

Gauge Integral

Roland Coghetto Rue de la Brasserie 5 7100 La Louvière, Belgium

Summary. Some authors have formalized the integral in the Mizar Mathematical Library (MML). The first article in a series on the Darboux/Riemann integral was written by Noboru Endou and Artur Korniłowicz: [6]. The Lebesgue integral was formalized a little later [13] and recently the integral of Riemann-Stieltjes was introduced in the MML by Keiko Narita, Kazuhisa Nakasho and Yasunari Shidama [12].

A presentation of definitions of integrals in other proof assistants or proof checkers (ACL2, COQ, Isabelle/HOL, HOL4, HOL Light, PVS, ProofPower) may be found in [10] and [4].

Using the Mizar system [1], we define the Gauge integral (Henstock-Kurzweil) of a real-valued function on a real interval [a, b] (see [2], [3], [15], [14], [11]). In the next section we formalize that the Henstock-Kurzweil integral is linear.

In the last section, we verified that a real-valued bounded integrable (in sense Darboux/Riemann [6, 7, 8]) function over a interval a, b is Gauge integrable.

Note that, in accordance with the possibilities of the MML [9], we reuse a large part of demonstrations already present in another article. Instead of rewriting the proof already contained in [7] (MML Version: 5.42.1290), we slightly modified this article in order to use directly the expected results.

MSC: 26A39 26A42 03B35

Keywords: Gauge integral; Henstock-Kurzweil integral; generalized Riemann integral

MML identifier: COUSIN2, version: 8.1.06 5.44.1305

1. Preliminaries

From now on a, b, c, d, e denote real numbers. Now we state the propositions:

- (1) If $a b \leq c$ and $b \leq a$, then $|b a| \leq c$.
- (2) If $b a \leq c$ and $a \leq b$, then $|b a| \leq c$.
- (3) If $a \leq b \leq c$ and $|a d| \leq e$ and $|c d| \leq e$, then $|b d| \leq e$.
- (4) If for every c such that 0 < c holds $|a b| \leq c$, then a = b.
- (5) Let us consider non negative real numbers b, c, d. Suppose $d < \frac{e}{2 \cdot b \cdot |c|}$. Then
 - (i) b is positive, and
 - (ii) c is positive.
- (6) If $a \neq 0$, then $a \cdot \frac{b}{2 \cdot a} = \frac{b}{2}$.
- (7) Let us consider non negative real numbers b, c, d. Suppose $a \le b \cdot c \cdot d$ and $d < \frac{e}{2 \cdot b \cdot |c|}$. Then $a \le \frac{e}{2}$. The theorem is a consequence of (5) and (6).

2. Vector Lattice / Riesz Space

Let X be a non empty set and f, g be functions from X into \mathbb{R} . The functor $\min(f, g)$ yielding a function from X into \mathbb{R} is defined by

(Def. 1) for every element x of X, $it(x) = \min(f(x), g(x))$.

One can verify that the functor is commutative. The functor $\max(f, g)$ yielding a function from X into \mathbb{R} is defined by

(Def. 2) for every element x of X, $it(x) = \max(f(x), g(x))$.

Note that the functor is commutative.

Let f, g be positive yielding functions from X into \mathbb{R} . One can check that $\min(f,g)$ is positive yielding and $\max(f,g)$ is positive yielding.

Let f, g be functions from X into \mathbb{R} . We say that $f \leq g$ if and only if

(Def. 3) for every element x of X, $f(x) \leq g(x)$.

Now we state the proposition:

(8) Let us consider a non empty set X, and functions f, g from X into \mathbb{R} . Then $\min(f, g) \leq f$.

Let us consider a non empty, real-membered set X. Now we state the propositions:

- (9) If for every real number r such that $r \in X$ holds $\sup X = r$, then there exists a real number r such that $X = \{r\}$.
- (10) If for every real number r such that $r \in X$ holds inf X = r, then there exists a real number r such that $X = \{r\}$.
- (11) Let us consider a non empty, lower bounded, upper bounded, realmembered set X. Suppose $\sup X = \inf X$. Then there exists a real number r such that $X = \{r\}$. The theorem is a consequence of (9).

3. Some Properties of the χ Function

In the sequel X, Y denote sets, Z denotes a non empty set, r denotes a real number, s denotes an extended real, A denotes a subset of \mathbb{R} , and f denotes a real-valued function.

Now we state the propositions:

- (12) $\chi_{X,Y}$ is a function from Y into \mathbb{R} .
- (13) If $A \subseteq [r, s]$, then A is lower bounded.
- (14) If $A \subseteq]s, r[$, then A is upper bounded.
- (15) If rng $f \subseteq [a, b]$, then f is bounded.
- (16) If $a \leq b$, then $\{a, b\} \subseteq [a, b]$.
- (17) $\chi_{X,Y}$ is bounded. The theorem is a consequence of (16) and (15).
- (18) If X misses Y, then for every element x of X, $\chi_{Y,X}(x) = 0$.
- (19) Let us consider a function f from Z into \mathbb{R} . Then f is constant if and only if there exists a real number r such that $f = r \cdot \chi_{Z,Z}$.
- (20) $\chi_{X,X}$ is positive yielding.

4. Refinement of Tagged Partition

In the sequel I denotes a non empty, closed interval subset of \mathbb{R} , T_1 denotes a tagged partition of I, D denotes a partition of I, T denotes an element of the set of tagged partitions of D, and f denotes a partial function from I to \mathbb{R} .

Now we state the propositions:

- (21) If f is lower integrable, then lower_sum $(f, D) \leq \text{lower_integral } f$.
- (22) If f is upper integrable, then upper_integral $f \leq \text{upper}_{\text{sum}}(f, D)$.

Let A be a non empty, closed interval subset of \mathbb{R} . The functor tagged-divs(A) yielding a set is defined by

(Def. 4) for every set $x, x \in it$ iff x is a tagged partition of A.

One can check that tagged-divs(A) is non empty.

Let T_1 be a tagged partition of A. The functor T_1 -tags yielding a non empty, non-decreasing finite sequence of elements of \mathbb{R} is defined by

(Def. 5) there exists a partition D of A and there exists an element T of the set of tagged partitions of D such that it = T and $T_1 = \langle D, T \rangle$.

Now we state the propositions:

(23) If $T_1 = \langle D, T \rangle$, then $T = T_1$ -tags and $D = T_1$ -partition.

(24) $len(T_1-tags) = len(T_1-partition)$. The theorem is a consequence of (23).

Let A be a non empty, closed interval subset of \mathbb{R} and T_1 be a tagged partition of A. The functor len T_1 yielding an element of \mathbb{N} is defined by the term (Def. 6) len(T_1 -partition).

The functor dom T_1 yielding a set is defined by the term

(Def. 7) dom $(T_1$ -partition).

Now we state the propositions:

- (25) Let us consider a non empty, closed interval subset I of \mathbb{R} , a partition D of I, and an element T of the set of tagged partitions of D. Then rng $T \subseteq I$.
- (26) Let us consider a non empty, closed interval subset I of \mathbb{R} , positive yielding functions j_1 , j_2 from I into \mathbb{R} , and a j_1 -fine tagged partition T_1 of I. If $j_1 \leq j_2$, then T_1 is a j_2 -fine tagged partition of I. The theorem is a consequence of (23), (24), and (25).
- 5. Definition of the Gauge Integral on a Real Bounded Interval

Let I be a non empty, closed interval subset of \mathbb{R} , f be a partial function from I to \mathbb{R} , and T_1 be a tagged partition of I. The functor tagged-volume (f, T_1) yielding a finite sequence of elements of \mathbb{R} is defined by

(Def. 8) len $it = \text{len } T_1$ and for every natural number i such that $i \in \text{dom } T_1$ holds $it(i) = f((T_1 \text{-tags})(i)) \cdot \text{vol}(\text{divset}(T_1 \text{-partition}, i)).$

The functor tagged-sum (f, T_1) yielding a real number is defined by the term (Def. 9) \sum (tagged-volume (f, T_1)).

Now we state the proposition:

(27) If $Y \subseteq X$, then $\chi_{X,Y} = \chi_{Y,Y}$.

From now on f denotes a function from I into \mathbb{R} .

Now we state the propositions:

- (28) If I is non empty and trivial, then vol(I) = 0.
- (29) Let us consider a real number r. If $I = \{r\}$, then for every partition D of I, $D = \langle r \rangle$.

Let I be a non empty, closed interval subset of \mathbb{R} and f be a function from I into \mathbb{R} . We say that f is HK-integrable if and only if

(Def. 10) there exists a real number J such that for every real number ε such that $\varepsilon > 0$ there exists a positive yielding function j from I into \mathbb{R} such that for every tagged partition T_1 of I such that T_1 is j-fine holds $| \text{tagged-sum}(f, T_1) - J | \leq \varepsilon$.

Assume f is HK-integrable. The functor $\operatorname{HK-integral}(f)$ yielding a real number is defined by

(Def. 11) for every real number ε such that $\varepsilon > 0$ there exists a positive yielding function j from I into \mathbb{R} such that for every tagged partition T_1 of I such that T_1 is j-fine holds $| \text{tagged-sum}(f, T_1) - it | \leq \varepsilon$.

Now we state the propositions:

- (30) Let us consider a function f from I into \mathbb{R} . Suppose I is trivial. Then
 - (i) f is HK-integrable, and
 - (ii) HK-integral(f) = 0.

The theorem is a consequence of (20), (12), and (29).

- (31) If A misses I and $f = \chi_{A,I}$, then tagged-sum $(f, T_1) = 0$. PROOF: For every natural number i such that $i \in \text{dom } T_1$ holds $(\text{tagged-volume}(f, T_1))(i) = 0$. \Box
- (32) If A misses I and $f = \chi_{A,I}$, then f is HK-integrable and HK-integral(f) = 0. The theorem is a consequence of (12) and (31).
- (33) If $I \subseteq A$ and $f = \chi_{A,I}$, then f is HK-integrable and HK-integral(f)= vol(I). The theorem is a consequence of (12) and (27).

Let I be a non empty, closed interval subset of \mathbb{R} . One can check that there exists a function from I into \mathbb{R} which is HK-integrable.

6. The Linearity Property of the Gauge Integral

In the sequel f,g denote HK-integrable functions from I into $\mathbb R$ and r denotes a real number.

Now we state the propositions:

- (34) Let us consider a natural number *i*. Suppose $i \in \text{dom } T_1$. Then $(\text{tagged-volume}(r \cdot f, T_1))(i) = r \cdot f((T_1 \text{-tags})(i)) \cdot \text{vol}(\text{divset}(T_1 \text{-partition}, i)).$
- (35) tagged-volume $(r \cdot f, T_1) = r \cdot (tagged-volume(f, T_1)).$ PROOF: For every natural number *i* such that $i \in \text{dom}(tagged-volume(r \cdot f, T_1)) \text{ holds } (tagged-volume(r \cdot f, T_1))(i) = (r \cdot (tagged-volume(f, T_1)))(i). \square$
- (36) Let us consider a natural number *i*. Suppose $i \in \text{dom } T_1$. Then (tagged-volume $(f + g, T_1)$) $(i) = f((T_1\text{-tags})(i)) \cdot \text{vol}(\text{divset}(T_1\text{-partition}, i)) + (g((T_1\text{-tags})(i)) \cdot \text{vol}(\text{divset}(T_1\text{-partition}, i)))$. The theorem is a consequence of (23), (24), and (25).
- (37) tagged-volume $(f + g, T_1) =$ (tagged-volume (f, T_1)) + (tagged-volume (g, T_1)). PROOF: For every natural number *i* such that $i \in \text{dom}(\text{tagged-volume})$

 $(f + g, T_1)$ holds $(tagged-volume(f + g, T_1))(i) = ((tagged-volume(f, f, f_1)))$

 (T_1)) + (tagged-volume (g, T_1)))(i).

- (38) Suppose f is HK-integrable. Then
 - (i) $r \cdot f$ is an HK-integrable function from I into \mathbb{R} , and

(ii) HK-integral $(r \cdot f) = r \cdot HK$ -integral(f).

PROOF: Consider J being a real number such that for every real number ε such that $\varepsilon > 0$ there exists a positive yielding function j from I into \mathbb{R} such that for every tagged partition T_1 of I such that T_1 is j-fine holds $| \text{tagged-sum}(f, T_1) - J | \leq \varepsilon$. For every real number ε such that $\varepsilon > 0$ there exists a positive yielding function j from I into \mathbb{R} such that for every tagged partition T_1 of I such that $\varepsilon > 0$ there exists a positive yielding function j from I into \mathbb{R} such that for every tagged partition T_1 of I such that T_1 is j-fine holds $| \text{tagged-sum}(r \cdot f, T_1) - (r \cdot J) | \leq \varepsilon$. \Box

(39) (i) f + g is an HK-integrable function from I into \mathbb{R} , and

(ii) HK-integral(f+g) = HK-integral(f) + HK-integral(g).

PROOF: Consider J_1 being a real number such that for every real number ε such that $\varepsilon > 0$ there exists a positive yielding function j from I into \mathbb{R} such that for every tagged partition T_1 of I such that T_1 is j-fine holds $| \text{tagged-sum}(f, T_1) - J_1 | \leq \varepsilon$. Consider J_2 being a real number such that for every real number ε such that $\varepsilon > 0$ there exists a positive yielding function j from I into \mathbb{R} such that for every tagged-sum $(g, T_1) - J_2 | \leq \varepsilon$. For every real number ε such that $\varepsilon > 0$ there exists a positive yielding function j from I into \mathbb{R} such that for every tagged partition T_1 of I such that T_1 is j-fine holds $| \text{tagged-sum}(g, T_1) - J_2 | \leq \varepsilon$. For every real number ε such that $\varepsilon > 0$ there exists a positive yielding function j from I into \mathbb{R} such that for every tagged partition T_1 of I such that T_1 is j-fine holds $| \text{tagged-sum}(f + g, T_1) - (J_1 + J_2) | \leq \varepsilon$. \Box

- (40) Let us consider a function f from I into \mathbb{R} . Suppose f is constant. Then
 - (i) f is HK-integrable, and
 - (ii) there exists a real number r such that $f = r \cdot \chi_{I,I}$ and HK-integral $(f) = r \cdot \operatorname{vol}(I)$.

The theorem is a consequence of (19), (12), (33), and (38).

7. RIEMANN INTEGRABILITY AND GAUGE INTEGRABILITY

Let I be a non empty, closed interval subset of \mathbb{R} . Note that there exists a function from I into \mathbb{R} which is integrable.

Let X be a non empty set. Observe that there exists a function from X into \mathbb{R} which is bounded.

Now we state the proposition:

(41) Let us consider a bounded function f from I into \mathbb{R} . Then $|\sup \operatorname{rng} f - \inf \operatorname{rng} f| = 0$ if and only if f is constant. The theorem is a consequence of (11).

Let I be a non empty, closed interval subset of \mathbb{R} . Observe that there exists an integrable function from I into \mathbb{R} which is bounded.

Let us consider a partial function f from I to \mathbb{R} . Now we state the propositions:

- (42) If f is upper integrable, then there exists a real number r such that for every partition D of I, $r < upper_sum(f, D)$.
- (43) If f is lower integrable, then there exists a real number r such that for every partition D of I, lower_sum(f, D) < r.
- (44) Let us consider a function f from I into \mathbb{R} , and partitions D, D_1 of I. Suppose $D(1) = \inf I$ and $D_1 = D_{\downarrow 1}$. Then
 - (i) upper_sum (f, D_1) = upper_sum(f, D), and
 - (ii) lower_sum (f, D_1) = lower_sum(f, D).

PROOF: (upper_volume(f, D))(1) = 0 by [5, (50)]. (lower_volume(f, D))(1) = 0 by [5, (50)]. \Box

In the sequel f denotes a bounded, integrable function from I into \mathbb{R} . Now we state the propositions:

- (45) Let us consider a natural number *i*. Suppose $i \in \text{dom } T_1$. Then (lower_volume $(f, T_1$ -partition)) $(i) \leq (\text{tagged-volume}(f, T_1))(i) \leq (\text{upper_volume}(f, T_1))(i)$. The theorem is a consequence of (23).
- (46) $\sum \text{lower_volume}(f, T_1\text{-partition}) \leq \sum (\text{tagged-volume}(f, T_1)) \leq \sum \text{upper_volume}(f, T_1\text{-partition}).$ The theorem is a consequence of (45).
- (47) Let us consider a real number ε . Suppose *I* is not trivial and $0 < \varepsilon$. Then there exists a partition *D* of *I* such that
 - (i) $D(1) \neq \inf I$, and
 - (ii) upper_sum $(f, D) < \text{integral } f + \frac{\varepsilon}{2}$, and
 - (iii) integral $f \frac{\varepsilon}{2} < \text{lower}_{\text{sum}}(f, D)$, and
 - (iv) upper_sum(f, D) lower_sum $(f, D) < \varepsilon$.

The theorem is a consequence of (44).

From now on j denotes a positive yielding function from I into \mathbb{R} .

(48) If $j = r \cdot \chi_{I,I}$, then 0 < r.

In the sequel D denotes a tagged partition of I. Now we state the proposition:

(49) If $j = r \cdot \chi_{I,I}$ and D is *j*-fine, then $\delta_{D\text{-partition}} \leq r$.

PROOF: Reconsider $g = \chi_{I,I}$ as a function from I into \mathbb{R} . For every natural number i such that $i \in \text{dom}(D\text{-partition})$ holds

 $(\text{upper_volume}(g, D\text{-partition}))(i) \leq r. \delta_{D\text{-partition}} \leq r. \Box$

From now on r_1 , r_2 , s denote real numbers, D, D_1 denote partitions of I, and f_1 denotes a function from I into \mathbb{R} . Now we state the propositions:

(50) There exists a natural number i such that

(i) $i \in \operatorname{dom} D$, and

- (ii) min rng upper_volume $(f_1, D) = (upper_volume(f_1, D))(i)$.
- (51) Let us consider a function f from I into \mathbb{R} , and a real number ε . Suppose $f_1 = \chi_{I,I}$ and $r_1 = \min \operatorname{rng} \operatorname{upper_volume}(f_1, D_1)$ and $r_2 = \frac{\varepsilon}{2 \cdot \operatorname{len} D_1 \cdot |\operatorname{suprng} f - \inf \operatorname{rng} f|}$ and $0 < r_1$ and $0 < r_2$ and $s = \frac{\min(r_1, r_2)}{2}$ and $j = s \cdot f_1$ and T_1 is j-fine. Then
 - (i) $\delta_{T_1-\text{partition}} < \min \operatorname{rng} \operatorname{upper_volume}(f_1, D_1)$, and

(ii)
$$\delta_{T_1\text{-partition}} < \frac{\varepsilon}{2 \cdot \text{len } D_1 \cdot |\operatorname{sup rng} f - \inf \operatorname{rng} f|}$$

The theorem is a consequence of (49).

(52) Let us consider a finite sequence p of elements of \mathbb{R} . Suppose for every natural number i such that $i \in \text{dom } p$ holds $r \leq p(i)$ and there exists a natural number i_0 such that $i_0 \in \text{dom } p$ and $p(i_0) = r$. Then $r = \inf \text{rng } p$.

(53) Suppose
$$f_1 = \chi_{I,I}$$
. Then

- (i) $0 \leq \min \operatorname{rng} \operatorname{upper_volume}(f_1, D)$, and
- (ii) $0 = \min \operatorname{rng} \operatorname{upper}_{\operatorname{volume}}(f_1, D)$ iff $\operatorname{divset}(D, 1) = [D(1), D(1)].$

PROOF: Consider i_0 being a natural number such that $i_0 \in \text{dom } D$ and min rng upper_volume $(f_1, D) = (\text{upper_volume}(f_1, D))(i_0)$. 0 =min rng upper_volume (f_1, D) iff divset(D, 1) = [D(1), D(1)]. \Box

- (54) If divset(D, 1) = [D(1), D(1)], then $D(1) = \inf I$.
- (55) Let us consider a bounded, integrable function f from I into \mathbb{R} . Then
 - (i) f is HK-integrable, and
 - (ii) HK-integral(f) = integral f.

The theorem is a consequence of (40), (12), (17), (28), (30), (47), (53), (54), (41), (20), (46), (51), (21), (22), (7), (1), (2), and (3).

Let I be a non empty, closed interval subset of \mathbb{R} . Note that every function from I into \mathbb{R} which is bounded and integrable is also HK-integrable.

GAUGE INTEGRAL

References

- Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [2] Robert G. Bartle. Return to the Riemann integral. American Mathematical Monthly, pages 625–632, 1996.
- [3] Robert G. Bartle. A modern theory of integration, volume 32. American Mathematical Society Providence, 2001.
- [4] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Formalization of real analysis: A survey of proof assistants and libraries. *Mathematical Structures in Computer Science*, 26(7):1196–1233, 2016.
- [5] Roland Coghetto. Cousin's lemma. Formalized Mathematics, 24(2):107–119, 2016. doi:10.1515/forma-2016-0009.
- [6] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93–102, 1999.
- [7] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Darboux's theorem. *Formalized Mathematics*, 9(1):197–200, 2001.
- [8] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Integrability of bounded total functions. Formalized Mathematics, 9(2):271–274, 2001.
- [9] Adam Grabowski and Christoph Schwarzweller. Revisions as an essential tool to maintain mathematical repositories. In M. Kauers, M. Kerber, R. Miner, and W. Windsteiger, editors, *Towards Mechanized Mathematical Assistants. Lecture Notes in Computer Science*, volume 4573, pages 235–249. Springer: Berlin, Heidelberg, 2007.
- [10] John Harrison. Formalizing basic complex analysis. Studies in Logic, Grammar and Rhetoric, 23(10):151–165, 2007.
- [11] Jean Mawhin. L'éternel retour des sommes de Riemann-Stieltjes dans l'évolution du calcul intégral. Bulletin de la Société Royale des Sciences de Liège, 70(4–6):345–364, 2001.
- [12] Keiko Narita, Kazuhisa Nakasho, and Yasunari Shidama. Riemann-Stieltjes integral. Formalized Mathematics, 24(3):199–204, 2016. doi:10.1515/forma-2016-0016.
- [13] Yasunari Shidama, Noburu Endou, and Pauline N. Kawamoto. On the formalization of Lebesgue integrals. *Studies in Logic, Grammar and Rhetoric*, 10(23):167–177, 2007.
- [14] Lee Peng Yee. The integral à la Henstock. Scientiae Mathematicae Japonicae, 67(1): 13–21, 2008.
- [15] Lee Peng Yee and Rudolf Vyborny. Integral: an easy approach after Kurzweil and Henstock, volume 14. Cambridge University Press, 2000.

Received September 3, 2017

The English version of this volume of Formalized Mathematics was financed under agreement 548/P-DUN/2016 with the funds from the Polish Minister of Science and Higher Education for the dissemination of science.