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About Quotient Orders and Ordering
Sequences
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Johannes Gutenberg University
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Summary. In preparation for the formalization in Mizar [4] of lotteries
as given in [14], this article closes some gaps in the Mizar Mathematical Library
(MML) regarding relational structures. The quotient order is introduced by the
equivalence relation identifying two elements x, y of a preorder as equivalent if
x 6 y and y 6 x. This concept is known (see e.g. chapter 5 of [19]) and was first
introduced into the MML in [13] and that work is incorporated here. Furthermore
given a set A, partition D of A and a finite-support function f : A → R, a
function Σf : D → R,Σf (X) =

∑
x∈X f(x) can be defined as some kind of

natural “restriction” from f to D. The first main result of this article can then
be formulated as:

∑
x∈A

f(x) =
∑
X∈D

Σf (X)

(
=
∑
X∈D

∑
x∈X

f(x)

)

After that (weakly) ascending/descending finite sequences (based on [3]) are in-
troduced, in analogous notation to their infinite counterparts introduced in [18]
and [13].

The second main result is that any finite subset of any transitive connected
relational structure can be sorted as a ascending or descending finite sequence,
thus generalizing the results from [16], where finite sequence of real numbers were
sorted.

The third main result of the article is that any weakly ascending/weakly
descending finite sequence on elements of a preorder induces a weakly ascen-
ding/weakly descending finite sequence on the projection of these elements into
the quotient order. Furthermore, weakly ascending finite sequences can be inter-
preted as directed walks in a directed graph, when the set of edges is described
by ordered pairs of vertices, which is quite common (see e.g. [10]).
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Additionally, some auxiliary theorems are provided, e.g. two schemes to find
the smallest or the largest element in a finite subset of a connected transitive
relational structure with a given property and a lemma I found rather useful:
Given two finite one-to-one sequences s, t on a set X, such that rng t ⊆ rng s,
and a function f : X → R such that f is zero for every x ∈ rng s \ rng t, we have∑
f ◦ s =

∑
f ◦ t.
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1. Preliminaries

Now we state the proposition:

(1) Let us consider sets A, B, and an object x. If A = B \ {x} and x ∈ B,
then B \A = {x}.

Let Y be a set and X be a subset of Y. One can verify that every binary
relation which is X-defined is also Y -defined.

Now we state the propositions:

(2) Let us consider a set X, and an object x. If x ∈ X and X = 1, then
{x} = X.

(3) Let us consider a set X, and a natural number k. Suppose X ⊆ Seg k.
Then rng SgmX ⊆ Seg k.

Let s be a finite sequence and N be a subset of dom s. Observe that s·SgmN

is finite sequence-like.
Let A be a set, B be a subset of A, C be a non empty set, f be a finite

sequence of elements of B, and g be a function from A into C. Let us observe
that g · f is finite sequence-like.

Let s be a finite sequence. Let us observe that s·idseq(len s) is finite sequence-
like.

One can verify that Rev(Rev(s)) reduces to s.
Let X be a set. Note that there exists a subset of X which is finite.
The scheme Finite2 deals with a set A and a subset B of A and a unary

predicate P and states that

(Sch. 1) P[A]

provided

• A is finite and

• P[B] and

http://zbmath.org/classification/?q=cc:06A05
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/orders_5.miz
http://ftp.mizar.org/
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• for every sets x, C such that x ∈ A \ B and B ⊆ C ⊆ A and P[C] holds
P[C ∪ {x}].

Let A be an empty set. One can check that every partition of A is empty
and there exists a partition of A which is empty.

Let S, T be 1-sorted structures, f be a function from S into T , and B be
a subset of S. Let us observe that the functor f◦B yields a subset of T . Now we
state the proposition:

(4) Let us consider a set X, an order R in X, a finite subset B of X, and
an object x. If B = {x}, then SgmX(R,B) = 〈x〉.
Proof: Set f = 〈x〉. For every natural numbers n, m such that n, m ∈
dom f and n < m holds fn 6= fm and 〈〈fn, fm〉〉 ∈ R by [3, (38), (2)]. �

Let us consider a finite sequence s of elements of R. Now we state the pro-
positions:

(5) If
∑
s 6= 0, then there exists a natural number i such that i ∈ dom s and

s(i) 6= 0.

(6) If s is non-negative yielding and there exists a natural number i such
that i ∈ dom s and s(i) 6= 0, then

∑
s > 0.

Proof: Consider i being a natural number such that i ∈ dom s and s(i) 6=
0. Set s1 = s. For every natural number j such that j ∈ dom s1 holds
0 ¬ s1(j) by [6, (3)]. There exists a natural number k such that k ∈ dom s1

and 0 < s1(k) by [6, (3)]. �

(7) If s is non-positive yielding and there exists a natural number i such
that i ∈ dom s and s(i) 6= 0, then

∑
s < 0.

Proof: Reconsider s1 = −s as a finite sequence of elements of R. There
exists a natural number i such that i ∈ dom s1 and s1(i) 6= 0 by [12, (58)].∑
s1 > 0. �

(8) Let us consider a set X, finite sequences s, t of elements of X, and
a function f from X into R. Suppose s is one-to-one and t is one-to-one
and rng t ⊆ rng s and for every element x of X such that x ∈ rng s \ rng t
holds f(x) = 0. Then

∑
(f · s) =

∑
(f · t).

Proof: Define P[set] ≡ there exists a finite sequence r of elements of X
such that r is one-to-one and rng t ⊆ rng r and rng r = $1 and

∑
(f · r) =∑

(f · t). Reconsider r1 = rng t as a subset of rng s. For every sets x, C
such that x ∈ rng s \ r1 and r1 ⊆ C ⊆ rng s and P[C] holds P[C ∪ {x}] by
[9, (40)], [3, (38), (31)], [9, (31)]. P[rng s] from Finite2. Consider r being
a finite sequence of elements of X such that r is one-to-one and rng t ⊆
rng r and rng r = rng s and

∑
(f · r) =

∑
(f · t). Define Q[object, object] ≡

r($1) = s($2). For every object i such that i ∈ dom r there exists an object
j such that j ∈ dom s and Q[i, j] by [6, (3)]. Consider p being a function
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from dom r into dom s such that for every object x such that x ∈ dom r

holds Q[x, p(x)] from [7, Sch. 1]. p is a permutation of dom r by [21, (63)].
For every object i, i ∈ dom r iff i ∈ dom p and p(i) ∈ dom s by [6, (3)].
For every object x, x ∈ dom(f · s) iff x ∈ dom s by [6, (11), (3)]. �

Let X be a set, f be a function, and g be a positive yielding function from
X into R. Let us observe that g · f is positive yielding.

Let g be a negative yielding function from X into R. Note that g · f is
negative yielding.

Let g be a non-positive yielding function from X into R. Let us observe that
g · f is non-positive yielding.

Let g be a non-negative yielding function from X into R. Note that g · f is
non-negative yielding.

Let s be a function. Note that the functor support s yields a subset of dom s.
Let X be a set. Let us observe that there exists a function from X into R which
is finite-support and non-negative yielding and there exists a function from X

into C which is non-negative yielding and finite-support.
Now we state the proposition:

(9) Let us consider a setA, and a function f fromA into C. Then support f =
support(−f).
Proof: For every object x, x ∈ support f iff x ∈ support(−f) by [15, (5),
(66)]. �

Let A be a set and f be a finite-support function from A into C. Observe
that −f is finite-support.

Let f be a finite-support function from A into R. One can verify that −f is
finite-support.

2. Orders

Let us consider a set X, a binary relation R, and a subset Y of X. Now we
state the propositions:

(10) If R is irreflexive in X, then R is irreflexive in Y.

(11) If R is symmetric in X, then R is symmetric in Y.

(12) If R is asymmetric in X, then R is asymmetric in Y.

Let A be a relational structure. We say that A is connected if and only if

(Def. 1) the internal relation of A is connected in the carrier of A.

We say that A is strongly connected if and only if

(Def. 2) the internal relation of A is strongly connected in the carrier of A.
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Let us note that there exists a relational structure which is non empty,
reflexive, transitive, antisymmetric, connected, strongly connected, strict, and
total and every relational structure which is strongly connected is also reflexive
and connected and every relational structure which is reflexive and connected
is also strongly connected and every relational structure which is empty is also
reflexive, antisymmetric, transitive, connected, and strongly connected.

Let A be a relational structure and a1, a2 be elements of A. We say that
a1 ≈ a2 if and only if

(Def. 3) a1 ¬ a2 ¬ a1.

Now we state the proposition:

(13) Let us consider a reflexive, non empty relational structure A, and an ele-
ment a of A. Then a ≈ a.

Let A be a reflexive, non empty relational structure and a1, a2 be elements
of A. One can verify that the predicate a1 ≈ a2 is reflexive.

Let A be a relational structure. We say that a1 � a2 if and only if

(Def. 4) a1 ¬ a2 and a2 6¬ a1.

Observe that the predicate is irreflexive.
We introduce the notation a2 � a1 as a synonym of a1 � a2.
Let A be a connected relational structure. One can verify that the predicate

a1 � a2 is asymmetric.
Now we state the propositions:

(14) Let us consider a non empty relational structure A, and elements a1, a2

of A. Suppose A is strongly connected. Then

(i) a1 � a2, or

(ii) a1 ≈ a2, or

(iii) a1 � a2.

(15) Let us consider a transitive relational structure A, and elements a1, a2,
a3 of A. Then

(i) if a1 � a2 and a2 ¬ a3, then a1 � a3, and

(ii) if a1 ¬ a2 and a2 � a3, then a1 � a3.

(16) Let us consider a non empty relational structure A, and elements a1, a2

of A. If A is strongly connected, then a1 ¬ a2 or a2 ¬ a1.

(17) Let us consider a non empty relational structure A, a subset B of A, and
elements a1, a2 of A. Suppose the internal relation of A is connected in B
and a1, a2 ∈ B and a1 6= a2. Then

(i) a1 ¬ a2, or

(ii) a2 ¬ a1.
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Let us consider a non empty relational structure A and elements a1, a2 of
A. Now we state the propositions:

(18) If A is connected and a1 6= a2, then a1 ¬ a2 or a2 ¬ a1.

(19) If A is strongly connected, then a1 = a2 or a1 < a2 or a2 < a1. The
theorem is a consequence of (16).

Let us consider a relational structure A and elements a1, a2 of A. Now we
state the propositions:

(20) If a1 ¬ a2, then a1, a2 ∈ the carrier of A.

(21) If a1 ¬ a2, then A is not empty.

(22) Let us consider a transitive relational structure A, and a finite subset B
of A. Suppose B is not empty and the internal relation of A is connected
in B. Then there exists an element x of A such that

(i) x ∈ B, and

(ii) for every element y of A such that y ∈ B and x 6= y holds x ¬ y.

Proof: Define P[set] ≡ if $1 is not empty, then there exists an element x
of A such that x ∈ $1 and for every element y of A such that y ∈ $1 and
x 6= y holds x ¬ y. For every sets z, C such that z ∈ B and C ⊆ B and
P[C] holds P[C ∪ {z}] by [9, (31)], (17), [9, (136)], [22, (3)]. P[B] from
[11, Sch. 2]. �

(23) Let us consider a connected, transitive relational structure A, and a finite
subset B of A. Suppose B is not empty. Then there exists an element x
of A such that

(i) x ∈ B, and

(ii) for every element y of A such that y ∈ B and x 6= y holds x ¬ y.

The theorem is a consequence of (22).

(24) Let us consider a transitive relational structure A, and a finite subset B
of A. Suppose B is not empty and the internal relation of A is connected
in B. Then there exists an element x of A such that

(i) x ∈ B, and

(ii) for every element y of A such that y ∈ B and x 6= y holds y ¬ x.

Proof: Define P[set] ≡ if $1 is not empty, then there exists an element x
of A such that x ∈ $1 and for every element y of A such that y ∈ $1 and
x 6= y holds y ¬ x. For every sets z, C such that z ∈ B and C ⊆ B and
P[C] holds P[C ∪ {z}] by [9, (31)], (17), [9, (136)], [22, (3)]. P[B] from
[11, Sch. 2]. �
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(25) Let us consider a connected, transitive relational structure A, and a finite
subset B of A. Suppose B is not empty. Then there exists an element x
of A such that

(i) x ∈ B, and

(ii) for every element y of A such that y ∈ B and x 6= y holds y ¬ x.

The theorem is a consequence of (24).

A preorder is a reflexive, transitive relational structure.
A linear preorder is a strongly connected, transitive relational structure.
An order is a reflexive, antisymmetric, transitive relational structure.
A linear order is a strongly connected, antisymmetric, transitive relational

structure. Let us observe that every preorder is quasi-ordered and there exists
a linear order which is empty.

Now we state the propositions:

(26) Let us consider a preorder A. Then the internal relation of A quasi-orders
the carrier of A.

(27) Let us consider an order A. Then the internal relation of A partially
orders the carrier of A.

(28) Let us consider a linear order A. Then the internal relation of A linearly
orders the carrier of A.

Let us consider a relational structure A. Now we state the propositions:

(29) If the internal relation of A quasi-orders the carrier of A, then A is
reflexive and transitive.

(30) If the internal relation of A partially orders the carrier of A, then A is
reflexive, transitive, and antisymmetric.

(31) If the internal relation of A linearly orders the carrier of A, then A is
reflexive, transitive, antisymmetric, and connected.

The scheme RelStrMin deals with a transitive, connected relational structure
A and a finite subset B of A and a unary predicate P and states that

(Sch. 2) There exists an element x of A such that x ∈ B and P[x] and for every
element y of A such that y ∈ B and y � x holds P[y]

provided

• there exists an element x of A such that x ∈ B and P[x].

The scheme RelStrMax deals with a transitive, connected relational structure
A and a finite subset B of A and a unary predicate P and states that

(Sch. 3) There exists an element x of A such that x ∈ B and P[x] and for every
element y of A such that y ∈ B and x � y holds P[y]



128 sebastian koch

provided

• there exists an element x of A such that x ∈ B and P[x].

3. Quotient Order

Let A be a set and D be a partition of A. The functor EqRelOf(D) yielding
an equivalence relation of A is defined by

(Def. 5) D = Classes it .
Let A be a preorder. The functor EqRelOf(A) yielding an equivalence rela-

tion of the carrier of A is defined by

(Def. 6) for every elements x, y of A, 〈〈x, y〉〉 ∈ it iff x ¬ y ¬ x.

Now we state the proposition:

(32) Let us consider a preorder A. Then EqRelOf(A) = EqRel(A).

Let A be an empty preorder. Let us note that EqRelOf(A) is empty.
Let A be a non empty preorder. Observe that EqRelOf(A) is non empty.
Now we state the proposition:

(33) Let us consider an order A. Then EqRelOf(A) = idα, where α is the car-
rier of A.

Let A be a preorder. The functor QuotientOrder(A) yielding a strict rela-
tional structure is defined by

(Def. 7) the carrier of it = Classes(EqRelOf(A)) and for every elements X, Y of
Classes(EqRelOf(A)), 〈〈X, Y 〉〉 ∈ the internal relation of it iff there exist
elements x, y of A such that X = [x]EqRelOf(A) and Y = [y]EqRelOf(A) and
x ¬ y.

Let A be an empty preorder. Observe that QuotientOrder(A) is empty.
Now we state the proposition:

(34) Let us consider a non empty preorder A, and an element x of A. Then
[x]EqRelOf(A) ∈ the carrier of QuotientOrder(A).

Let A be a non empty preorder. One can verify that QuotientOrder(A) is
non empty.

Now we state the proposition:

(35) Let us consider a preorder A. Then the internal relation
of QuotientOrder(A) = ¬EA. The theorem is a consequence of (32).

Let A be a preorder. Observe that QuotientOrder(A) is reflexive, total, an-
tisymmetric, and transitive.

Let A be a linear preorder. Let us note that QuotientOrder(A) is connected
and strongly connected.
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Let A be a preorder. The functor the projection onto A yielding a function
from A into QuotientOrder(A) is defined by

(Def. 8) for every element x of A, it(x) = [x]EqRelOf(A).

Let A be an empty preorder. One can check that the projection onto A is
empty.

Let A be a non empty preorder. Note that the projection onto A is non
empty.

Now we state the propositions:

(36) Let us consider a non empty preorder A, and elements x, y of A. Suppose
x ¬ y. Then (the projection onto A)(x) ¬ (the projection onto A)(y).

(37) Let us consider a preorder A, and elements x, y of A. Suppose x ≈
y. Then (the projection onto A)(x) = (the projection onto A)(y). The
theorem is a consequence of (20).

Let A be a preorder and R be an equivalence relation of the carrier of A.
We say that R is EqRelOf-like if and only if

(Def. 9) R = EqRelOf(A).

Let us note that EqRelOf(A) is EqRelOf-like and there exists an equivalence
relation of the carrier of A which is EqRelOf-like.

Let R be an EqRelOf-like equivalence relation of the carrier of A and x

be an element of A. One can check that the functor [x]R yields an element of
QuotientOrder(A). Now we state the propositions:

(38) Let us consider a preorder A. Then the carrier of QuotientOrder(A) is
a partition of the carrier of A.

(39) Let us consider a non empty preorder A, and a non empty partition D

of the carrier of A. Suppose D = the carrier of QuotientOrder(A). Then
the projection onto A = the projection onto D.
Proof: For every object x such that x ∈ dom(the projection onto A)
holds (the projection onto A)(x) = (the projection onto D)(x) by [17,
(23)]. �

Let A be a set and D be a partition of A.
The functor PreorderFromPartition(D) yielding a strict relational structure

is defined by the term

(Def. 10) 〈A,EqRelOf(D)〉.
Let A be a non empty set. Let us observe that PreorderFromPartition(D) is

non empty.
Let A be a set. One can verify that PreorderFromPartition(D) is reflexive

and transitive and PreorderFromPartition(D) is symmetric.
Let us consider a set A and a partitionD of A. Now we state the propositions:
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(40) EqRelOf(D) = EqRelOf(PreorderFromPartition(D)).
Proof: For every elements x, y of A such that 〈〈x, y〉〉 ∈ EqRelOf(D) holds
〈〈x, y〉〉 ∈ EqRelOf(PreorderFromPartition(D)) by [17, (6)]. For every ele-
ments x, y of A such that 〈〈x, y〉〉 ∈ EqRelOf(PreorderFromPartition(D))
holds 〈〈x, y〉〉 ∈ EqRelOf(D). �

(41) D = Classes(EqRelOf(PreorderFromPartition(D))). The theorem is a con-
sequence of (40).

(42) D = the carrier of QuotientOrder(PreorderFromPartition(D)). The the-
orem is a consequence of (41).

Let A be a set, D be a partition of A, X be an element of D, and f be
a function. The functor eqSupport(f,X) yielding a subset of A is defined by the
term

(Def. 11) support f ∩X.

Let A be a preorder and X be an element of QuotientOrder(A). The functor
eqSupport(f,X) yielding a subset of A is defined by

(Def. 12) there exists a partition D of the carrier of A and there exists an element
Y of D such that D = the carrier of QuotientOrder(A) and Y = X and
it = eqSupport(f, Y ).

Observe that the functor eqSupport(f,X) is defined by the term

(Def. 13) support f ∩X.

Let A be a set, D be a partition of A, f be a finite-support function, and X
be an element of D. One can verify that eqSupport(f,X) is finite.

Let A be a preorder and X be an element of QuotientOrder(A). Let us note
that eqSupport(f,X) is finite.

Let A be an order, X be an element of the carrier of QuotientOrder(A), and
f be a finite-support function from A into R. Observe that eqSupport(f,X) is
trivial.

Now we state the propositions:

(43) Let us consider a set A, a partition D of A, an element X of D, and
a function f from A into R. Then eqSupport(f,X) = eqSupport(−f,X).
The theorem is a consequence of (9).

(44) Let us consider a preorder A, an element X of QuotientOrder(A), and
a function f from A into R. Then eqSupport(f,X) = eqSupport(−f,X).
The theorem is a consequence of (43).

Let A be a set, D be a partition of A, and f be a finite-support function
from A into R. The functor ΣDf yielding a function from D into R is defined
by
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(Def. 14) for every element X of D such that X ∈ D holds it(X) =
∑

(f ·
CFS(eqSupport(f,X))).

Let A be a preorder.
The functor Σ≈f yielding a function from QuotientOrder(A) into R is defined

by

(Def. 15) there exists a partition D of the carrier of A such that D = the carrier
of QuotientOrder(A) and it = ΣDf .

One can verify that the functor Σ≈f is defined by

(Def. 16) for every element X of QuotientOrder(A) such that X ∈ the carrier of
QuotientOrder(A) holds it(X) =

∑
(f · CFS(eqSupport(f,X))).

Now we state the propositions:

(45) Let us consider a set A, a partition D of A, and a finite-support function
f from A into R. Then ΣD(−f) = −ΣDf .
Proof: For every object X such that X ∈ dom(ΣD(−f)) holds
(ΣD(−f))(X) = (−ΣDf)(X) by (43), [1, (83)], [7, (2)], [6, (11)]. �

(46) Let us consider a preorder A, and a finite-support function f from A

into R. Then Σ≈−f = −Σ≈f . The theorem is a consequence of (38) and
(45).

Let A be a preorder and f be a non-negative yielding, finite-support function
from A into R. Observe that Σ≈f is non-negative yielding.

Let A be a set and D be a partition of A. Let us note that ΣDf is non-
negative yielding.

Now we state the propositions:

(47) Let us consider a set A, a partition D of A, and a finite-support function
f from A into R. If f is non-positive yielding, then ΣDf is non-positive
yielding. The theorem is a consequence of (45).

(48) Let us consider a preorder A, and a finite-support function f from A into
R. Suppose f is non-positive yielding. Then Σ≈f is non-positive yielding.
The theorem is a consequence of (38) and (47).

(49) Let us consider a preorder A, a finite-support function f from A into R,
and an element x of A. Suppose for every element y of A such that x ≈ y
holds x = y. Then (Σ≈f · (the projection onto A))(x) = f(x).

(50) Let us consider an order A, and a finite-support function f from A into
R. Then Σ≈f · (the projection onto A) = f .
Proof: Set F = Σ≈f · (the projection onto A). For every object x such
that x ∈ dom f holds f(x) = F (x) by [22, (2)], (49). �

(51) Let us consider an order A, and finite-support functions f1, f2 from A

into R. If Σ≈f1 = Σ≈f2, then f1 = f2. The theorem is a consequence of
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(50).

(52) Let us consider a preorder A, and a finite-support function f from A

into R. Then support(Σ≈f) ⊆ (the projection onto A)◦(support f).
Proof: For every object X such that X ∈ support(Σ≈f) holds X ∈
(the projection onto A)◦(support f) by [5, (24), (32)], (5), [6, (11), (13),
(3)]. �

(53) Let us consider a non empty set A, a non empty partition D of A,
and a finite-support function f from A into R. Then support(ΣDf) ⊆
(the projection ontoD)◦(support f). The theorem is a consequence of (42),
(39), and (52).

(54) Let us consider a preorder A, and a finite-support function f from A

into R. Suppose f is non-negative yielding. Then (the projection onto
A)◦(support f) = support(Σ≈f).
Proof:
For every object X such that X ∈ (the projection onto A)◦(support f)
holds X ∈ support(Σ≈f) by [7, (36)], [5, (24), (32)], [17, (20)]. �

(55) Let us consider a non empty set A, a non empty partition D of A,
and a finite-support function f from A into R. Suppose f is non-negative
yielding. Then (the projection onto D)◦(support f) = support(ΣDf). The
theorem is a consequence of (42), (39), and (54).

(56) Let us consider a preorder A, and a finite-support function f from A

into R. Suppose f is non-positive yielding. Then (the projection onto
A)◦(support f) = support(Σ≈f). The theorem is a consequence of (9),
(54), and (46).

(57) Let us consider a non empty set A, a non empty partition D of A,
and a finite-support function f from A into R. Suppose f is non-positive
yielding. Then (the projection onto D)◦(support f) = support(ΣDf). The
theorem is a consequence of (42), (39), and (56).

Let A be a preorder and f be a finite-support function from A into R.
Observe that Σ≈f is finite-support.

Let A be a set and D be a partition of A. Let us note that ΣDf is finite-
support.

Let us consider a non empty set A, a non empty partition D of A, a finite-
support function f from A into R, a one-to-one finite sequence s1 of elements
of A, and a one-to-one finite sequence s2 of elements of D. Now we state the
propositions:

(58) Suppose rng s2 = (the projection onto D)◦(rng s1) and for every ele-
ment X of D such that X ∈ rng s2 holds eqSupport(f,X) ⊆ rng s1. Then∑

(ΣDf · s2) =
∑

(f · s1).
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Proof: Define P[natural number] ≡ for every one-to-one finite sequence
t1 of elements of A for every one-to-one finite sequence t2 of elements of D
such that rng t2 = (the projection onto D)◦(rng t1) and for every element
X of D such that X ∈ rng t2 holds eqSupport(f,X) ⊆ rng t1 holds if
len t2 = $1, then

∑
(ΣDf · t2) =

∑
(f · t1). P[0]. For every natural number

j such that P[j] holds P[j + 1] by [5, (19)], [3, (38)], [20, (91)], [9, (48)].
For every natural number i, P[i] from [2, Sch. 2]. �

(59) If rng s1 = support f and rng s2 = support(ΣDf), then
∑

(ΣDf · s2) =∑
(f · s1). The theorem is a consequence of (58), (53), and (8).

Now we state the proposition:

(60) Let us consider a preorder A, a finite-support function f from A into R,
a one-to-one finite sequence s1 of elements of A, and a one-to-one finite
sequence s2 of elements of QuotientOrder(A). Suppose rng s1 = support f
and rng s2 = support(Σ≈f). Then

∑
(Σ≈f · s2) =

∑
(f · s1). The theorem

is a consequence of (59).

4. Ordering Finite Sequences

Let A be a relational structure and s be a finite sequence of elements of A.
We say that s is weakly ascending if and only if

(Def. 17) for every natural numbers n, m such that n, m ∈ dom s and n < m holds
sn ¬ sm.

We say that s is ascending if and only if

(Def. 18) for every natural numbers n, m such that n, m ∈ dom s and n < m holds
sn � sm.

Let us observe that every finite sequence of elements of A which is ascending
is also weakly ascending.

Let A be an antisymmetric relational structure and s be a finite sequence of
elements of A. Observe that s is ascending if and only if the condition (Def. 19)
is satisfied.

(Def. 19) for every natural numbers n, m such that n, m ∈ dom s and n < m holds
sn < sm.

Let A be a relational structure. We say that s is weakly descending if and
only if

(Def. 20) for every natural numbers n, m such that n, m ∈ dom s and n < m holds
sm ¬ sn.

We say that s is descending if and only if
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(Def. 21) for every natural numbers n, m such that n, m ∈ dom s and n < m holds
sm � sn.

One can verify that every finite sequence of elements of A which is descending
is also weakly descending.

Let A be an antisymmetric relational structure and s be a finite sequence of
elements of A. Let us observe that s is descending if and only if the condition
(Def. 22) is satisfied.

(Def. 22) for every natural numbers n, m such that n, m ∈ dom s and n < m holds
sm < sn.

Note that every finite sequence of elements of A which is one-to-one and
weakly ascending is also ascending and every finite sequence of elements of A
which is one-to-one and weakly descending is also descending and every finite
sequence of elements of A which is weakly ascending and weakly descending is
also constant.

Let A be a reflexive relational structure. Note that every finite sequence of
elements of A which is constant is also weakly ascending and weakly descending.

Let A be a relational structure. Note that ε(the carrier of A) is ascending, we-
akly ascending, descending, and weakly descending and there exists a finite
sequence of elements of A which is empty, ascending, weakly ascending, descen-
ding, and weakly descending.

Let A be a non empty relational structure and x be an element of A. Let
us observe that 〈x〉 is ascending, weakly ascending, descending, and weakly
descending as a finite sequence of elements of A and there exists a finite sequence
of elements of A which is non empty, one-to-one, ascending, weakly ascending,
descending, and weakly descending.

Let A be a relational structure and s be a finite sequence of elements of A.
We say that s is asc-ordering if and only if

(Def. 23) s is one-to-one and weakly ascending.

We say that s is desc-ordering if and only if

(Def. 24) s is one-to-one and weakly descending.

Let us note that every finite sequence of elements of A which is asc-ordering
is also one-to-one and weakly ascending and every finite sequence of elements of
A which is one-to-one and weakly ascending is also asc-ordering and every finite
sequence of elements of A which is desc-ordering is also one-to-one and weakly
descending and every finite sequence of elements of A which is one-to-one and
weakly descending is also desc-ordering and every finite sequence of elements of
A which is ascending is also asc-ordering and every finite sequence of elements
of A which is descending is also desc-ordering.
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Let B be a subset of A and s be a finite sequence of elements of A. We say
that s is B-asc-ordering if and only if

(Def. 25) s is asc-ordering and rng s = B.

We say that s is B-desc-ordering if and only if

(Def. 26) s is desc-ordering and rng s = B.

Let us observe that every finite sequence of elements of A which is B-asc-
ordering is also asc-ordering and every finite sequence of elements of A which is
B-desc-ordering is also desc-ordering.

Let B be an empty subset of A. Let us note that every finite sequence of
elements of A which is B-asc-ordering is also empty and every finite sequence
of elements of A which is B-desc-ordering is also empty.

Let us consider a relational structure A and a finite sequence s of elements
of A. Now we state the propositions:

(61) s is weakly ascending if and only if Rev(s) is weakly descending.

(62) s is ascending if and only if Rev(s) is descending.

Let us consider a relational structure A, a subsetB of A, and a finite sequence
s of elements of A. Now we state the propositions:

(63) s is B-asc-ordering if and only if Rev(s) is B-desc-ordering. The theorem
is a consequence of (61).

(64) If s is B-asc-ordering or B-desc-ordering, then B is finite.

Let A be an antisymmetric relational structure. One can check that every
finite sequence of elements of A which is asc-ordering is also ascending and every
finite sequence of elements of A which is desc-ordering is also descending.

Let us consider an antisymmetric relational structure A, a subset B of A,
and finite sequences s1, s2 of elements of A. Now we state the propositions:

(65) If s1 is B-asc-ordering and s2 is B-asc-ordering, then s1 = s2.
Proof: Define P[natural number] ≡ if $1 ∈ dom s1 and $1 ∈ dom s2,
then s1$1 = s2$1 . For every natural number k such that for every natural
number n such that n < k holds P[n] holds P[k] by [5, (10)], [22, (2)]. For
every natural number k, P[k] from [2, Sch. 4]. For every natural number
k such that k ∈ dom s1 holds s1(k) = s2(k). �

(66) If s1 is B-desc-ordering and s2 is B-desc-ordering, then s1 = s2. The
theorem is a consequence of (63) and (65).

(67) Let us consider a linear order A, a finite subset B of A, and a finite
sequence s of elements of A. Then s is B-asc-ordering if and only if s =
SgmX((the internal relation of A), B).
Proof: If s is B-asc-ordering, then s = SgmX((the internal relation of
A), B) by [8, (4)]. The internal relation of A linearly orders B. For every
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natural numbers n, m such that n, m ∈ dom s and n < m holds sn < sm.
�

Let A be a linear order and B be a finite subset of A.
Observe that SgmX((the internal relation of A), B) is B-asc-ordering.
Let us consider a relational structure A, subsets B, C of A, and a finite

sequence s of elements of A. Now we state the propositions:

(68) If s is B-asc-ordering and C ⊆ B, then there exists a finite sequence s2

of elements of A such that s2 is C-asc-ordering.
Proof: Set s2 = s·Sgm(s−1(C)). Consider n being a natural number such
that dom s = Seg n. For every object x, x ∈ rng s2 iff x ∈ C by [6, (11),
(3), (12)]. For every natural numbers n, m such that n, m ∈ dom s2 and
n < m holds s2n ¬ s2m by [3, (6)], [6, (11)], [3, (1)], [6, (12)]. �

(69) If s is B-desc-ordering and C ⊆ B, then there exists a finite sequen-
ce s2 of elements of A such that s2 is C-desc-ordering. The theorem is
a consequence of (63) and (68).

(70) Let us consider a relational structure A, a subset B of A, a finite sequence
s of elements of A, and an element x of A. Suppose B = {x} and s = 〈x〉.
Then s is B-asc-ordering and B-desc-ordering.
Proof: For every natural numbers n, m such that n, m ∈ dom s and
n < m holds sn ¬ sm ¬ sn by [3, (38), (2)]. �

Let us consider a relational structure A, a subsetB of A, and a finite sequence
s of elements of A. Now we state the propositions:

(71) If s is B-asc-ordering, then the internal relation of A is connected in B.
Proof: For every objects x, y such that x, y ∈ B and x 6= y holds 〈〈x,
y〉〉 ∈ the internal relation of A or 〈〈y, x〉〉 ∈ the internal relation of A by [5,
(10)]. �

(72) If s is B-desc-ordering, then the internal relation of A is connected in B.
The theorem is a consequence of (63) and (71).

Let us consider a transitive relational structure A, subsets B, C of A, a fi-
nite sequence s1 of elements of A, and an element x of A. Now we state the
propositions:

(73) Suppose s1 is C-asc-ordering and x /∈ C and B = C ∪ {x} and for every
element y of A such that y ∈ C holds x ¬ y. Then there exists a finite
sequence s2 of elements of A such that

(i) s2 = 〈x〉 a s1, and

(ii) s2 is B-asc-ordering.

Proof: Set s3 = 〈x〉. Set s2 = s3
a s1. For every natural numbers n, m

such that n, m ∈ dom s2 and n < m holds s2n ¬ s2m by [3, (25), (38),
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(2)]. �

(74) Suppose s1 is C-asc-ordering and x /∈ C and B = C ∪ {x} and for every
element y of A such that y ∈ C holds y ¬ x. Then there exists a finite
sequence s2 of elements of A such that

(i) s2 = s1
a 〈x〉, and

(ii) s2 is B-asc-ordering.

Proof: Set s3 = 〈x〉. Set s2 = s1
a s3. For every natural numbers n, m

such that n, m ∈ dom s2 and n < m holds s2n ¬ s2m by [3, (25), (1), (2)],
[2, (13)]. �

(75) Suppose s1 is C-desc-ordering and x /∈ C and B = C ∪{x} and for every
element y of A such that y ∈ C holds x ¬ y. Then there exists a finite
sequence s2 of elements of A such that

(i) s2 = s1
a 〈x〉, and

(ii) s2 is B-desc-ordering.

The theorem is a consequence of (63) and (73).

(76) Suppose s1 is C-desc-ordering and x /∈ C and B = C ∪{x} and for every
element y of A such that y ∈ C holds y ¬ x. Then there exists a finite
sequence s2 of elements of A such that

(i) s2 = 〈x〉 a s1, and

(ii) s2 is B-desc-ordering.

The theorem is a consequence of (63) and (74).

Let us consider a transitive relational structure A and a finite subset B of
A. Now we state the propositions:

(77) If the internal relation of A is connected in B, then there exists a finite
sequence s of elements of A such that s is B-asc-ordering.
Proof: Define P[natural number] ≡ for every subset C of A such that
C ⊆ B and C = $1 there exists a finite sequence s of elements of A such
that s is C-asc-ordering. P[0]. For every natural number k such that P[k]
holds P[k + 1] by (2), [3, (74)], (70), (22). For every natural number k,
P[k] from [2, Sch. 2]. �

(78) If the internal relation of A is connected in B, then there exists a finite
sequence s of elements of A such that s is B-desc-ordering. The theorem
is a consequence of (77) and (63).

Let us consider a connected, transitive relational structure A and a finite
subset B of A. Now we state the propositions:

(79) There exists a finite sequence s of elements of A such that s is B-asc-
ordering. The theorem is a consequence of (77).
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(80) There exists a finite sequence s of elements of A such that s is B-desc-
ordering. The theorem is a consequence of (79) and (63).

Let A be a connected, transitive relational structure and B be a finite subset
of A. Note that there exists a finite sequence of elements of A which is B-asc-
ordering and there exists a finite sequence of elements of A which is B-desc-
ordering.

Now we state the proposition:

(81) Let us consider a preorder A, and a subset B of A. Suppose the in-
ternal relation of A is connected in B. Then the internal relation of
QuotientOrder(A) is connected in (the projection onto A)◦B. The the-
orem is a consequence of (36).

Let us consider a preorder A, a subset B of A, and a finite sequence s1 of
elements of A. Now we state the propositions:

(82) Suppose s1 is B-asc-ordering. Then there exists a finite sequence s2 of
elements of QuotientOrder(A) such that s2 is ((the projection onto A)◦B)-
asc-ordering. The theorem is a consequence of (71), (81), and (77).

(83) Suppose s1 is B-desc-ordering. Then there exists a finite sequence s2

of elements of QuotientOrder(A) such that s2 is ((the projection onto
A)◦B)-desc-ordering. The theorem is a consequence of (63) and (82).
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