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Summary. This article formalizes the proof of Niven’s theorem [12] which
states that if x/π and sin(x) are both rational, then the sine takes values 0,
±1/2, and ±1. The main part of the formalization follows the informal proof pre-
sented at Pr∞fWiki (https://proofwiki.org/wiki/Niven’s_Theorem#Source_
of_Name). For this proof, we have also formalized the rational and integral root
theorems setting constraints on solutions of polynomial equations with integer
coefficients [8, 9].
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From now on r, t denote real numbers, i denotes an integer, k, n denote
natural numbers, p denotes a polynomial over RF, e denotes an element of RF,
L denotes a non empty zero structure, and z, z0, z1, z2 denote elements of L.

Now we state the propositions:

(1) Let us consider complexes a, b, c, d. If b 6= 0 and a
b = c

d , then a = b·c
d .

(2) Let us consider real numbers a, b. If |a| = b, then a = b or a = −b.
(3) If |i| ¬ 2, then i = −2 or i = −1 or i = 0 or i = 1 or i = 2. The theorem

is a consequence of (2).

(4) If n 6= 0, then i | in.

(5) If t > 0, then there exists i such that t · i ¬ r ¬ t · (i+ 1).

1The work on the formalization presented in this article was completed thanks to the Mizar
Mathematical Library maintenance and refactoring carried out at the Computer Center of the
University of Białystok.
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Proof: Define P[integer] ≡ t · $1 ¬ r. There exists an integer i1 such that
P[i1]. Set F = d rt e. For every integer i1 such that P[i1] holds i1 ¬ F .
Consider i such that P[i] and for every integer i1 such that P[i1] holds
i1 ¬ i from [15, Sch. 6]. �

(6) Let us consider a finite sequence p of elements of RF, and a real-valued
finite sequence q. If p = q, then

∑
p =
∑
q.

Proof: Define P[finite sequence] ≡ for every finite sequence p of elements
of RF for every real-valued finite sequence q such that p = q and p = $1

holds
∑
p =
∑
q. P[∅] by [16, (43)], [4, (72)]. For every finite sequence f

and for every object x such that P[f ] holds P[f a 〈x〉] by [2, (36), (38)],
[5, (31)], [16, (41), (44)]. For every finite sequence f , P[f ] from [2, Sch. 3].
�

(7) Let us consider a natural number i, and an element r of RF. Then
powerRF(r, i) = ri.
Proof: Define P[natural number] ≡ powerRF(r, $1) = r$1 . For every na-
tural number n, P[n] from [1, Sch. 2]. �

(8) sin(5·π
6 ) = 1

2 .

(9) sin(5·π
6 + 2 · π · i) = 1

2 .

(10) sin(7·π
6 ) = −1

2 .

(11) sin(7·π
6 + 2 · π · i) = −1

2 .

(12) sin(11·π
6 ) = −1

2 .

(13) sin(11·π
6 + 2 · π · i) = −1

2 .

(14) cos(4·π
3 ) = −1

2 .

(15) cos(4·π
3 + 2 · π · i) = −1

2 .

(16) cos(5·π
3 ) = 1

2 .

(17) cos(5·π
3 + 2 · π · i) = 1

2 .

(18) If 0 ¬ r ¬ π
2 and cos r = 1

2 , then r = π
3 .

(19) Let us consider an add-associative, right zeroed, right complementable,
left distributive, non empty double loop structure L, and a sequence p of
L. Then 0. L ∗ p = 0. L.

Let us consider L, z, and n. One can verify that 0. L+·(n, z) is finite-Support
as a sequence of L.

Let us consider a polynomial p over L. Now we state the propositions:

(20) If z 6= 0L, then if p = 0. L+· (n, z), then len p = n+ 1.
Proof: the length of p is at most n + 1 by [1, (13)], [3, (32)], [14, (7)].
For every natural number m such that the length of p is at most m holds
n+ 1 ¬ m by [14, (13)], [3, (31)], [1, (13)]. �
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(21) If z 6= 0L, then if p = 0. L +· (n, z), then deg p = n. The theorem is
a consequence of (20).

Note that 0.RF is Z-valued and 1.RF is Z-valued and there exists an element
of RF which is integer.

Now we state the proposition:

(22) rng〈z〉 = {z, 0L}.
Proof: Set p = 〈z〉. rng p ⊆ {z, 0L} by [11, (32)], [1, (14)]. �

Let us consider L, z0, z1, and z2. The functor 〈z0, z1, z2〉 yielding a sequence
of L is defined by the term

(Def. 1) ((0. L+· (0, z0)) +· (1, z1)) +· (2, z2).

Now we state the propositions:

(23) 〈z0, z1, z2〉(0) = z0.

(24) 〈z0, z1, z2〉(1) = z1.

(25) 〈z0, z1, z2〉(2) = z2.

(26) If 3 ¬ n, then 〈z0, z1, z2〉(n) = 0L.

Let us consider L, z0, z1, and z2. Let us observe that 〈z0, z1, z2〉 is finite-
Support.

Now we state the propositions:

(27) len〈z0, z1, z2〉 ¬ 3. The theorem is a consequence of (26).

(28) If z2 6= 0L, then len〈z0, z1, z2〉 = 3. The theorem is a consequence of (25)
and (26).

(29) Let us consider a right zeroed, non empty additive loop structure L, and
elements z0, z1 of L. Then 〈z0〉+ 〈z1〉 = 〈z0 + z1〉.

(30) Let us consider a right zeroed, non empty additive loop structure L, and
elements z0, z1, z2, z3 of L. Then 〈z0, z1〉+ 〈z2, z3〉 = 〈z0 + z2, z1 + z3〉.

(31) Let us consider a right zeroed, non empty additive loop structure L,
and elements z0, z1, z2, z3, z4, z5 of L. Then 〈z0, z1, z2〉 + 〈z3, z4, z5〉 =
〈z0 + z3, z1 + z4, z2 + z5〉. The theorem is a consequence of (23), (24), (25),
and (26).

(32) Let us consider an add-associative, right zeroed, right complementable,
non empty additive loop structure L, and an element z0 of L. Then−〈z0〉 =
〈−z0〉.

(33) Let us consider an add-associative, right zeroed, right complementable,
non empty additive loop structure L, and elements z0, z1 of L. Then
−〈z0, z1〉 = 〈−z0,−z1〉.

(34) Let us consider an add-associative, right zeroed, right complementable,
non empty additive loop structure L, and elements z0, z1, z2 of L. Then
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−〈z0, z1, z2〉 = 〈−z0,−z1,−z2〉. The theorem is a consequence of (23), (24),
(25), and (26).

(35) Let us consider an add-associative, right zeroed, right complementable,
non empty additive loop structure L, and elements z0, z1 of L. Then
〈z0〉 − 〈z1〉 = 〈z0 − z1〉. The theorem is a consequence of (32) and (29).

(36) Let us consider an add-associative, right zeroed, right complementable,
non empty additive loop structure L, and elements z0, z1, z2, z3 of L.
Then 〈z0, z1〉 − 〈z2, z3〉 = 〈z0 − z2, z1 − z3〉. The theorem is a consequence
of (33) and (30).

(37) Let us consider an add-associative, right zeroed, right complementable,
non empty additive loop structure L, and elements z0, z1, z2, z3, z4, z5 of
L. Then 〈z0, z1, z2〉 − 〈z3, z4, z5〉 = 〈z0 − z3, z1 − z4, z2 − z5〉. The theorem
is a consequence of (34) and (31).

(38) Let us consider an add-associative, right zeroed, right complementable,
left distributive, unital, associative, non empty double loop structure L,
and elements z0, z1, z2, x of L. Then eval(〈z0, z1, z2〉, x) = z0+z1·x+z2·x·x.
The theorem is a consequence of (23), (24), (27), and (25).

Let a be an integer element of RF. Note that 〈a〉 is Z-valued.
Let a, b be integer elements of RF. One can verify that 〈a, b〉 is Z-valued.
Let a, b, c be integer elements of RF. Observe that 〈a, b, c〉 is Z-valued and

there exists a polynomial over RF which is monic and Z-valued and there exists
a finite sequence of elements of RF which is Z-valued.

Let F be a Z-valued finite sequence of elements of RF. One can check that∑
F is integer.
Let f be a Z-valued sequence of RF. Let us note that −f is Z-valued.
Let g be a Z-valued sequence of RF. Observe that f+g is Z-valued and f−g

is Z-valued and f ∗ g is Z-valued.
Now we state the proposition:

(39) Let us consider a non degenerated, non empty double loop structure L,
and an element z of L. Then LC〈z, 1L〉 = 1L.

Let L be a non degenerated, non empty double loop structure and z be
an element of L. One can check that 〈z, 1L〉 is monic.

Now we state the proposition:

(40) Let us consider a non degenerated, non empty double loop structure
L, and elements z1, z2 of L. Then LC〈z1, z2, 1L〉 = 1L. The theorem is
a consequence of (28) and (25).

Let L be a non degenerated, non empty double loop structure and z1, z2 be
elements of L. Let us observe that 〈z1, z2, 1L〉 is monic.

Let p be a Z-valued polynomial over RF. Let us note that LC p is integer.
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Now we state the proposition:

(41) Let us consider an add-associative, right zeroed, right complementable,
non empty additive loop structure L, and a polynomial p over L. Then
deg(−p) = deg p.

Let us consider an add-associative, right zeroed, right complementable, non
empty additive loop structure L and polynomials p, q over L. Now we state the
propositions:

(42) If deg p > deg q, then deg(p+ q) = deg p.

(43) If deg p > deg q, then deg(p− q) = deg p.

(44) If deg p < deg q, then deg(p− q) = deg q.

(45) Let us consider an add-associative, right zeroed, right complementable,
distributive, non degenerated double loop structure L, and a polynomial
p over L. Then LC p = −LC(−p).

(46) Let us consider an add-associative, right zeroed, right complementable,
associative, commutative, well unital, almost left invertible, distributive,
non degenerated double loop structure L, and polynomials p, q over L.
Then LC(p ∗ q) = LC p · LC q. The theorem is a consequence of (19).

Let us consider an add-associative, right zeroed, right complementable,
distributive, non degenerated double loop structure L, a monic polynomial
p over L, and a polynomial q over L. Now we state the propositions:

(47) If deg p > deg q, then p + q is monic. The theorem is a consequence of
(42).

(48) If deg p > deg q, then p − q is monic. The theorem is a consequence of
(43).

Let L be an add-associative, right zeroed, right complementable, asso-
ciative, commutative, well unital, almost left invertible, distributive, non
degenerated double loop structure and p, q be monic polynomials over L. Let
us note that p ∗ q is monic.

Now we state the propositions:

(49) Let us consider an Abelian, add-associative, right zeroed, right com-
plementable, unital, distributive, non empty double loop structure L,
elements z1, z2 of L, and a polynomial p over L. Suppose eval(p, z1) = z2.
Then eval(p− 〈z2〉, z1) = 0L.

(50) Rational root theorem:
Let us consider a Z-valued polynomial p over RF, and an element e of RF.
Suppose e is a root of p. Let us consider integers k, l. Suppose l 6= 0 and
e = k

l and k and l are relatively prime. Then

(i) k | p(0), and
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(ii) l | LC p.

The theorem is a consequence of (7), (6), and (4).

(51) Integral root theorem:
Let us consider a monic, Z-valued polynomial p over RF, and a rational
element e of RF. If e is a root of p, then e is integer. The theorem is
a consequence of (50).

(52) Suppose 1 ¬ n and e = 2 · cos t. Then there exists a monic, Z-valued
polynomial p over RF such that

(i) eval(p, e) = 2 · cos(n · t), and

(ii) deg p = n, and

(iii) if n = 1, then p = 〈0RF , 1RF〉, and

(iv) if n = 2, then there exists an element r of RF such that r = −2 and
p = 〈r, 0RF , 1RF〉.

Proof: Define P[natural number] ≡ if 1 ¬ $1, then there exists a monic,
Z-valued polynomial p over RF such that eval(p, e) = 2 · cos($1 · t) and
deg p = $1 and if $1 = 1, then p = 〈0RF , 1RF〉 and if $1 = 2, then there
exists an element r of RF such that r = −2 and p = 〈r, 0RF , 1RF〉. P[1]
by [11, (48), (40)]. P[2] by [6, (7)], (38), (28). For every non zero natural
number k such that P[k] and P[k + 1] holds P[k + 2] by [1, (13)], [13,
(38)], (48), [10, (24)]. For every non zero natural number k, P[k] from [7,
Sch. 1]. �

(53) If 0 ¬ r ¬ π
2 and r

π is rational and cos r is rational, then r ∈ {0, π3 ,
π
2 }.

The theorem is a consequence of (52), (1), (49), (48), (51), (3), and (18).

(54) Suppose 2 · π · i ¬ r ¬ π
2 + 2 · π · i and r

π is rational and cos r is rational.
Then r ∈ {2 · π · i, π3 + 2 · π · i, π2 + 2 · π · i}. The theorem is a consequence
of (53).

(55) If π
2 ¬ r ¬ π and r

π is rational and cos r is rational, then r ∈ {π2 ,
2·π
3 , π}.

The theorem is a consequence of (53).

(56) Suppose π
2 + 2 · π · i ¬ r ¬ π + 2 · π · i and r

π is rational and cos r is
rational. Then r ∈ {π2 + 2 · π · i, 2·π

3 + 2 · π · i, π + 2 · π · i}. The theorem is
a consequence of (55).

(57) Suppose π ¬ r ¬ 3·π
2 and r

π is rational and cos r is rational. Then
r ∈ {π, 4·π

3 ,
3·π
2 }. The theorem is a consequence of (53).

(58) Suppose π + 2 · π · i ¬ r ¬ 3·π
2 + 2 · π · i and r

π is rational and cos r is
rational. Then r ∈ {π + 2 · π · i, 4·π

3 + 2 · π · i, 3·π
2 + 2 · π · i}. The theorem

is a consequence of (57).

(59) Suppose 3·π
2 ¬ r ¬ 2 · π and r

π is rational and cos r is rational. Then
r ∈ {3·π

2 ,
5·π
3 , 2 · π}. The theorem is a consequence of (53).
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(60) Suppose 3·π
2 + 2 · π · i ¬ r ¬ 2 · π + 2 · π · i and r

π is rational and cos r is
rational. Then r ∈ {3·π

2 + 2 ·π · i, 5·π
3 + 2 ·π · i, 2 ·π+ 2 ·π · i}. The theorem

is a consequence of (59).

(61) If r
π is rational and cos r is rational, then cos r ∈ {0, 1,−1, 1

2 ,−
1
2}.

(62) If 0 ¬ r ¬ π
2 and r

π is rational and sin r is rational, then r ∈ {0, π6 ,
π
2 }.

The theorem is a consequence of (53).

(63) Suppose 2 · π · i ¬ r ¬ π
2 + 2 · π · i and r

π is rational and sin r is rational.
Then r ∈ {2 · π · i, π6 + 2 · π · i, π2 + 2 · π · i}. The theorem is a consequence
of (62).

(64) If π
2 ¬ r ¬ π and r

π is rational and sin r is rational, then r ∈ {π2 ,
5·π
6 , π}.

The theorem is a consequence of (62).

(65) Suppose π
2 + 2 · π · i ¬ r ¬ π + 2 · π · i and r

π is rational and sin r is
rational. Then r ∈ {π2 + 2 · π · i, 5·π

6 + 2 · π · i, π + 2 · π · i}. The theorem is
a consequence of (64).

(66) Suppose π ¬ r ¬ 3·π
2 and r

π is rational and sin r is rational. Then r ∈
{π, 7·π

6 ,
3·π
2 }. The theorem is a consequence of (62).

(67) Suppose π + 2 · π · i ¬ r ¬ 3·π
2 + 2 · π · i and r

π is rational and sin r is
rational. Then r ∈ {π + 2 · π · i, 7·π

6 + 2 · π · i, 3·π
2 + 2 · π · i}. The theorem

is a consequence of (66).

(68) Suppose 3·π
2 ¬ r ¬ 2 · π and r

π is rational and sin r is rational. Then
r ∈ {3·π

2 ,
11·π

6 , 2 · π}. The theorem is a consequence of (62).

(69) Suppose 3·π
2 + 2 · π · i ¬ r ¬ 2 · π + 2 · π · i and r

π is rational and sin r is
rational. Then r ∈ {3·π

2 + 2 ·π · i, 11·π
6 + 2 ·π · i, 2 ·π+ 2 ·π · i}. The theorem

is a consequence of (68).

(70) Niven’s Theorem:
If r

π is rational and sin r is rational, then sin r ∈ {0, 1,−1, 1
2 ,−

1
2}.
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