Chebyshev Distance

Roland Coghetto
Rue de la Brasserie 5
7100 La Louvière, Belgium

Abstract

Summary. In [21, Marco Riccardi formalized that $\mathbb{R N}$-basis n is a basis (in the algebraic sense defined in [26]) of \mathcal{E}_{T}^{n} and in [20] he has formalized that \mathcal{E}_{T}^{n} is second-countable, we build (in the topological sense defined in [23]) a denumerable base of \mathcal{E}_{T}^{n}.

Then we introduce the n-dimensional intervals (interval in n-dimensional Euclidean space, pavé (borné) de \mathbb{R}^{n} [16], semi-intervalle (borné) de \mathbb{R}^{n} [22]).

We conclude with the definition of Chebyshev distance [11.

MSC: 54E35 03B35
Keywords: second-countable; intervals; Chebyshev distance
MML identifier: SRINGS_5, version: 8.1.04 5.36.1267

1. Preliminaries

From now on n denotes a natural number, r, s denote real numbers, x, y denote elements of \mathcal{R}^{n}, p, q denote points of $\mathcal{E}_{\mathrm{T}}^{n}$, and e denotes a point of \mathcal{E}^{n}.

Now we state the propositions:
(1) $\quad|x-y|=|y-x|$.
(2) Let us consider a natural number i. If $i \in \operatorname{Seg} n$, then $|x|(i) \in \mathbb{R}$.
(3) Let us consider elements x, y of \mathbb{R}, and extended reals x_{1}, y_{1}. If $x \leqslant x_{1}$ and $y \leqslant y_{1}$, then $x+y \leqslant x_{1}+y_{1}$.
(4) Let us consider real numbers a, c, and an extended real number b. Suppose $a<b$ and $[a, b[\subseteq[a, c[$. Then b is a real number.
(5) Let us consider a non empty set D, and a non empty subset D_{1} of D. Then $D_{1}{ }^{n} \subseteq D^{n}$.
(6) Let us consider a non empty set X, and a function f. Suppose $f=$ $\operatorname{Seg} n \longmapsto X$. Then f is a non-empty, n-element finite sequence.
Let n be a natural number. The functor $\mathbb{R}(n)$ yielding a non-empty, n element finite sequence is defined by the term
(Def. 1) $\operatorname{Seg} n \longmapsto \mathbb{R}$.
Now we state the propositions:
(7) $\mathbb{R}(n)=\operatorname{Seg} n \longmapsto$ the carrier of $\mathbb{R}^{\mathbf{1}}$.
(8) $\quad \Pi(\operatorname{Seg} n \longmapsto \mathbb{R})=\mathcal{R}^{n}$.
(9) $\Pi \mathbb{R}(n)=\mathcal{R}^{n}$.
(10) Let us consider a set X. Then $\Pi(\operatorname{Seg} n \longmapsto X)=X^{n}$.
(11) Let us consider a non empty set D, and an n-tuple x of D. Then $x \in$ $D^{\operatorname{Seg} n}$.
(12) Let us consider a subset O_{1} of $\mathcal{E}_{\mathrm{T}}^{n}$, and a subset O_{2} of $\left(\mathcal{E}^{n}\right)_{\text {top }}$. If $O_{1}=O_{2}$, then O_{1} is open iff O_{2} is open.
(13) Suppose $e=p$. Then the set of all OpenHypercube $\left(e, \frac{1}{m}\right)$ where m is a non zero element of $\mathbb{N}=$ the set of all OpenHypercube $\left(p, \frac{1}{m}\right)$ where m is a non zero element of \mathbb{N}.
(14) If $q \in \operatorname{OpenHypercube}(p, r)$, then $p \in \operatorname{OpenHypercube}(q, r)$.
(15) If $q \in$ OpenHypercube $\left(p, \frac{r}{2}\right)$,
then OpenHypercube $\left(q, \frac{r}{2}\right) \subseteq$ OpenHypercube (p, r).
Let x be an element of $\mathbb{R} \times \mathbb{R}$. The functors: $(x)_{1}$ and $(x)_{\mathbf{2}}$ yield elements of \mathbb{R}. Let n be a natural number and x be an element of $\mathcal{R}^{n} \times \mathcal{R}^{n}$. The functors: $(x)_{1}$ and $(x)_{2}$ yield elements of \mathcal{R}^{n}. Now we state the proposition:
(16) Let us consider an n-element finite sequence f of elements of $\mathbb{R} \times \mathbb{R}$. Then there exists an element x of $\mathcal{R}^{n} \times \mathcal{R}^{n}$ such that for every natural number i such that $i \in \operatorname{Seg} n$ holds $(x)_{\mathbf{1}}(i)=\left(f_{i}\right)_{\mathbf{1}}$ and $(x)_{\mathbf{2}}(i)=\left(f_{i}\right)_{\mathbf{2}}$.

2. The Set of n-Tuples of Rational Numbers

Let us consider n. The functor \mathcal{Q}^{n} yielding a set of finite sequences of \mathbb{Q} is defined by the term
(Def. 2) \mathbb{Q}^{n}.
Now we state the proposition:

$$
\begin{equation*}
\mathcal{Q}^{0}=\{0\} \tag{17}
\end{equation*}
$$

One can check that \mathcal{Q}^{0} is trivial.
Let us consider n. One can check that \mathcal{Q}^{n} is non empty and every element of \mathcal{Q}^{n} is n-element and \mathcal{Q}^{n} is countable.

Let n be a positive natural number. Let us note that \mathcal{Q}^{n} is infinite and \mathcal{Q}^{n} is denumerable.

Now we state the proposition:
(18) \mathcal{Q}^{n} is a dense subset of $\mathcal{E}_{\mathrm{T}}^{n}$.

Proof: \mathcal{Q}^{n} is a subset of \mathcal{R}^{n}. Reconsider $R=\mathcal{Q}^{n}$ as a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. For every subset Q of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $Q \neq \emptyset$ and Q is open holds R meets Q by [10, (67)], (12), [15, (23)], [13, (39)].
Let us consider n. One can check that \mathcal{Q}^{n} is countable and dense as a subset of $\mathcal{E}_{\mathrm{T}}^{n}$.

3. A Countable Base of an n-Dimensional Euclidean Space

(VERSION 1: [20]):
Let n be a natural number. Let us observe that there exists a basis of $\mathcal{E}_{\mathrm{T}}^{n}$ which is countable.

Let us consider n and e. Note that OpenHypercubes e is countable.
The functor OpenHypercubes- $\mathbb{Q}(n)$ yielding a non empty set is defined by the term
(Def. 3) $\left\{\right.$ OpenHypercubes q, where q is a point of $\left.\mathcal{E}^{n}: q \in \mathcal{Q}^{n}\right\}$.
Let q be an element of \mathcal{Q}^{n}. The functor ${ }^{@} q$ yielding a point of \mathcal{E}^{n} is defined by the term
(Def. 4) q.
Let q be an object. Assume $q \in \mathcal{Q}^{n}$. The functor object $2 \mathbb{Q}(q, n)$ yielding an element of \mathcal{Q}^{n} is defined by the term
(Def. 5) q.
Let us note that OpenHypercubes- $\mathbb{Q}(n)$ is countable
and \cup OpenHypercubes- $\mathbb{Q}(n)$ is countable.
Now we state the propositions:
(19) \cup OpenHypercubes- $\mathbb{Q}(n)$ is an open family of subsets of $\mathcal{E}_{\mathrm{T}}^{n}$. The theorem is a consequence of (12).
(20) Let us consider a non empty, open subset O of $\mathcal{E}_{\mathrm{T}}^{n}$. Then there exists an element p of \mathcal{Q}^{n} such that $p \in O$. The theorem is a consequence of (18).
(21) Let us consider a family \mathcal{B} of subsets of $\mathcal{E}_{\mathrm{T}}^{n}$.

Suppose $\mathcal{B}=\bigcup$ OpenHypercubes- $\mathbb{Q}(n)$. Then \mathcal{B} is quasi basis.
Proof: F is quasi basis by (12), [15, (23)], [10, (67)], (20).
Let us consider n. Observe that \bigcup OpenHypercubes- $\mathbb{Q}(n)$ is non empty.

The functor OpenHypercubes $\mathbb{Q} U n i o n(n)$ yielding a countable, open family of subsets of $\mathcal{E}_{\mathrm{T}}^{n}$ is defined by the term
(Def. 6) UOpenHypercubes- $\mathbb{Q}(n)$.
Now we state the proposition:
(22) OpenHypercubes $\mathbb{Q} \operatorname{Union}(n)=\left\{\right.$ OpenHypercube $\left(q, \frac{1}{m}\right)$,
where q is a point of \mathcal{E}^{n}, m is a positive natural number : $\left.q \in \mathcal{Q}^{n}\right\}$.
(Version 2):
Let n be a natural number. Observe that there exists a basis of $\mathcal{E}_{\mathrm{T}}^{n}$ which is countable.

Now we state the propositions:
(23) OpenHypercubes $\mathbb{Q} \operatorname{Union}(n)$ is a countable basis of $\mathcal{E}_{\mathrm{T}}^{n}$.
(24) Let us consider an open subset O of $\mathcal{E}_{\mathrm{T}}^{n}$. Then there exists a subset Y of OpenHypercubes $\mathbb{Q} U n i o n(n)$ such that
(i) Y is countable, and
(ii) $O=\bigcup Y$.

The theorem is a consequence of (21).
Let us consider an open, non empty subset O of $\mathcal{E}_{\mathrm{T}}^{n}$. Now we state the propositions:
(25) There exists a subset Y of OpenHypercubesQUnion (n) such that
(i) Y is not empty, and
(ii) $O=\bigcup Y$, and
(iii) there exists a function g from \mathbb{N} into Y such that for every object x, $x \in O$ iff there exists an object y such that $y \in \mathbb{N}$ and $x \in g(y)$.
The theorem is a consequence of (24).
(26) There exists a sequence s of OpenHypercubes $\mathbb{Q U n i o n}(n)$ such that for every object $x, x \in O$ iff there exists an object y such that $y \in \mathbb{N}$ and $x \in s(y)$. The theorem is a consequence of (25).
(27) There exists a sequence s of OpenHypercubes $\mathbb{Q} U n i o n(n)$ such that $O=$ $\bigcup s$. The theorem is a consequence of (26).

4. The Set of All Left Open Real Bounded Intervals

The set of all left open real bounded intervals yielding a family of subsets of \mathbb{R} is defined by the term
(Def. 7) the set of all $] a, b]$ where a, b are real numbers.

Let us note that the set of all left open real bounded intervals is non empty. Now we state the propositions:
(28) The set of all left open real bounded intervals $\subseteq\{I$, where I is a subset of $\mathbb{R}: I$ is left open interval $\}$.
(29) The set of all left open real bounded intervals is \cap-closed and $\backslash_{f p}$-closed and has the empty element and countable cover.
(30) The set of all left open real bounded intervals is a semiring of \mathbb{R}.

5. The Set of All Right Open Real Bounded Intervals

The set of all right open real bounded intervals yielding a family of subsets of \mathbb{R} is defined by the term
(Def. 8) the set of all $[a, b[$ where a, b are real numbers.
Observe that the set of all right open real bounded intervals is non empty.
Now we state the propositions:
(31) The set of all right open real bounded intervals $\subseteq\{I$, where I is a subset of $\mathbb{R}: I$ is right open interval $\}$.
(32) The set of all right open real bounded intervals has the empty element.
(33) (i) the set of all right open real bounded intervals is \cap-closed, and
(ii) the set of all right open real bounded intervals is $\backslash_{f p}$-closed and has the empty element.
The theorem is a consequence of (31), (32), and (4).
(34) The set of all right open real bounded intervals has countable cover. Proof: Define $\mathcal{F}[$ object, object $] \equiv \$_{1}$ is an element of \mathbb{N} and $\$_{2} \in$ the set of all right open real bounded intervals and there exists a real number x such that $x=\$_{1}$ and $\$_{2}=[-x, x[$. For every object x such that $x \in \mathbb{N}$ there exists an object y such that $y \in$ the set of all right open real bounded intervals and $\mathcal{F}[x, y]$. Consider f being a function such that $\operatorname{dom} f=\mathbb{N}$ and rng $f \subseteq$ the set of all right open real bounded intervals and for every object x such that $x \in \mathbb{N}$ holds $\mathcal{F}[x, f(x)]$ from [7, Sch. 6]. rng f is countable by [27, (4)], [14, (58)]. $\operatorname{rng} f$ is a cover of \mathbb{R} by [2, (2)], [12, (8)], [3, (13)], [17, (45)].
(35) The set of all right open real bounded intervals is a semiring of \mathbb{R}.

6. Finite Product of Left Open Intervals

In the sequel n denotes a non zero natural number.
Let n be a non zero natural number. The functor LeftOpenIntervals (n) yielding a classical semiring family of $\mathbb{R}(n)$ is defined by the term
(Def. 9) $\quad \operatorname{Seg} n \longmapsto$ (the set of all left open real bounded intervals).
Now we state the propositions:
(36) LeftOpenIntervals $(n)=\operatorname{Seg} n \longmapsto$ the set of all $] a, b]$ where a, b are real numbers.
(37) MeasurableRectangle LeftOpenIntervals (n) is a semiring of \mathcal{R}^{n}. The theorem is a consequence of (8).
Let us consider an object x.
Let us assume that $x \in$ MeasurableRectangle LeftOpenIntervals (n). Now we state the propositions:
(38) There exists a subset y of \mathcal{R}^{n} such that
(i) $x=y$, and
(ii) for every natural number i such that $i \in \operatorname{Seg} n$ there exist real numbers a, b such that for every element t of \mathcal{R}^{n} such that $t \in y$ holds $t(i) \in] a, b]$.
The theorem is a consequence of (37).
(39) There exists a subset y of \mathcal{R}^{n} and there exists an n-element finite sequence f of elements of $\mathbb{R} \times \mathbb{R}$ such that $x=y$ and for every element t of $\mathcal{R}^{n}, t \in y$ iff for every natural number i such that $i \in \operatorname{Seg} n$ holds $\left.t(i) \in]\left(f_{i}\right)_{\mathbf{1}},\left(f_{i}\right)_{\mathbf{2}}\right]$.
Proof: MeasurableRectangle LeftOpenIntervals (n) is a family of subsets of \mathcal{R}^{n}. Reconsider $y=x$ as a subset of \mathcal{R}^{n}. Consider g being a function such that $x=\Pi g$ and $g \in \Pi$ LeftOpenIntervals (n). Define \mathcal{P} [natural number, set $] \equiv$ there exists an element x of $\mathbb{R} \times \mathbb{R}$ such that $\$_{2}=x$ and $\left.\left.g\left(\$_{1}\right)=\right](x)_{\mathbf{1}},(x)_{\mathbf{2}}\right]$. For every natural number i such that $i \in \operatorname{Seg} n$ there exists an element d of $\mathbb{R} \times \mathbb{R}$ such that $\mathcal{P}[i, d]$. There exists a finite sequence f_{1} of elements of $\mathbb{R} \times \mathbb{R}$ such that len $f_{1}=n$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $\mathcal{P}\left[i, f_{1}\right]$ from [25, Sch. 1]. Consider f_{1} being a finite sequence of elements of $\mathbb{R} \times \mathbb{R}$ such that len $f_{1}=n$ and for every natural number i such that $i \in \operatorname{Seg} n$ there exists an element x of $\mathbb{R} \times$ \mathbb{R} such that $f_{1 i}=x$ and $\left.\left.g(i)=\right](x)_{\mathbf{1}},(x)_{\mathbf{2}}\right]$. For every natural number i such that $i \in \operatorname{Seg} n$ holds $\left.g(i)=]\left(f_{1 i}\right)_{\mathbf{1}},\left(f_{1 i}\right)_{\mathbf{2}}\right]$. For every element t of \mathcal{R}^{n} such that $t \in y$ for every natural number i such that $i \in \operatorname{Seg} n$ holds $\left.t(i) \in]\left(f_{1 i}\right)_{\mathbf{1}},\left(f_{1 i}\right)_{\mathbf{2}}\right]$. For every element t of \mathcal{R}^{n} such that for every natural
number i such that $i \in \operatorname{Seg} n$ holds $\left.t(i) \in]\left(f_{1_{i}}\right)_{\mathbf{1}},\left(f_{1_{i}}\right)_{\mathbf{2}}\right]$ holds $t \in y$ by [6, (93)].
(40) There exists a subset y of \mathcal{R}^{n} and there exist elements a, b of \mathcal{R}^{n} such that $x=y$ and for every object $s, s \in y$ iff there exists an element t of \mathcal{R}^{n} such that $s=t$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in] a(i), b(i)]$. The theorem is a consequence of (39) and (16).
Now we state the proposition:
(41) Let us consider a set x. Suppose $x \in$ MeasurableRectangle LeftOpenInter$\operatorname{vals}(n)$. Then there exist elements a, b of \mathcal{R}^{n} such that for every element t of $\mathcal{R}^{n}, t \in x$ iff for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in] a(i), b(i)]$. The theorem is a consequence of (39) and (16).

7. Finite Product of Right Open Intervals

Let n be a non zero natural number. The functor RightOpenIntervals(n) yielding a classical semiring family of $\mathbb{R}(n)$ is defined by the term
(Def. 10) $\operatorname{Seg} n \longmapsto$ (the set of all right open real bounded intervals).
From now on n denotes a non zero natural number.
Now we state the propositions:
(42) RightOpenIntervals $(n)=\operatorname{Seg} n \longmapsto$ the set of all $[a, b[$ where a, b are real numbers.
(43) MeasurableRectangle RightOpenIntervals(n) is a semiring of \mathcal{R}^{n}. The theorem is a consequence of (8).
Let us consider an object x.
Let us assume that $x \in$ MeasurableRectangle RightOpenIntervals(n). Now we state the propositions:
(44) There exists a subset y of \mathcal{R}^{n} such that
(i) $x=y$, and
(ii) for every natural number i such that $i \in \operatorname{Seg} n$ there exist real numbers a, b such that for every element t of \mathcal{R}^{n} such that $t \in y$ holds $t(i) \in[a, b[$.
The theorem is a consequence of (43).
(45) There exists a subset y of \mathcal{R}^{n} and there exists an n-element finite sequence f of elements of $\mathbb{R} \times \mathbb{R}$ such that $x=y$ and for every element t of $\mathcal{R}^{n}, t \in y$ iff for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in\left[\left(f_{i}\right)_{\mathbf{1}},\left(f_{i}\right)_{\mathbf{2}}[\right.$.
Proof: MeasurableRectangle RightOpenIntervals (n) is a family of subsets of \mathcal{R}^{n}. Reconsider $y=x$ as a subset of \mathcal{R}^{n}. Consider g being a function
such that $x=\Pi g$ and $g \in \Pi$ RightOpenIntervals (n). Define $\mathcal{P}[$ natural number, set $] \equiv$ there exists an element x of $\mathbb{R} \times \mathbb{R}$ such that $\$_{2}=x$ and $g\left(\$_{1}\right)=\left[(x)_{\mathbf{1}},(x)_{\mathbf{2}}[\right.$. For every natural number i such that $i \in \operatorname{Seg} n$ there exists an element d of $\mathbb{R} \times \mathbb{R}$ such that $\mathcal{P}[i, d]$. There exists a finite sequence f_{1} of elements of $\mathbb{R} \times \mathbb{R}$ such that len $f_{1}=n$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $\mathcal{P}\left[i, f_{1 i}\right]$ from [25, Sch. 1]. Consider f_{1} being a finite sequence of elements of $\mathbb{R} \times \mathbb{R}$ such that len $f_{1}=n$ and for every natural number i such that $i \in \operatorname{Seg} n$ there exists an element x of $\mathbb{R} \times$ \mathbb{R} such that $f_{1 i}=x$ and $g(i)=\left[(x)_{\mathbf{1}},(x)_{\mathbf{2}}[\right.$. For every natural number i such that $i \in \operatorname{Seg} n$ holds $g(i)=\left[\left(f_{1 i}\right)_{\mathbf{1}},\left(f_{1 i}\right)_{\mathbf{2}}[\right.$. For every element t of \mathcal{R}^{n} such that $t \in y$ for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in\left[\left(f_{1 i}\right)_{\mathbf{1}},\left(f_{1 i}\right)_{\mathbf{2}}\left[\right.\right.$. For every element t of \mathcal{R}^{n} such that for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in\left[\left(f_{1 i}\right)_{\mathbf{1}},\left(f_{1 i}\right)_{\mathbf{2}}[\right.$ holds $t \in y$ by [6, (93)].
(46) There exists a subset y of \mathcal{R}^{n} and there exist elements a, b of \mathcal{R}^{n} such that $x=y$ and for every object $s, s \in y$ iff there exists an element t of \mathcal{R}^{n} such that $s=t$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in[a(i), b(i)[$. The theorem is a consequence of (45) and (16).
Now we state the proposition:
(47) Let us consider a set x. Suppose $x \in$ MeasurableRectangle RightOpenInter$\operatorname{vals}(n)$. Then there exist elements a, b of \mathcal{R}^{n} such that for every element t of $\mathcal{R}^{n}, t \in x$ iff for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in[a(i), b(i)[$. The theorem is a consequence of (45) and (16).

8. n-Dimensional Product of Subset Family

In the sequel n denotes a natural number, X denotes a set, and S denotes a family of subsets of X.

Let us consider n and X. The functor $\operatorname{Product}(n, X)$ yielding a set is defined by
(Def. 11) for every object $f, f \in i t$ iff there exists a function g such that $f=\Pi g$ and $g \in \Pi(\operatorname{Seg} n \longmapsto X)$.
Now we state the propositions:
$\operatorname{Product}(n, X) \subseteq 2^{\left.(U U(\operatorname{Seg} n \longmapsto X))^{\operatorname{dom}(\operatorname{Seg} n} \curvearrowleft X\right)}$.
(49) $\operatorname{Product}(n, S)$ is a family of subsets of $\Pi(\operatorname{Seg} n \longmapsto X)$.

Proof: Reconsider $S_{1}=\operatorname{Product}(n, S)$ as a subset of $\left.2^{(U U(\operatorname{Seg} n \longmapsto S)}\right)^{\operatorname{dom}(\operatorname{Seg} n \longmapsto S)} . S_{1} \subseteq 2^{(\operatorname{Seg} n \longmapsto X)}$ by [1, (9)], [24, (13), (7)], [9, (77), (81)].
(50) Let us consider a non empty family S of subsets of X. Then $\operatorname{Product}(n, S)=$ the set of all $\prod f$ where f is an n-tuple of S.
Proof: Product $(n, S) \subseteq$ the set of all Πf where f is an n-tuple of S by (10), [6, (131)]. the set of all $\prod f$ where f is an n-tuple of $S \subseteq \operatorname{Product}(n, S)$ by [6, (131)], (10).
(51) Let us consider a non zero natural number n. Then $\operatorname{Product}(n, X) \subseteq$ $2^{(\bigcup X)^{\operatorname{Seg} n} .}$

Let us consider a non zero natural number n, a non empty set X, and a non empty family S of subsets of X.

Let us assume that $S \neq\{\emptyset\}$. Now we state the propositions:
(52) $\operatorname{Product}(n, S) \subseteq 2^{X^{\operatorname{Seg} n}}$. The theorem is a consequence of (51) and (5).
(53) $\cup \operatorname{Product}(n, S) \subseteq X^{\operatorname{Seg} n}$. The theorem is a consequence of (52).

Let n be a natural number and X be a non empty set. Let us note that $\operatorname{Product}(n, X)$ is non empty.

Now we state the proposition:
(54) Let us consider a non empty set X, a non empty family S of subsets of X, and a subset x of $X^{\operatorname{Seg} n}$. Then x is an element of $\operatorname{Product}(n, S)$ if and only if there exists an n-tuple s of S such that for every element t of $X^{\operatorname{Seg} n}$, for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in s(i)$ iff $t \in x$.

9. The Set of All Closed Real Bounded Intervals

The set of all closed real bounded intervals yielding a family of subsets of \mathbb{R} is defined by the term
(Def. 12) the set of all $[a, b]$ where a, b are real numbers.
Now we state the proposition:
(55) The set of all closed real bounded intervals $=\{I$, where I is a subset of $\mathbb{R}: I$ is closed interval $\}$.
Let us note that the set of all closed real bounded intervals is non empty. Now we state the propositions:
(56) The set of all closed real bounded intervals is \cap-closed and has the empty element and countable cover.
Proof: The set of all closed real bounded intervals is \cap-closed. There exists a countable subset X of the set of all closed real bounded intervals such that X is a cover of \mathbb{R} by [27, (4)], [14, (58)], [2, (2)], [12, (8)].
(57) Let us consider a natural number n. Then $\operatorname{Seg} n \longmapsto$ (the set of all closed real bounded intervals) is an n-element finite sequence.

10. The Set of All Open Real Bounded Intervals

The set of all open real bounded intervals yielding a family of subsets of \mathbb{R} is defined by the term
(Def. 13) the set of all $] a, b[$ where a, b are real numbers.
Now we state the proposition:
(58) The set of all open real bounded intervals $\subseteq\{I$, where I is a subset of $\mathbb{R}: I$ is open interval $\}.$
Let us observe that the set of all open real bounded intervals is non empty. Now we state the propositions:
(59) The set of all open real bounded intervals is \cap-closed and has the empty element and countable cover.
Proof: The set of all open real bounded intervals is \cap-closed. There exists a countable subset X of the set of all open real bounded intervals such that X is a cover of \mathbb{R} by [27, (4)], [14, (58)], [2, (2)], [12, (8)].
(60) Let us consider a natural number n. Then $\operatorname{Seg} n \longmapsto$ (the set of all open real bounded intervals) is an n-element finite sequence.

11. n-Dimensional Subset Family of \mathbb{R}

From now on n denotes a natural number and S denotes a family of subsets of \mathbb{R}.

Now we state the proposition:
(61) Product (n, S) is a family of subsets of \mathcal{R}^{n}. The theorem is a consequence of (49) and (8).
Let us consider n and S. One can check that the functor $\operatorname{Product}(n, S)$ yields a family of subsets of \mathcal{R}^{n}. Now we state the propositions:
(62) Let us consider a non empty family S of subsets of \mathbb{R}, and a subset x of \mathcal{R}^{n}. Then x is an element of $\operatorname{Product}(n, S)$ if and only if there exists an n-tuple s of S such that for every element t of \mathcal{R}^{n}, for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in s(i)$ iff $t \in x$.
Proof: If x is an element of $\operatorname{Product}(n, S)$, then there exists an n-tuple s of S such that for every element t of \mathcal{R}^{n}, for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in s(i)$ iff $t \in x$ by [6, (93)]. If there exists an n tuple s of S such that for every element t of \mathcal{R}^{n}, for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in s(i)$ iff $t \in x$, then x is an element of Product (n, S) by [6, (93)].
(63) Let us consider a non zero natural number n, and an n-tuple s of the set of all closed real bounded intervals. Then there exist elements a, b of \mathcal{R}^{n} such that for every natural number i such that $i \in \operatorname{Seg} n$ holds $s(i)=$ $[a(i), b(i)]$.
 being a function such that $s=f$ and $\operatorname{dom} f=\operatorname{Seg} n$ and $\mathrm{rng} f \subseteq$ the set of all closed real bounded intervals. Define \mathcal{P} [object, object] \equiv there exists an element f of $\mathbb{R} \times \mathbb{R}$ such that $f=\$_{2}$ and $s\left(\$_{1}\right)=\left[(f)_{\mathbf{1}},(f)_{\mathbf{2}}\right]$. For every natural number i such that $i \in \operatorname{Seg} n$ there exists an element d of $\mathbb{R} \times \mathbb{R}$ such that $\mathcal{P}[i, d]$ by [7, (3)]. Consider f being a finite sequence of elements of $\mathbb{R} \times \mathbb{R}$ such that len $f=n$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $\mathcal{P}\left[i, f_{i}\right]$ from [25, Sch. 1]. Consider z being an element of $\mathcal{R}^{n} \times \mathcal{R}^{n}$ such that for every natural number i such that $i \in \operatorname{Seg} n$ holds $(z)_{\mathbf{1}}(i)=\left(f_{i}\right)_{\mathbf{1}}$ and $(z)_{\mathbf{2}}(i)=\left(f_{i}\right)_{\mathbf{2}}$. Reconsider $a=(z)_{\mathbf{1}}, b=(z)_{\mathbf{2}}$ as an element of \mathcal{R}^{n}. For every natural number i such that $i \in \operatorname{Seg} n$ holds $s(i)=[a(i), b(i)]$.
(64) Let us consider a non zero natural number n, and an element x of Product (n, the set of all closed real bounded intervals). Then there exist elements a, b of \mathcal{R}^{n} such that for every element t of $\mathcal{R}^{n}, t \in x$ iff for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in[a(i), b(i)]$. The theorem is a consequence of (62) and (63).
Let us consider a non zero natural number n, a subset x of \mathcal{R}^{n}, and elements a, b of \mathcal{R}^{n}. Now we state the propositions:
(65) Suppose for every element t of $\mathcal{R}^{n}, t \in x$ iff for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in[a(i), b(i)]$. Then x is an element of Product(n, the set of all closed real bounded intervals).
Proof: Define \mathcal{P} [object, object] \equiv there exists a natural number n such that $\$_{1}=n$ and $\$_{2}=[a(n), b(n)]$. For every natural number i such that $i \in \operatorname{Seg} n$ there exists an element d of the set of all closed real bounded intervals such that $\mathcal{P}[i, d]$. There exists a finite sequence g of elements of the set of all closed real bounded intervals such that len $g=n$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $\mathcal{P}\left[i, g_{i}\right]$ from [25, Sch. 1]. Consider g being a finite sequence of elements of the set of all closed real bounded intervals such that len $g=n$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $\mathcal{P}\left[i, g_{i}\right]$. For every natural number i such that $i \in \operatorname{Seg} n$ holds $g(i)=[a(i), b(i)]$. There exists a function g such that $x=\prod g$ and $g \in \Pi(\operatorname{Seg} n \longmapsto($ the set of all closed real bounded intervals)) by [4, (89)], [24, (13), (7)], [1, (9)].
(66) Suppose for every element t of $\mathcal{R}^{n}, t \in x$ iff for every natural number
i such that $i \in \operatorname{Seg} n$ holds $t(i) \in] a(i), b(i)]$. Then x is an element of Product(n, the set of all left open real bounded intervals).
Proof: Define $\mathcal{P}[$ object, object $] \equiv$ there exists a natural number n such that $\$_{1}=n$ and $\left.\left.\$_{2}=\right] a(n), b(n)\right]$. For every natural number i such that $i \in \operatorname{Seg} n$ there exists an element d of the set of all left open real bounded intervals such that $\mathcal{P}[i, d]$. There exists a finite sequence g of elements of the set of all left open real bounded intervals such that len $g=n$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $\mathcal{P}\left[i, g_{i}\right]$ from [25, Sch. 1]. Consider g being a finite sequence of elements of the set of all left open real bounded intervals such that $\operatorname{len} g=n$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $\mathcal{P}\left[i, g_{i}\right]$. For every natural number i such that $i \in \operatorname{Seg} n$ holds $g(i)=] a(i), b(i)]$. There exists a function g such that $x=\prod g$ and $g \in \prod(\operatorname{Seg} n \longmapsto$ (the set of all left open real bounded intervals)) by [4, (89)], [24, (13), (7)], [1, (9)].
(67) Suppose for every element t of $\mathcal{R}^{n}, t \in x$ iff for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in[a(i), b(i)[$. Then x is an element of Product (n, the set of all right open real bounded intervals).
Proof: Define \mathcal{P} [object, object] \equiv there exists a natural number n such that $\$_{1}=n$ and $\$_{2}=[a(n), b(n)[$. For every natural number i such that $i \in \operatorname{Seg} n$ there exists an element d of the set of all right open real bounded intervals such that $\mathcal{P}[i, d]$. There exists a finite sequence g of elements of the set of all right open real bounded intervals such that len $g=n$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $\mathcal{P}\left[i, g_{i}\right]$ from [25, Sch. 1]. Consider g being a finite sequence of elements of the set of all right open real bounded intervals such that len $g=n$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $\mathcal{P}\left[i, g_{i}\right]$. For every natural number i such that $i \in \operatorname{Seg} n$ holds $g(i)=[a(i), b(i)[$. There exists a function g such that $x=\Pi g$ and $g \in \Pi(\operatorname{Seg} n \longmapsto$ (the set of all right open real bounded intervals)) by [4, (89)], [24, (13), (7)], [1, (9)].
Now we state the propositions:
(68) Let us consider a non zero natural number n, and an n-tuple s of the set of all left open real bounded intervals. Then there exist elements a, b of \mathcal{R}^{n} such that for every natural number i such that $i \in \operatorname{Seg} n$ holds $s(i)=] a(i), b(i)]$.
Proof: $s \in$ (the set of all left open real bounded intervals) ${ }^{\operatorname{Seg} n}$. Consider f being a function such that $s=f$ and $\operatorname{dom} f=\operatorname{Seg} n$ and rng $f \subseteq$ the set of all left open real bounded intervals. Define \mathcal{P} [object, object] \equiv there exists an element f of $\mathbb{R} \times \mathbb{R}$ such that $f=\$_{2}$ and $\left.\left.s\left(\$_{1}\right)=\right](f)_{\mathbf{1}},(f)_{\mathbf{2}}\right]$. For every natural number i such that $i \in \operatorname{Seg} n$ there exists an element d of $\mathbb{R} \times \mathbb{R}$ such that $\mathcal{P}[i, d]$ by [7, (3)]. Consider f being a finite sequence of
elements of $\mathbb{R} \times \mathbb{R}$ such that len $f=n$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $\mathcal{P}\left[i, f_{i}\right]$ from [25, Sch. 1]. Consider z being an element of $\mathcal{R}^{n} \times \mathcal{R}^{n}$ such that for every natural number i such that $i \in \operatorname{Seg} n$ holds $(z)_{\mathbf{1}}(i)=\left(f_{i}\right)_{\mathbf{1}}$ and $(z)_{\mathbf{2}}(i)=\left(f_{i}\right)_{\mathbf{2}}$. Reconsider $a=(z)_{\mathbf{1}}, b=(z)_{\mathbf{2}}$ as an element of \mathcal{R}^{n}. For every natural number i such that $i \in \operatorname{Seg} n$ holds $s(i)=] a(i), b(i)]$.
(69) Let us consider a non zero natural number n, and an element x of Product (n, the set of all left open real bounded intervals). Then there exist elements a, b of \mathcal{R}^{n} such that for every element t of $\mathcal{R}^{n}, t \in x$ iff for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in] a(i), b(i)]$. The theorem is a consequence of (62) and (68).
(70) Let us consider a non zero natural number n, and an n-tuple s of the set of all right open real bounded intervals. Then there exist elements a, b of \mathcal{R}^{n} such that for every natural number i such that $i \in \operatorname{Seg} n$ holds $s(i)=[a(i), b(i)[$.
Proof: $s \in(\text { the set of all right open real bounded intervals) })^{\operatorname{Seg} n}$. Consider f being a function such that $s=f$ and $\operatorname{dom} f=\operatorname{Seg} n$ and $\operatorname{rng} f \subseteq$ the set of all right open real bounded intervals. Define \mathcal{P} [object, object] \equiv there exists an element f of $\mathbb{R} \times \mathbb{R}$ such that $f=\$_{2}$ and $s\left(\$_{1}\right)=\left[(f)_{\mathbf{1}},(f)_{\mathbf{2}}[\right.$. For every natural number i such that $i \in \operatorname{Seg} n$ there exists an element d of $\mathbb{R} \times \mathbb{R}$ such that $\mathcal{P}[i, d]$ by [7, (3)]. Consider f being a finite sequence of elements of $\mathbb{R} \times \mathbb{R}$ such that len $f=n$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $\mathcal{P}\left[i, f_{i}\right]$ from [25, Sch. 1]. Consider z being an element of $\mathcal{R}^{n} \times \mathcal{R}^{n}$ such that for every natural number i such that $i \in \operatorname{Seg} n$ holds $(z)_{\mathbf{1}}(i)=\left(f_{i}\right)_{\mathbf{1}}$ and $(z)_{\mathbf{2}}(i)=\left(f_{i}\right)_{\mathbf{2}}$. Reconsider $a=(z)_{\mathbf{1}}, b=(z)_{\mathbf{2}}$ as an element of \mathcal{R}^{n}. For every natural number i such that $i \in \operatorname{Seg} n$ holds $s(i)=[a(i), b(i)[$.
(71) Let us consider a non zero natural number n, and an element x of Product(n, the set of all right open real bounded intervals). Then there exist elements a, b of \mathcal{R}^{n} such that for every element t of $\mathcal{R}^{n}, t \in x$ iff for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in[a(i), b(i)[$. The theorem is a consequence of (62) and (70).

12. Closed/Open/Left-Open/Right-Open - Hyper Interval

From now on n denotes a natural number and a, b, c, d denote elements of \mathcal{R}^{n}.

Let us consider n, a, and b. The functor ClosedHyperInterval (a, b) yielding a subset of \mathcal{R}^{n} is defined by
(Def. 14) for every object $x, x \in i t$ iff there exists an element y of \mathcal{R}^{n} such that $x=y$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $y(i) \in$ $[a(i), b(i)]$.
The functor OpenHyperInterval (a, b) yielding a subset of \mathcal{R}^{n} is defined by
(Def. 15) for every object $x, x \in i t$ iff there exists an element y of \mathcal{R}^{n} such that $x=y$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $y(i) \in$] $a(i), b(i)$.
The functor LeftOpenHyperInterval (a, b) yielding a subset of \mathcal{R}^{n} is defined by
(Def. 16) for every object $x, x \in i t$ iff there exists an element y of \mathcal{R}^{n} such that $x=y$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $y(i) \in$] $a(i), b(i)]$.
The functor RightOpenHyperInterval (a, b) yielding a subset of \mathcal{R}^{n} is defined by
(Def. 17) for every object $x, x \in i t$ iff there exists an element y of \mathcal{R}^{n} such that $x=y$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $y(i) \in$ $[a(i), b(i)[$.
Now we state the proposition:
(72) ClosedHyperInterval $(a, a)=\{a\}$.

Proof: ClosedHyperInterval $(a, a) \subseteq\{a\}$ by [6, (124)]. $\{a\} \subseteq$ ClosedHyperInterval (a, a).
Let us consider n and a. Let us observe that ClosedHyperInterval (a, a) is trivial.

Now we state the proposition:
(i) OpenHyperInterval $(a, b) \subseteq \operatorname{LeftOpenHyperInterval}(a, b)$, and
(ii) OpenHyperInterval $(a, b) \subseteq \operatorname{RightOpenHyperInterval}(a, b)$, and
(iii) LeftOpenHyperInterval $(a, b) \subseteq \operatorname{ClosedHyperInterval}(a, b)$, and
(iv) RightOpenHyperInterval $(a, b) \subseteq$ ClosedHyperInterval (a, b).

Let us consider n, a, and b. We say that $a \leqslant b$ if and only if
(Def. 18) for every natural number i such that $i \in \operatorname{Seg} n$ holds $a(i) \leqslant b(i)$.
One can verify that the predicate is reflexive.
Now we state the propositions:
(74) If $a \leqslant b \leqslant c$, then $a \leqslant c$.
(75) If $a \leqslant c$ and $d \leqslant b$,
then ClosedHyperInterval $(c, d) \subseteq \operatorname{ClosedHyperInterval}(a, b)$.
(76) If $a \leqslant b$, then ClosedHyperInterval (a, b) is not empty. The theorem is a consequence of (75) and (72).

Let us consider n, a, and b. We say that $a<b$ if and only if
(Def. 19) for every natural number i such that $i \in \operatorname{Seg} n$ holds $a(i)<b(i)$.
Now we state the propositions:
(77) If $a<b<c$, then $a<c$.
(78) If $b<a$ and n is not zero, then ClosedHyperInterval (a, b) is empty.
(79) $n \mapsto r$ is an element of \mathcal{R}^{n}.

Proof: Set $f=n \mapsto r . f \in \mathbb{R}^{\operatorname{Seg} n}$ by [6, (112), (93)].
Let us consider n and r. Note that the functor $n \mapsto r$ yields an element of \mathcal{R}^{n}. One can check that the functor $\langle r\rangle$ yields an element of \mathcal{R}^{1}. Now we state the propositions:
(80) Let us consider a non zero natural number n, and a point e of \mathcal{E}^{n}. Then there exists an element a of \mathcal{R}^{n} such that
(i) $a=e$, and
(ii) OpenHypercube $(e, r)=$ OpenHyperInterval $(a-n \mapsto r, a+n \mapsto r)$.

Proof: Reconsider $a=e$ as an element of \mathcal{R}^{n}. Reconsider $p=e$ as a point of $\mathcal{E}_{\mathrm{T}}^{n}$. Consider e_{0} being a point of \mathcal{E}^{n} such that $p=e_{0}$ and OpenHypercube $\left(e_{0}, r\right)=$ OpenHypercube (p, r). OpenHypercube $(e, r) \subseteq$ OpenHyperInterval $(a-n \mapsto r, a+n \mapsto r)$ by [8, (27)], [6, (57)], [8, (11)], [18, (4)]. OpenHyperInterval $(a-n \mapsto r, a+n \mapsto r) \subseteq$ OpenHypercube (e, r) by [10, (22)], [8, (27)], [6, (57)], [8, (11)].
(81) Let us consider a point p of $\mathcal{E}_{\mathrm{T}}^{n}$. Then there exists an element a of \mathcal{R}^{n} such that
(i) $a=p$, and
(ii) ClosedHypercube $(p, b)=$ ClosedHyperInterval $(a-b, a+b)$.

Proof: Reconsider $a=p$ as an element of \mathcal{R}^{n}. ClosedHypercube $(p, b) \subseteq$ ClosedHyperInterval $(a-b, a+b)$ by [10, (22)], [8, (11), (27)]. ClosedHyperInt-$\operatorname{erval}(a-b, a+b) \subseteq \operatorname{ClosedHypercube}(p, b)$ by [10, (22)], [8, (11), (27)].

13. Correspondance between Interval and 1-Dimensional Hyper Interval

Let us consider a real number x. Now we state the propositions:
(82) $x \in[r, s]$ if and only if $1 \mapsto x \in$ ClosedHyperInterval $(\langle r\rangle,\langle s\rangle)$.

Proof: Set $a_{1}=\langle r\rangle$. Set $b_{1}=\langle s\rangle$. For every real number x such that $x \in\left[r, s\right.$] holds $1 \mapsto x \in \operatorname{ClosedHyperInterval}\left(a_{1}, b_{1}\right)$ by [4, (2)], [24, (7)]. For every real number x such that $1 \mapsto x \in$ ClosedHyperInterval $\left(a_{1}, b_{1}\right)$ holds $x \in[r, s]$ by [24, (7)].
(83) $x \in] r, s$ [if and only if $1 \mapsto x \in$ OpenHyperInterval $(\langle r\rangle,\langle s\rangle)$.

Proof: Set $a_{1}=\langle r\rangle$. Set $b_{1}=\langle s\rangle$. For every real number x such that $x \in] r, s$ [holds $1 \mapsto x \in$ OpenHyperInterval $\left(a_{1}, b_{1}\right)$ by [4, (2)], [24, (7)]. For every real number x such that $1 \mapsto x \in$ OpenHyperInterval $\left(a_{1}, b_{1}\right)$ holds $x \in] r, s[$ by [24, (7)].
(84) $x \in] r, s]$ if and only if $1 \mapsto x \in \operatorname{LeftOpenHyperInterval}(\langle r\rangle,\langle s\rangle)$.

Proof: Set $a_{1}=\langle r\rangle$. Set $b_{1}=\langle s\rangle$. For every real number x such that $x \in] r, s]$ holds $1 \mapsto x \in \operatorname{LeftOpenHyperInterval}\left(a_{1}, b_{1}\right)$ by [4, (2)], [24, (7)]. For every real number x such that $1 \mapsto x \in \operatorname{LeftOpenHyperInterval}\left(a_{1}, b_{1}\right)$ holds $x \in] r, s$] by [24, (7)].
(85) $x \in[r, s[$ if and only if $1 \mapsto x \in \operatorname{RightOpenHyperInterval(~}\langle r\rangle,\langle s\rangle)$.

Proof: Set $a_{1}=\langle r\rangle$. Set $b_{1}=\langle s\rangle$. For every real number x such that $x \in$ [r, s [holds $1 \mapsto x \in \operatorname{RightOpenHyperInterval}\left(a_{1}, b_{1}\right)$ by [4, (2)], [24, (7)]. For every real number x such that $1 \mapsto x \in \operatorname{RightOpenHyperInterval(~} a_{1}, b_{1}$) holds $x \in[r, s[$ by [24, (7)].

14. Correspondance Between Measurable Rectangle and Product

From now on n denotes a non zero natural number.
Now we state the propositions:
(86) Let us consider an n-tuple s of the set of all open real bounded intervals. Then there exist elements a, b of \mathcal{R}^{n} such that for every natural number i such that $i \in \operatorname{Seg} n$ holds $s(i)=] a(i), b(i)[$.
Proof: $s \in$ (the set of all open real bounded intervals) ${ }^{\operatorname{Seg} n}$. Consider f being a function such that $s=f$ and $\operatorname{dom} f=\operatorname{Seg} n$ and rng $f \subseteq$ the set of all open real bounded intervals. Define \mathcal{P} [object, object] \equiv there exists an element f of $\mathbb{R} \times \mathbb{R}$ such that $f=\$_{2}$ and $\left.s\left(\$_{1}\right)=\right](f)_{\mathbf{1}},(f)_{\mathbf{2}}[$. For every natural number i such that $i \in \operatorname{Seg} n$ there exists an element d of $\mathbb{R} \times \mathbb{R}$ such that $\mathcal{P}[i, d]$ by [7, (3)]. Consider f being a finite sequence of elements of $\mathbb{R} \times \mathbb{R}$ such that len $f=n$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $\mathcal{P}\left[i, f_{i}\right]$ from [25, Sch. 1]. Consider z being an element of $\mathcal{R}^{n} \times \mathcal{R}^{n}$ such that for every natural number i such that $i \in \operatorname{Seg} n$ holds $(z)_{\mathbf{1}}(i)=\left(f_{i}\right)_{\mathbf{1}}$ and $(z)_{\mathbf{2}}(i)=\left(f_{i}\right)_{\mathbf{2}}$. Reconsider $a=(z)_{\mathbf{1}}, b=(z)_{\mathbf{2}}$ as an element of \mathcal{R}^{n}. For every natural number i such that $i \in \operatorname{Seg} n$ holds $s(i)=] a(i), b(i)[$.
(87) Let us consider an element x of $\operatorname{Product}(n$, the set of all open real bounded intervals). Then there exist elements a, b of \mathcal{R}^{n} such that for every element t of $\mathcal{R}^{n}, t \in x$ iff for every natural number i such that
$i \in \operatorname{Seg} n$ holds $t(i) \in] a(i), b(i)[$. The theorem is a consequence of (62) and (86).
(88) Let us consider an n-tuple s of the set of all left open real bounded intervals. Then there exist elements a, b of \mathcal{R}^{n} such that for every natural number i such that $i \in \operatorname{Seg} n$ holds $s(i)=] a(i), b(i)]$.
Proof: $s \in$ (the set of all left open real bounded intervals) ${ }^{\operatorname{Seg} n}$. Consider f being a function such that $s=f$ and $\operatorname{dom} f=\operatorname{Seg} n$ and $r n g f \subseteq$ the set of all left open real bounded intervals. Define \mathcal{P} [object, object] \equiv there exists an element f of $\mathbb{R} \times \mathbb{R}$ such that $f=\$_{2}$ and $\left.\left.s\left(\$_{1}\right)=\right](f)_{\mathbf{1}},(f)_{\mathbf{2}}\right]$. For every natural number i such that $i \in \operatorname{Seg} n$ there exists an element d of $\mathbb{R} \times \mathbb{R}$ such that $\mathcal{P}[i, d]$ by [7, (3)]. Consider f being a finite sequence of elements of $\mathbb{R} \times \mathbb{R}$ such that len $f=n$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $\mathcal{P}\left[i, f_{i}\right]$ from [25, Sch. 1]. Consider z being an element of $\mathcal{R}^{n} \times \mathcal{R}^{n}$ such that for every natural number i such that $i \in \operatorname{Seg} n$ holds $(z)_{\mathbf{1}}(i)=\left(f_{i}\right)_{\mathbf{1}}$ and $(z)_{\mathbf{2}}(i)=\left(f_{i}\right)_{\mathbf{2}}$. Reconsider $a=(z)_{\mathbf{1}}, b=(z)_{\mathbf{2}}$ as an element of \mathcal{R}^{n}. For every natural number i such that $i \in \operatorname{Seg} n$ holds $s(i)=] a(i), b(i)]$.
(89) Let us consider an element x of $\operatorname{Product}(n$, the set of all left open real bounded intervals). Then there exist elements a, b of \mathcal{R}^{n} such that for every element t of $\mathcal{R}^{n}, t \in x$ iff for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in] a(i), b(i)]$. The theorem is a consequence of (62) and (88).
(90) Let us consider an n-tuple s of the set of all right open real bounded intervals. Then there exist elements a, b of \mathcal{R}^{n} such that for every natural number i such that $i \in \operatorname{Seg} n$ holds $s(i)=[a(i), b(i)[$.
Proof: $s \in(\text { the set of all right open real bounded intervals })^{\operatorname{Seg} n}$. Consider f being a function such that $s=f$ and $\operatorname{dom} f=\operatorname{Seg} n$ and $\operatorname{rng} f \subseteq$ the set of all right open real bounded intervals. Define \mathcal{P} [object, object] \equiv there exists an element f of $\mathbb{R} \times \mathbb{R}$ such that $f=\$_{2}$ and $s\left(\$_{1}\right)=\left[(f)_{\mathbf{1}},(f)_{\mathbf{2}}[\right.$. For every natural number i such that $i \in \operatorname{Seg} n$ there exists an element d of $\mathbb{R} \times \mathbb{R}$ such that $\mathcal{P}[i, d]$ by [7, (3)]. Consider f being a finite sequence of elements of $\mathbb{R} \times \mathbb{R}$ such that len $f=n$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $\mathcal{P}\left[i, f_{i}\right]$ from [25, Sch. 1]. Consider z being an element of $\mathcal{R}^{n} \times \mathcal{R}^{n}$ such that for every natural number i such that $i \in \operatorname{Seg} n$ holds $(z)_{\mathbf{1}}(i)=\left(f_{i}\right)_{\mathbf{1}}$ and $(z)_{\mathbf{2}}(i)=\left(f_{i}\right)_{\mathbf{2}}$. Reconsider $a=(z)_{\mathbf{1}}, b=(z)_{\mathbf{2}}$ as an element of \mathcal{R}^{n}. For every natural number i such that $i \in \operatorname{Seg} n$ holds $s(i)=[a(i), b(i)[$.
(91) Let us consider an element x of $\operatorname{Product}(n$, the set of all right open real bounded intervals). Then there exist elements a, b of \mathcal{R}^{n} such that
for every element t of $\mathcal{R}^{n}, t \in x$ iff for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in[a(i), b(i)[$. The theorem is a consequence of (62) and (90).
(92) MeasurableRectangle LeftOpenIntervals $(n)=\operatorname{Product}(n$, the set of all left open real bounded intervals). The theorem is a consequence of (40) and (66).
(93) MeasurableRectangle RightOpenIntervals $(n)=\operatorname{Product}(n$, the set of all right open real bounded intervals). The theorem is a consequence of (46) and (67).

15. Chebyshev Distance

In the sequel n denotes a non zero natural number and x, y, z denote elements of \mathcal{R}^{n}.

Let us consider n. The functor $D_{\text {Chebyshev }}^{n}$ yielding a function from $\mathcal{R}^{n} \times \mathcal{R}^{n}$ into \mathbb{R} is defined by
(Def. 20) for every elements x, y of $\mathcal{R}^{n}, i t(x, y)=\sup \operatorname{rng}|x-y|$.
Now we state the propositions:
(94) (i) the set of all $|x(i)-y(i)|$ where i is an element of $\operatorname{Seg} n$ is realmembered, and
(ii) the set of all $|x(i)-y(i)|$ where i is an element of $\operatorname{Seg} n=\operatorname{rng}|x-y|$.

Proof: Set $S=$ the set of all $|x(i)-y(i)|$ where i is an element of $\operatorname{Seg} n$. $S \subseteq \operatorname{rng}|x-y|$ by [8, (27)], [6, (124)]. For every object t such that $t \in$ rng $|x-y|$ holds $t \in S$ by [6, (124)], [8, (27)].
(95) There exists an extended real-membered set S such that
(i) $S=$ the set of all $|x(i)-y(i)|$ where i is an element of $\operatorname{Seg} n$, and
(ii) $\left(D_{\text {Chebyshev }}^{n}\right)(x, y)=\sup S$.

The theorem is a consequence of (94).
(96) $\quad\left(D_{\text {Chebyshev }}^{n}\right)(x, y)=|x-y|($ max-diff-index $(x, y))$.

Proof: $\left(D_{\text {Chebyshev }}^{n}\right)(x, y) \leqslant|x-y|($ max-diff-index $(x, y))$ by [15, (5)].
(97) $\quad\left(D_{\text {Chebyshev }}^{n}\right)(x, y)=0$ if and only if $x=y$.

Proof: Consider S being an extended real-membered set such that $S=$ the set of all $|x(i)-y(i)|$ where i is an element of $\operatorname{Seg} n$ and
$\left(D_{\text {Chebyshev }}^{n}\right)(x, y)=\sup S . S=\{0\}$ by [19, (2)], [3, (53)], [4, (1)].
(98) $\left(D_{\text {Chebyshev }}^{n}\right)(x, y)=\left(D_{\text {Chebyshev }}^{n}\right)(y, x)$. The theorem is a consequence of (1).
(99) $\left(D_{\text {Chebyshev }}^{n}\right)(x, y) \leqslant\left(D_{\text {Chebyshev }}^{n}\right)(x, z)+\left(D_{\text {Chebyshev }}^{n}\right)(z, y)$.

Proof: Reconsider $s_{1}=\sup r n g|x-y|, s_{2}=\sup \operatorname{rng}|x-z|, s_{3}=\sup \operatorname{rng} \mid z-$ $y \mid$ as a real number. $s_{1} \leqslant s_{2}+s_{3}$ by [8, (27)], [5, (56)], [6, (124)], (2).
(100) $D_{\text {Chebyshev }}^{n}$ is a metric of \mathcal{R}^{n}. The theorem is a consequence of (97), (98), and (99).
(101) $\quad \rho^{2}([0,0],[1,1])=\sqrt{2}$.
$(102) \quad\left(D_{\text {Chebyshev }}^{2}\right)([0,0],[1,1])=1$.
Proof: Consider S being an extended real-membered set such that $S=$ the set of all $|[0,0](i)-[1,1](i)|$ where i is an element of Seg 2 and $\left(D_{\text {Chebyshev }}^{2}\right)([0,0],[1,1])=\sup S . S=\{|0-1|\}$ by [4, (2), (44)].
Let us consider elements x, y of \mathcal{R}^{1}. Now we state the propositions:
(103) $\quad\left(D_{\text {Chebyshev }}^{1}\right)(x, y)=|x(1)-y(1)|$.

Proof: Consider S being an extended real-membered set such that $S=$ the set of all $|x(i)-y(i)|$ where i is an element of Seg 1 and $\left(D_{\text {Chebyshev }}^{1}\right)(x, y)=\sup S . S=\{|x(1)-y(1)|\}$ by [4, (2)].
(104) $\quad \rho^{1}(x, y)=|x(1)-y(1)|$.

Now we state the propositions:
(105) $\quad \rho^{1}=D_{\text {Chebyshev }}^{1}$. The theorem is a consequence of (104) and (103).
(106) $\quad \rho^{2} \neq D_{\text {Chebyshev }}^{2}$. The theorem is a consequence of (101) and (102).

Let n be a non zero natural number. The functor $\mathrm{L}_{\infty}(n)$ yielding a strict metric space is defined by the term
(Def. 21) $\left\langle\mathcal{R}^{n}, D_{\text {Chebyshev }}^{n}\right\rangle$.
Let us observe that $\mathrm{L}_{\infty}(n)$ is non empty.
The functor $\mathcal{E}_{\infty}^{n}(n)$ yielding a strict real linear topological structure is defined by
(Def. 22) the topological structure of it $=\left(\mathrm{L}_{\infty}(n)\right)_{\text {top }}$ and the RLS structure of $i t=\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$.
Now we state the proposition:
(107) The RLS structure of $\mathcal{E}_{\mathrm{T}}^{n}=$ the RLS structure of $\mathcal{E}_{\infty}^{n}(n)$.

Let n be a non zero natural number. Let us note that $\mathcal{E}_{\infty}^{n}(n)$ is non empty.
Now we state the propositions:
(108) Let us consider an element x of \mathcal{R}^{0}. Then
(i) Intervals (x, r) is empty, and
(ii) Π Intervals $(x, r)=\{\emptyset\}$.
(109) If $r \leqslant 0$, then $\prod \operatorname{Intervals}(x, r)$ is empty.

In the sequel p denotes an element of $\mathrm{L}_{\infty}(n)$.
Let n be a non zero natural number and p be an element of $\mathrm{L}_{\infty}(n)$. The functor ${ }^{@} p$ yielding an element of \mathcal{R}^{n} is defined by the term
(Def. 23) p.
Now we state the propositions:
(110) $\operatorname{Ball}(p, r)=\Pi \operatorname{Intervals}\left({ }^{@} p, r\right)$. The theorem is a consequence of (109), (95), and (96).
(111) Let us consider a point e of \mathcal{E}^{n}. If $e=p$, then $\operatorname{Ball}(p, r)=$ OpenHypercube (e, r). The theorem is a consequence of (110).
Let n be a non zero natural number, p be an element of $\mathrm{L}_{\infty}(n)$, and r be a negative real number. Let us note that $\overline{\operatorname{Ball}}(p, r)$ is empty.

Now we state the propositions:
(112) Let us consider an object t. Then $t \in \overline{\operatorname{Ball}}(p, r)$ if and only if there exists a function f such that $t=f$ and $\operatorname{dom} f=\operatorname{Seg} n$ and for every natural number i such that $i \in \operatorname{Seg} n$ holds $f(i) \in\left[\left({ }^{@} p\right)(i)-r,\left({ }^{@} p\right)(i)+r\right]$. The theorem is a consequence of (95).
(113) Let us consider a point p of $\mathcal{E}_{\mathrm{T}}^{n}$, and an element q of $\mathrm{L}_{\infty}(n)$. Suppose $q=p$. Then $\overline{\operatorname{Ball}}(q, r)=$ ClosedHypercube $(p, n \mapsto r)$.
Proof: For every object x such that $x \in \overline{\operatorname{Ball}}(q, r)$ holds
$x \in \operatorname{ClosedHypercube}(p, n \mapsto r)$ by (112), [6, (57), (93)], [10, (22)]. For every object x such that $x \in \operatorname{ClosedHypercube}(p, n \mapsto r)$ holds $x \in \overline{\operatorname{Ball}}(q, r)$ by [10, (22)], [6, (131), (124), (57)].
(114) $\operatorname{Ball}(p, r)=$ OpenHyperInterval $\left({ }^{@} p-n \mapsto r,{ }^{@} p+n \mapsto r\right)$. The theorem is a consequence of (80) and (110).
(115) $\overline{\operatorname{Ball}}(p, r)=$ ClosedHyperInterval $\left({ }^{@} p-n \mapsto r,{ }^{@} p+n \mapsto r\right)$. The theorem is a consequence of (81) and (113).

References

[1] Grzegorz Bancerek. König's theorem, Formalized Mathematics, 1(3):589-593, 1990.
[2] Grzegorz Bancerek. On powers of cardinals. Formalized Mathematics, 3(1):89-93, 1992.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[8] Czesław Bylinski. The sum and product of finite sequences of real numbers Formalized Mathematics, $1(4): 661-668,1990$.
[9] Czesław Byliński. Some basic properties of sets Formalized Mathematics, 1(1):47-53, 1990.
[10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[11] Michel Marie Deza and Elena Deza. Encyclopedia of distances. Springer, 2009.
[12] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions Formalized Mathematics, 9(3):495-500, 2001.
[13] Adam Grabowski. On the subcontinua of a real line Formalized Mathematics, 11(3): 313-322, 2003.
[14] Adam Grabowski. On the Borel families of subsets of topological spaces. Formalized Mathematics, 13(4):453-461, 2005.
[15] Artur Korniłowicz. The correspondence between n-dimensional Euclidean space and the product of n real lines. Formalized Mathematics, 18(1):81-85, 2010. doi 10.2478/v10037-010-0011-0
[16] Jean Mawhin. Analyse: fondements, techniques, évolution. De Boeck, 1992.
[17] Beata Padlewska. Families of sets Formalized Mathematics, 1(1):147-152, 1990.
[18] Karol Pąk. Tietze extension theorem for n-dimensional spaces. Formalized Mathematics, 22(1):11-19, 2014. doi 10.2478/forma-2014-0002
[19] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[20] Marco Riccardi. The definition of topological manifolds. Formalized Mathematics, 19(1): 41-44, 2011. doi $10.2478 / \mathrm{v} 10037-011-0007-4$.
[21] Marco Riccardi. Planes and spheres as topological manifolds. Stereographic projection. Formalized Mathematics, 20(1):41-45, 2012. doi 10.2478/v10037-012-0006-0.
[22] Jean Schmets. Analyse mathematique Notes de cours, Université de Liège, 337 pages, 2004.
[23] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set Formalized Mathematics, $5(2): 233-236,1996$.
[24] Andrzej Trybulec. Binary operations applied to functions Formalized Mathematics, 1 (2):329-334, 1990.
[25] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[26] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.
[27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received December 31, 2015

