vol(divset(T1-partition, i))). The theorem is a con-
sequence of (23), (24), and (25).

(37) tagged-volume(f + g, T1) =
(tagged-volume(f, T1)) + (tagged-volume(g, T1)).
Proof: For every natural number i such that i ∈ dom(tagged-volume
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(f + g, T1)) holds (tagged-volume(f + g, T1))(i) = ((tagged-volume(f,
T1)) + (tagged-volume(g, T1)))(i). �

(38) Suppose f is HK-integrable. Then

(i) r · f is an HK-integrable function from I into R, and

(ii) HK-integral(r · f) = r ·HK-integral(f).

Proof: Consider J being a real number such that for every real number
ε such that ε > 0 there exists a positive yielding function j from I into
R such that for every tagged partition T1 of I such that T1 is j-fine holds
| tagged-sum(f, T1)−J | ¬ ε. For every real number ε such that ε > 0 there
exists a positive yielding function j from I into R such that for every tagged
partition T1 of I such that T1 is j-fine holds | tagged-sum(r·f, T1)−(r·J)| ¬
ε. �

(39) (i) f + g is an HK-integrable function from I into R, and

(ii) HK-integral(f + g) = HK-integral(f) + HK-integral(g).
Proof: Consider J1 being a real number such that for every real number
ε such that ε > 0 there exists a positive yielding function j from I into
R such that for every tagged partition T1 of I such that T1 is j-fine holds
| tagged-sum(f, T1)− J1| ¬ ε. Consider J2 being a real number such that
for every real number ε such that ε > 0 there exists a positive yielding
function j from I into R such that for every tagged partition T1 of I such
that T1 is j-fine holds | tagged-sum(g, T1)−J2| ¬ ε. For every real number
ε such that ε > 0 there exists a positive yielding function j from I into
R such that for every tagged partition T1 of I such that T1 is j-fine holds
| tagged-sum(f + g, T1)− (J1 + J2)| ¬ ε. �

(40) Let us consider a function f from I into R. Suppose f is constant. Then

(i) f is HK-integrable, and

(ii) there exists a real number r such that f = r · χI,I and

HK-integral(f) = r · vol(I).

The theorem is a consequence of (19), (12), (33), and (38).

7. Riemann Integrability and Gauge Integrability

Let I be a non empty, closed interval subset of R. Note that there exists
a function from I into R which is integrable.

Let X be a non empty set. Observe that there exists a function from X into
R which is bounded.

Now we state the proposition:
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(41) Let us consider a bounded function f from I into R.
Then | sup rng f − inf rng f | = 0 if and only if f is constant. The theorem
is a consequence of (11).

Let I be a non empty, closed interval subset of R. Observe that there exists
an integrable function from I into R which is bounded.

Let us consider a partial function f from I to R. Now we state the proposi-
tions:

(42) If f is upper integrable, then there exists a real number r such that for
every partition D of I, r < upper sum(f,D).

(43) If f is lower integrable, then there exists a real number r such that for
every partition D of I, lower sum(f,D) < r.

(44) Let us consider a function f from I into R, and partitions D, D1 of I.
Suppose D(1) = inf I and D1 = D�1. Then

(i) upper sum(f,D1) = upper sum(f,D), and

(ii) lower sum(f,D1) = lower sum(f,D).

Proof: (upper volume(f,D))(1) = 0 by [5, (50)]. (lower volume(f,
D))(1) = 0 by [5, (50)]. �

In the sequel f denotes a bounded, integrable function from I into R.
Now we state the propositions:

(45) Let us consider a natural number i. Suppose i ∈ domT1. Then (lower vo-
lume(f, T1-partition))(i) ¬ (tagged-volume(f, T1))(i) ¬ (upper volume(f,
T1-partition))(i). The theorem is a consequence of (23).

(46)
∑

lower volume(f, T1-partition) ¬
∑

(tagged-volume(f, T1)) ¬∑
upper volume(f, T1-partition). The theorem is a consequence of (45).

(47) Let us consider a real number ε. Suppose I is not trivial and 0 < ε. Then
there exists a partition D of I such that

(i) D(1) 6= inf I, and

(ii) upper sum(f,D) < integral f + ε
2 , and

(iii) integral f − ε2 < lower sum(f,D), and

(iv) upper sum(f,D)− lower sum(f,D) < ε.

The theorem is a consequence of (44).

From now on j denotes a positive yielding function from I into R.

(48) If j = r · χI,I , then 0 < r.

In the sequel D denotes a tagged partition of I. Now we state the proposition:

(49) If j = r · χI,I and D is j-fine, then δD-partition ¬ r.
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Proof: Reconsider g = χI,I as a function from I into R. For every natural
number i such that i ∈ dom(D-partition) holds
(upper volume(g,D-partition))(i) ¬ r. δD-partition ¬ r. �

From now on r1, r2, s denote real numbers, D, D1 denote partitions of I,
and f1 denotes a function from I into R. Now we state the propositions:

(50) There exists a natural number i such that

(i) i ∈ domD, and

(ii) min rng upper volume(f1, D) = (upper volume(f1, D))(i).

(51) Let us consider a function f from I into R, and a real number ε.
Suppose f1 = χI,I and r1 = min rng upper volume(f1, D1) and r2 =

ε
2·lenD1·| sup rng f−inf rng f | and 0 < r1 and 0 < r2 and s = min(r1,r2)

2 and
j = s · f1 and T1 is j-fine. Then

(i) δT1-partition < min rng upper volume(f1, D1), and

(ii) δT1-partition <
ε

2·lenD1·| sup rng f−inf rng f | .

The theorem is a consequence of (49).

(52) Let us consider a finite sequence p of elements of R. Suppose for every
natural number i such that i ∈ dom p holds r ¬ p(i) and there exists
a natural number i0 such that i0 ∈ dom p and p(i0) = r. Then r = inf rng p.

(53) Suppose f1 = χI,I . Then

(i) 0 ¬ min rng upper volume(f1, D), and

(ii) 0 = min rng upper volume(f1, D) iff divset(D, 1) = [D(1), D(1)].

Proof: Consider i0 being a natural number such that i0 ∈ domD and
min rng upper volume(f1, D) = (upper volume(f1, D))(i0). 0 =
min rng upper volume(f1, D) iff divset(D, 1) = [D(1), D(1)]. �

(54) If divset(D, 1) = [D(1), D(1)], then D(1) = inf I.

(55) Let us consider a bounded, integrable function f from I into R. Then

(i) f is HK-integrable, and

(ii) HK-integral(f) = integral f .

The theorem is a consequence of (40), (12), (17), (28), (30), (47), (53),
(54), (41), (20), (46), (51), (21), (22), (7), (1), (2), and (3).

Let I be a non empty, closed interval subset of R. Note that every function
from I into R which is bounded and integrable is also HK-integrable.
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