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Summary. In our earlier article [12], the first part of axioms of geometry
proposed by Alfred Tarski [14] was formally introduced by means of Mizar proof
assistant [9]. We defined a structure TarskiPlane with the following predicates:

• of betweenness between (a ternary relation),

• of congruence of segments equiv (quarternary relation),

which satisfy the following properties:

• congruence symmetry (A1),

• congruence equivalence relation (A2),

• congruence identity (A3),

• segment construction (A4),

• SAS (A5),

• betweenness identity (A6),

• Pasch (A7).

Also a simple model, which satisfies these axioms, was previously constructed,
and described in [6]. In this paper, we deal with four remaining axioms, namely:

• the lower dimension axiom (A8),

• the upper dimension axiom (A9),

• the Euclid axiom (A10),

• the continuity axiom (A11).

They were introduced in the form of Mizar attributes. Additionally, the relation
of congruence of triangles cong is introduced via congruence of sides (SSS).

In order to show that the structure which satisfies all eleven Tarski’s axioms
really exists, we provided a proof of the registration of a cluster that the Euclidean
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plane, or rather a natural [5] extension of ordinary metric structure Euclid 2
satisfies all these attributes.

Although the tradition of the mechanization of Tarski’s geometry in Mizar
is not as long as in Coq [11], first approaches to this topic were done in Mizar in
1990 [16] (even if this article started formal Hilbert axiomatization of geometry,
and parallel development was rather unlikely at that time [8]). Connection with
another proof assistant should be mentioned – we had some doubts about the
proof of the Euclid’s axiom and inspection of the proof taken from Archive of
Formal Proofs of Isabelle [10] clarified things a bit. Our development allows for
the future faithful mechanization of [13] and opens the possibility of automatically
generated Prover9 proofs which was useful in the case of lattice theory [7].
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1. Preliminaries

Now we state the propositions:

(1) Let us consider real numbers r, s, t, u. Suppose s 6= 0 and t 6= 0 and
r2 = s2 + t2 − 2 · s · t · u. Then u = r2−s2−t2

−2·s·t .

(2) Let us consider a natural number n, and elements u, v of EnT. Then
u+ 0 · v = u.

(3) Let us consider a natural number n, real numbers r, s, and elements u,
v, w of EnT. If r · u− r · v = s ·w− s · u, then (r+ s) · u = r · v+ s ·w. The
theorem is a consequence of (2).

(4) Let us consider real numbers r, s. If 0 < r and 0 < s, then 0 ¬ r
r+s ¬ 1.

(5) Let us consider a real number a. Then cos(3 · π − a) = −cos a.

Let us consider a natural number n and elements a, b, c of EnT. Now we state
the propositions:

(6) If a− c = b− c, then a = b.

(7) c− a− (b− a) = c− b.
(8) Let us consider real numbers a, b, c, d. Then ρ([a, b], [c, d]) =√

(a− c)2 + (b− d)2.

(9) ρ([0, 0], [1, 0]) = 1. The theorem is a consequence of (8).

(10) ρ([0, 0], [0, 1]) = 1. The theorem is a consequence of (8).

(11) ρ([1, 0], [0, 1]) =
√

2. The theorem is a consequence of (8).

Let n be a natural number. The functor TarskiEuclidSpacen yielding a me-
tric Tarski structure is defined by the term
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(Def. 1) the naturally generated Tarski extension of En.
The functor TarskiEuclid2Space yielding a metric Tarski structure is defined

by the term

(Def. 2) TarskiEuclidSpace 2.

2. Basic Properties of the Euclidean Plane

Let n be a natural number. Let us observe that TarskiEuclidSpacen is non
empty and TarskiEuclid2Space is reflexive, symmetric, and discernible.

Let n be a natural number. One can check that TarskiEuclidSpacen is re-
flexive, symmetric, and discernible.

Let P be a point of TarskiEuclidSpacen. The functor P̂ yielding an element
of EnT is defined by the term

(Def. 3) P .

Let P be a point of TarskiEuclid2Space. The functor P̂ yielding an element
of E2T is defined by the term

(Def. 4) P .

The functor P̃ yielding a point of E2 is defined by the term

(Def. 5) P .

The functor P̆ yielding an element of R2 is defined by the term

(Def. 6) P .

Now we state the propositions:

(12) Let us consider a natural number n, points p, q of TarskiEuclidSpacen,
and elements p1, q1 of EnT. Suppose p = p1 and q = q1. Then

(i) ρ(p, q) = ρn(p1, q1), and

(ii) ρ(p, q) = |p1 − q1|.

(13) Let us consider points a, b, c of TarskiEuclid2Space. Then (ρ(c, a))2 =
(ρ(a, b))2 + (ρ(b, c))2 − 2 · ρ(a, b) · ρ(b, c) · cos](â, b̂, ĉ). The theorem is
a consequence of (12).

(14) Let us consider points a, b, c, e, f , g of TarskiEuclid2Space. Suppose

â, b̂, ĉ form a triangle and ](â, b̂, ĉ) < π and ](ê, ĉ, â) = ](b̂,ĉ,â)
3 and

](ĉ, â, ê) = ](ĉ,â,b̂)
3 and ](â, b̂, f̂) = ](â,b̂,ĉ)

3 and ](f̂ , â, b̂) = ](ĉ,â,b̂)
3 and

](b̂, ĉ, ĝ) = ](b̂,ĉ,â)
3 and ](ĝ, b̂, ĉ) = ](â,b̂,ĉ)

3 . Then

(i) ρ(f, e) = ρ(g, f), and

(ii) ρ(f, e) = ρ(e, g), and
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(iii) ρ(g, f) = ρ(e, g).

The theorem is a consequence of (12).

(15) Let us consider a natural number n, elements p, q of TarskiEuclidSpacen,
and elements p1, q1 of En. If p = p1 and q = q1, then ρ(p, q) = ρ(p1, q1).

(16) Let us consider points p, q of TarskiEuclid2Space.
Then ρ(p, q) =

√
((p̂)1 − (q̂)1)2 + ((p̂)2 − (q̂)2)2.

(17) Let us consider points A, B of TarskiEuclid2Space. Then

(i) ρ(A,B) = |Â− B̂|, and

(ii) ρ(A,B) = |Ă− B̆|.

(18) Let us consider points a, b, c, d of TarskiEuclid2Space. Then |â − b̂| =
|ĉ− d̂| if and only if ab ∼= cd. The theorem is a consequence of (17).

(19) Let us consider points p, q, r of TarskiEuclid2Space. Then p is between
q and r if and only if p̂ ∈ L(q̂, r̂). The theorem is a consequence of (15).

From now on n denotes a natural number.
Now we state the propositions:

(20) Let us consider points p, q, r of TarskiEuclid2Space. Then q lies between
p and r if and only if q̂ ∈ L(p̂, r̂). The theorem is a consequence of (19).

(21) Let us consider points a, b of TarskiEuclid2Space. Then

(i) a lies between a and b, and

(ii) b lies between a and b.

The theorem is a consequence of (20).

(22) Let us consider points a, b, c of TarskiEuclid2Space. If b lies between a

and c, then b lies between c and a. The theorem is a consequence of (20).

(23) Let us consider points a, b of TarskiEuclid2Space. If b lies between a and
a, then a = b. The theorem is a consequence of (20).

(24) Let us consider points a, b of TarskiEuclid2Space. Then a = b if and
only if ρ(a, b) = 0. The theorem is a consequence of (12).

(25) Let us consider points a, b, c, d of TarskiEuclid2Space. If ρ(a, b) +
ρ(c, d) = 0, then a = b and c = d. The theorem is a consequence of
(24).

(26) Let us consider points a, b, c, a1, b1, c1 of TarskiEuclid2Space. Then
4abc ∼= 4a1b1c1 if and only if ρ(a, b) = ρ(a1, b1) and ρ(a, c) = ρ(a1, c1)
and ρ(b, c) = ρ(b1, c1).

(27) Let us consider points a, b, c of TarskiEuclid2Space. Then b lies between
a and c if and only if ρ(a, c) = ρ(a, b) + ρ(b, c).
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(28) Let us consider points a, b, c, d of TarskiEuclid2Space. Then (ρ(a, b))2 =
(ρ(c, d))2 if and only if ab ∼= cd.

(29) Let us consider a point a of TarskiEuclid2Space. Then a lies between a

and a.

3. Ordered Affine Space Generated by E2T

Now we state the proposition:

(30) OASpace E2T is an ordered affine space.
Proof: There exist vectors u, v of E2T such that for every real numbers a,
b such that a ·u+ b · v = 0E2T holds a = 0 and b = 0 by [4, (58), (56), (52)].
�

Let us consider elements a, b, c of OASpace E2T. Now we state the proposi-
tions:

(31) b is a midpoint of a, c if and only if a = b or b = c or there exist points
u, v of E2T such that u = a and v = c and b ∈ L(u, v). The theorem is
a consequence of (3), (4), (30), and (2).

(32) b is a midpoint of a, c if and only if there exist points u, v of E2T such
that u = a and v = c and b ∈ L(u, v). The theorem is a consequence of
(31).

(33) Let us consider elements a, b, c of OASpace E2T, and points a1, b1, c1 of
TarskiEuclid2Space. Suppose a = a1 and b = b1 and c = c1. Then b is a
midpoint of a, c if and only if b1 lies between a1 and c1. The theorem is
a consequence of (32) and (20).

4. Eucldiean Plane Satisfies First 7 Tarski’s Axioms

Let us consider elements A, B, C, D of E2T. Now we state the propositions:

(34) If B ∈ L(A,C) and C ∈ L(A,D), then B ∈ L(A,D).

(35) If B 6= C and B ∈ L(A,C) and C ∈ L(B,D), then C ∈ L(A,D). The
theorem is a consequence of (30) and (32).

(36) Let us consider points p, q, r, s of TarskiEuclid2Space. If q lies between
p and r and r lies between p and s, then q lies between p and s. The
theorem is a consequence of (20) and (34).

(37) Let us consider points A, B, C, D of E2T. If B ∈ L(A,C) and D ∈
L(A,B), then B ∈ L(D,C). The theorem is a consequence of (34).

Let us consider points p, q, r, s of TarskiEuclid2Space. Now we state the
proposition:
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(38) If q lies between p and r and s lies between p and q, then q lies between
s and r. The theorem is a consequence of (20) and (37).

Let us assume that q 6= r and q lies between p and r and r lies between q

and s. Now we state the propositions:

(39) q lies between p and s. The theorem is a consequence of (20) and (35).

(40) r lies between p and s. The theorem is a consequence of (20) and (35).

Note that TarskiEuclid2Space satisfies the axiom of congruence symmetry,
the axiom of congruence equivalence relation, the axiom of congruence identity,
the axiom of segment construction, the axiom of SAS, the axiom of betweenness
identity, and the axiom of Pasch and TarskiEuclid2Space satisfies seven Tarski’s
geometry axioms.

5. Preparation for The Rest of Tarski’s Axioms

Now we state the propositions:

(41) Let us consider points P , Q, R of E2T, and an element L of Lines(R2). If
P , Q, R ∈ L, then P ∈ L(Q,R) or Q ∈ L(R,P ) or R ∈ L(P,Q).

(42) Let us consider elements a, b, c of TarskiEuclid2Space. Suppose b̂ ∈
L(â, ĉ). Then there exists a real number r such that

(i) 0 ¬ r ¬ 1, and

(ii) b̂− â = r · (ĉ− â).

(43) Let us consider a natural number n, and elements a, b, c of TarskiEuclid-
Spacen. Suppose b̂ ∈ L(â, ĉ). Then there exists a real number r such that

(i) 0 ¬ r ¬ 1, and

(ii) b̂− â = r · (ĉ− â).

(44) Let us consider elements a, b, c of TarskiEuclid2Space. Suppose there
exists a real number r such that 0 ¬ r ¬ 1 and b̂ − â = r · (ĉ − â). Then
b̂ ∈ L(â, ĉ).

6. Four Remaining Axioms of Tarski

Let S be a Tarski plane. We say that S satisfies (A8) if and only if

(Def. 7) there exist points a, b, c of S such that b does not lie between a and c

and c does not lie between b and a and a does not lie between c and b.

We say that S satisfies (A9) if and only if
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(Def. 8) for every points a, b, c, p, q of S such that p 6= q and ap ∼= aq and bp ∼= bq

and cp ∼= cq holds b lies between a and c or c lies between b and a or a lies
between c and b.

We say that S satisfies (A10) if and only if

(Def. 9) for every points a, b, c, d, t of S such that d lies between a and t and d

lies between b and c and a 6= d there exist points x, y of S such that b lies
between a and x and c lies between a and y and t lies between x and y.

We say that S satisfies (A11) if and only if

(Def. 10) for every subsets X, Y of S such that there exists a point a of S such
that for every points x, y of S such that x ∈ X and y ∈ Y holds x lies
between a and y there exists a point b of S such that for every points x,
y of S such that x ∈ X and y ∈ Y holds b lies between x and y.

We introduce the notation S satisfies Lower Dimension Axiom as a synonym
of S satisfies (A8) and S satisfies Upper Dimension Axiom as a synonym of S
satisfies (A9) and S satisfies Euclid Axiom as a synonym of S satisfies (A10)
and S satisfies Continuity Axiom as a synonym of S satisfies (A11).

Now we state the proposition:

(45) Lower dimension axiom:
There exist points a, b, c of TarskiEuclid2Space such that

(i) b does not lie between a and c, and

(ii) c does not lie between b and a, and

(iii) a does not lie between c and b.

Proof: Reconsider a = [0, 0], b = [1, 0], c = [0, 1] as a point of TarskiEuclid-
2Space. b does not lie between a and c by (20), [3, (12)], [15, (19)], (9). c
does not lie between b and a by (20), [3, (12)], [15, (19)], (9). â ∈ L(ĉ, b̂).
�

(46) Upper dimension axiom:
Let us consider points a, b, c, p, q of TarskiEuclid2Space. Suppose p 6= q

and ap ∼= aq and bp ∼= bq and cp ∼= cq. Then

(i) b lies between a and c, or

(ii) c lies between b and a, or

(iii) a lies between c and b.

The theorem is a consequence of (18), (41), and (20).

(47) Axiom of Euclid:
Let us consider elements a, b, c, d, t of TarskiEuclid2Space. Suppose d lies
between a and t and d lies between b and c and a 6= d. Then there exist
elements x, y of TarskiEuclid2Space such that
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(i) b lies between a and x, and

(ii) c lies between a and y, and

(iii) t lies between x and y.

Proof: d̂ ∈ L(â, t̂). Set v = â. Set w = t̂. Consider r being a real number
such that 0 ¬ r ¬ 1 and d̂ = (1 − r) · v + r · w. Set r1 = 1

r . r 6= 0
by [17, (10), (21)]. Set x1 = r1 · (b̂ − â) + â. Reconsider x2 = x1 as
an element of TarskiEuclid2Space. b̂ ∈ L(â, x̂2). b lies between a and x2. Set
y1 = r1·(ĉ−â)+â. Reconsider y2 = y1 as an element of TarskiEuclid2Space.
ĉ ∈ L(â, ŷ2). c lies between a and y2. d̂ ∈ L(b̂, ĉ). Consider k being a real
number such that 0 ¬ k ¬ 1 and d̂ − b̂ = k · (ĉ − b̂). t̂ ∈ L(x̂2, ŷ2). t lies
between x2 and y2. �

7. Axiom A11 – Axiom Schema of Continuity

Now we state the proposition:

(48) Axiom schema of continuity:
Let us consider subsets X, Y of TarskiEuclid2Space. Suppose there exists
an element a of TarskiEuclid2Space such that for every elements x, y of
TarskiEuclid2Space such that x ∈ X and y ∈ Y holds x lies between a

and y. Then there exists an element b of TarskiEuclid2Space such that for
every elements x, y of TarskiEuclid2Space such that x ∈ X and y ∈ Y

holds b lies between x and y. The theorem is a consequence of (20), (42),
(2), and (44).

Let us observe that TarskiEuclid2Space satisfies Lower Dimension Axiom,
Upper Dimension Axiom, Euclid Axiom, and Continuity Axiom.

8. Corrolaries

In the sequel X, Y denote subsets of TarskiEuclid2Space.
Let us consider an element a of TarskiEuclid2Space. Now we state the pro-

positions:

(49) Suppose for every elements x, y of TarskiEuclid2Space such that x ∈ X
and y ∈ Y holds x lies between a and y and a ∈ Y. Then

(i) X = {a}, or

(ii) X is empty.
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(50) Suppose for every elements x, y of TarskiEuclid2Space such that x ∈ X
and y ∈ Y holds x lies between a and y and X is not empty and Y is not
empty and if X is trivial, then X 6= {a}. Then there exists an element b
of TarskiEuclid2Space such that

(i) X ⊆ Line(â, b̂), and

(ii) Y ⊆ Line(â, b̂).

Proof: Consider x0 being an object such that x0 ∈ X. Consider c being
an object such that c ∈ Y. X ⊆ L(â, ĉ). Y ⊆ Line(â, ĉ) by [2, (131)], (20),
[1, (73), (72), (75)]. �
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