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Summary. In this article, we formalize the definition of lattice of Z-module
and its properties in the Mizar system [5]. We formally prove that scalar products
in lattices are bilinear forms over the field of real numbers R. We also formalize the
definitions of positive definite and integral lattices and their properties. Lattice
of Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász)
base reduction algorithm [14], and cryptographic systems with lattices [15] and
coding theory [9].
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1. Definition of Lattices of Z-module

Now we state the proposition:

(1) Let us consider non empty setsD, E, natural numbers n,m, and a matrix
M over D of dimension n×m. Suppose for every natural numbers i, j such
that 〈〈i, j〉〉 ∈ the indices of M holds Mi,j ∈ E. Then M is a matrix over E
of dimension n×m.

Let a, b be elements of FQ and x, y be rational numbers. We identify x+ y

with a + b and x · y with a · b. Let F be a 1-sorted structure. We consider
structures of Z-lattice over F which extend vector space structures over F and
are systems

〈〈a carrier, an addition, a zero, a left multiplication,
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a scalar product〉〉

where the carrier is a set, the addition is a binary operation on the carrier,
the zero is an element of the carrier, the left multiplication is a function from
(the carrier of F )×(the carrier) into the carrier, the scalar product is a function
from (the carrier)× (the carrier) into the carrier of RF.

Note that there exists a structure of Z-lattice over F which is strict and non
empty.

Let D be a non empty set, Z be an element of D, a be a binary operation
on D, m be a function from (the carrier of F )×D into D, and s be a function
from D × D into the carrier of RF. One can check that 〈〈D, a, Z,m, s〉〉 is non
empty.

Let X be a non empty structure of Z-lattice over ZR and x, y be vectors of
X. The functor 〈〈x, y〉〉 yielding an element of RF is defined by the term

(Def. 1) (the scalar product of X)(〈〈x, y〉〉).
Let x be a vector of X. The functor ‖x‖ yielding an element of RF is defined

by the term

(Def. 2) 〈〈x, x〉〉.
Let X be a non empty structure of Z-lattice over ZR. We say that X is

Z-lattice-like if and only if

(Def. 3) for every vector x of X such that for every vector y of X, 〈〈x, y〉〉 = 0
holds x = 0X and for every vectors x, y of X, 〈〈x, y〉〉 = 〈〈y, x〉〉 and for every
vectors x, y, z of X and for every element a of ZR, 〈〈x+y, z〉〉 = 〈〈x, z〉〉+〈〈y, z〉〉
and 〈〈a · x, y〉〉 = a · 〈〈x, y〉〉.

Let V be a Z-module and s be a function from (the carrier of V )×(the carrier
of V ) into the carrier of RF. The functor GenLat(V, s) yielding a non empty
structure of Z-lattice over ZR is defined by the term

(Def. 4) 〈〈the carrier of V, the addition of V, 0V , the left multiplication of V, s〉〉.
Let us note that there exists a non empty structure of Z-lattice over ZR

which is vector distributive, scalar distributive, scalar associative, scalar unital,
Abelian, add-associative, right zeroed, right complementable, and strict.

Let V be a Z-module and s be a function from (the carrier of V )×(the carrier
of V ) into the carrier of RF. One can verify that GenLat(V, s) is Abelian, add-
associative, right zeroed, right complementable, scalar distributive, vector di-
stributive, scalar associative, and scalar unital.

Let us consider a Z-module V and a function s from (the carrier of V ) ×
(the carrier of V ) into the carrier of RF. Now we state the propositions:

(2) GenLat(V, s) is a submodule of V .

(3) V is a submodule of GenLat(V, s).
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Note that there exists an Abelian, add-associative, right zeroed, right com-
plementable, scalar distributive, vector distributive, scalar associative, scalar
unital, non empty structure of Z-lattice over ZR which is free.

Let V be a free Z-module and s be a function from (the carrier of V ) ×
(the carrier of V ) into the carrier of RF. Let us observe that GenLat(V, s) is free
and there exists an Abelian, add-associative, right zeroed, right complementa-
ble, scalar distributive, vector distributive, scalar associative, scalar unital,
non empty structure of Z-lattice over ZR which is torsion-free.

Now we state the proposition:

(4) Let us consider a finite rank, free Z-module V , and a function s from
(the carrier of V )× (the carrier of V ) into the carrier of RF.
Then GenLat(V, s) is finite rank. The theorem is a consequence of (2).

Let us note that there exists a free, Abelian, add-associative, right zeroed,
right complementable, scalar distributive, vector distributive, scalar associa-
tive, scalar unital, non empty structure of Z-lattice over ZR which is finite
rank.

Let V be a finite rank, free Z-module and s be a function from (the carrier
of V )× (the carrier of V ) into the carrier of RF. Let us note that GenLat(V, s)
is finite rank.

Now we state the proposition:

(5) Let us consider a finite rank, free Z-module V , and a function f from
(the carrier of 0V ) × (the carrier of 0V ) into the carrier of RF. Suppose
f = (the carrier of 0V )×(the carrier of 0V ) 7−→ 0RF . Then GenLat(0V , f)
is Z-lattice-like.
Proof: Set X = GenLat(0V , f). For every vector x of X such that for
every vector y of X, 〈〈x, y〉〉 = 0 holds x = 0X by [10, (26)]. For every
vectors x, y, z of X and for every element a of ZR, 〈〈x, y〉〉 = 〈〈y, x〉〉 and
〈〈x+ y, z〉〉 = 〈〈x, z〉〉+ 〈〈y, z〉〉 and 〈〈a · x, y〉〉 = a · 〈〈x, y〉〉 by [16, (7)], [8, (87)].
�

Note that there exists a non empty structure of Z-lattice over ZR which is
Z-lattice-like and there exists a finite rank, free, Abelian, add-associative, right
zeroed, right complementable, scalar distributive, vector distributive, scalar
associative, scalar unital, non empty structure of Z-lattice over ZR which is
Z-lattice-like.

There exists a finite rank, free, Z-lattice-like, Abelian, add-associative,
right zeroed, right complementable, scalar distributive, vector distributive,
scalar associative, scalar unital, non empty structure of Z-lattice over ZR
which is strict.

A Z-lattice is a finite rank, free, Z-lattice-like, Abelian, add-associative,
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right zeroed, right complementable, scalar distributive, vector distributive,
scalar associative, scalar unital, non empty structure of Z-lattice over ZR. Now
we state the proposition:

(6) Let us consider a non trivial, torsion-free Z-module V , a submodule Z
of V , a non zero vector v of V , and a function f from (the carrier of
Z)× (the carrier of Z) into the carrier of RF. Suppose Z = Lin({v}) and
for every vectors v1, v2 of Z and for every elements a, b of ZR such that
v1 = a · v and v2 = b · v holds f(v1, v2) = a · b. Then GenLat(Z, f) is
Z-lattice-like.
Proof: Set L = GenLat(Z, f). L is Z-lattice-like by [10, (26)], [12, (19)],
[10, (1)], [12, (21)]. �

Observe that there exists a Z-lattice which is non trivial.
Let V be a torsion-free Z-module. Let us observe that Z-MQVectSp(V )

is scalar distributive, vector distributive, scalar associative, scalar unital, add-
associative, right zeroed, right complementable, and Abelian as a non empty
vector space structure over FQ.

Now we state the propositions:

(7) Let us consider a Z-lattice L, and vectors v, u of L. Then

(i) 〈〈v,−u〉〉 = −〈〈v, u〉〉, and

(ii) 〈〈−v, u〉〉 = −〈〈v, u〉〉.
(8) Let us consider a Z-lattice L, and vectors v, u, w of L. Then 〈〈v, u+w〉〉 =
〈〈v, u〉〉+ 〈〈v, w〉〉.

(9) Let us consider a Z-lattice L, vectors v, u of L, and an element a of ZR.
Then 〈〈v, a · u〉〉 = a · 〈〈v, u〉〉.

(10) Let us consider a Z-lattice L, vectors v, u, w of L, and elements a, b of
ZR. Then

(i) 〈〈a · v + b · u,w〉〉 = a · 〈〈v, w〉〉+ b · 〈〈u,w〉〉, and

(ii) 〈〈v, a · u+ b · w〉〉 = a · 〈〈v, u〉〉+ b · 〈〈v, w〉〉.
The theorem is a consequence of (8) and (9).

(11) Let us consider a Z-lattice L, and vectors v, u, w of L. Then

(i) 〈〈v − u,w〉〉 = 〈〈v, w〉〉 − 〈〈u,w〉〉, and

(ii) 〈〈v, u− w〉〉 = 〈〈v, u〉〉 − 〈〈v, w〉〉.
The theorem is a consequence of (8) and (9).

(12) Let us consider a Z-lattice L, and a vector v of L. Then

(i) 〈〈v, 0L〉〉 = 0, and

(ii) 〈〈0L, v〉〉 = 0.
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The theorem is a consequence of (11).

Let X be a Z-lattice. We say that X is integral if and only if

(Def. 5) for every vectors v, u of X, 〈〈v, u〉〉 ∈ Z.

Observe that there exists a Z-lattice which is integral.
Let L be an integral Z-lattice and v, u be vectors of L. Let us observe that

〈〈v, u〉〉is integer.
Let v be a vector of L. Let us note that ‖v‖ is integer.
Now we state the propositions:

(13) Let us consider a Z-lattice L, a finite subset I of L, and a vector u of L.
Suppose for every vector v of L such that v ∈ I holds 〈〈v, u〉〉 ∈ Z. Let us
consider a vector v of L. If v ∈ Lin(I), then 〈〈v, u〉〉 ∈ Z.
Proof: Define P[natural number] ≡ for every finite subset I of L such
that I = $1 and for every vector v of L such that v ∈ I holds 〈〈v, u〉〉 ∈ Z
for every vector v of L such that v ∈ Lin(I) holds 〈〈v, u〉〉 ∈ Z. P[0] by [11,
(67)], (12). For every natural number n such that P[n] holds P[n+ 1] by
[8, (40)], [11, (72)], [1, (44)], [8, (31)]. For every natural number n, P[n]
from [3, Sch. 2]. �

(14) Let us consider a Z-lattice L, and a basis I of L. Suppose for every
vectors v, u of L such that v, u ∈ I holds 〈〈v, u〉〉 ∈ Z. Let us consider
vectors v, u of L. Then 〈〈v, u〉〉 ∈ Z.
Proof: Define P[natural number] ≡ for every finite subset I of L such that
I = $1 and for every vectors v, u of L such that v, u ∈ I holds 〈〈v, u〉〉 ∈ Z
for every vectors v, u of L such that v, u ∈ Lin(I) holds 〈〈v, u〉〉 ∈ Z. P[0] by
[11, (67)], (12). For every natural number n such that P[n] holds P[n+ 1]
by [8, (40)], [11, (72)], [1, (44)], [8, (31)]. For every natural number n, P[n]
from [3, Sch. 2]. �

(15) Let us consider a Z-lattice L, and a basis I of L. Suppose for every
vectors v, u of L such that v, u ∈ I holds 〈〈v, u〉〉 ∈ Z. Then L is integral.

Let X be a Z-lattice. We say that X is positive definite if and only if

(Def. 6) for every vector v of X such that v 6= 0X holds ‖v‖ > 0.

Let us observe that there exists a Z-lattice which is non trivial, integral, and
positive definite.

Let us consider a positive definite Z-lattice L and a vector v of L. Now we
state the propositions:

(16) ‖v‖ = 0 if and only if v = 0L.

(17) ‖v‖  0. The theorem is a consequence of (12).

Let X be an integral Z-lattice. We say that X is even if and only if

(Def. 7) for every vector v of X, ‖v‖ is even.
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One can verify that there exists an integral Z-lattice which is even.
Let L be a Z-lattice. We introduce the notation dim(L) as a synonym of

rankL.
Let v, u be vectors of L. We say that v, u are orthogonal if and only if

(Def. 8) 〈〈v, u〉〉 = 0.

Let us note that the predicate is symmetric.
Let us consider a Z-lattice L and vectors v, u of L.
Let us assume that v, u are orthogonal. Now we state the propositions:

(18) (i) v, −u are orthogonal, and

(ii) −v, u are orthogonal, and

(iii) −v, −u are orthogonal.
The theorem is a consequence of (7).

(19) ‖v + u‖ = ‖v‖+ ‖u‖. The theorem is a consequence of (8).

(20) ‖v − u‖ = ‖v‖+ ‖u‖. The theorem is a consequence of (11).

Let L be a Z-lattice.
A Z-sublattice of L is a Z-lattice and is defined by

(Def. 9) the carrier of it ⊆ the carrier of L and 0it = 0L and the addition of
it = (the addition of L) � (the carrier of it) and the left multiplication of
it = (the left multiplication of L)�((the carrier of ZR)×(the carrier of it))
and the scalar product of it = (the scalar product of L) � (the carrier of
it).

Now we state the propositions:

(21) Let us consider a Z-lattice L. Then every Z-sublattice of L is a submodule
of L.

(22) Let us consider an object x, a Z-lattice L, and Z-sublattices L1, L2 of L.
Suppose x ∈ L1 and L1 is a Z-sublattice of L2. Then x ∈ L2. The theorem
is a consequence of (21).

(23) Let us consider an object x, a Z-lattice L, and a Z-sublattice L1 of L. If
x ∈ L1, then x ∈ L. The theorem is a consequence of (21).

(24) Let us consider a Z-lattice L, and a Z-sublattice L1 of L. Then every
vector of L1 is a vector of L. The theorem is a consequence of (21).

(25) Let us consider a Z-lattice L, and Z-sublattices L1, L2 of L. Then 0L1 =
0L2 .

(26) Let us consider a Z-lattice L, a Z-sublattice L1 of L, vectors v1, v2 of L,
and vectors w1, w2 of L1. If w1 = v1 and w2 = v2, then w1+w2 = v1+ v2.
The theorem is a consequence of (21).
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(27) Let us consider a Z-lattice L, a Z-sublattice L1 of L, a vector v of L,
a vector w of L1, and an element a of ZR. If w = v, then a ·w = a · v. The
theorem is a consequence of (21).

(28) Let us consider a Z-lattice L, a Z-sublattice L1 of L, a vector v of L, and
a vector w of L1. If w = v, then −w = −v. The theorem is a consequence
of (21).

(29) Let us consider a Z-lattice L, a Z-sublattice L1 of L, vectors v1, v2 of L,
and vectors w1, w2 of L1. If w1 = v1 and w2 = v2, then w1−w2 = v1− v2.
The theorem is a consequence of (21).

(30) Let us consider a Z-lattice L, and a Z-sublattice L1 of L. Then 0L ∈ L1.
The theorem is a consequence of (21).

(31) Let us consider a Z-lattice L, and Z-sublattices L1, L2 of L. Then 0L1 ∈
L2. The theorem is a consequence of (21).

(32) Let us consider a Z-lattice L, and a Z-sublattice L1 of L. Then 0L1 ∈ L.
The theorem is a consequence of (21).

(33) Let us consider a Z-lattice L, a Z-sublattice L1 of L, and vectors v1, v2
of L. If v1, v2 ∈ L1, then v1 + v2 ∈ L1. The theorem is a consequence of
(21).

(34) Let us consider a Z-lattice L, a Z-sublattice L1 of L, a vector v of L, and
an element a of ZR. If v ∈ L1, then a·v ∈ L1. The theorem is a consequence
of (21).

(35) Let us consider a Z-lattice L, a Z-sublattice L1 of L, and a vector v of
L. If v ∈ L1, then −v ∈ L1. The theorem is a consequence of (21).

(36) Let us consider a Z-lattice L, a Z-sublattice L1 of L, and vectors v1, v2
of L. If v1, v2 ∈ L1, then v1 − v2 ∈ L1. The theorem is a consequence of
(21).

(37) Let us consider a positive definite Z-lattice L, a non empty set A, an ele-
ment z of A, a binary operation a on A, a function m from (the carrier of
ZR)×A into A, and a function s from A×A into the carrier of RF. Suppose
A is a linearly closed subset of L and z = 0L and a = (the addition of
L) � A and m = (the left multiplication of L)�((the carrier of ZR)×A) and
s = (the scalar product of L) � A. Then 〈〈A, a, z,m, s〉〉 is a Z-sublattice of
L.
Proof: Set L1 = 〈〈A, a, z,m, s〉〉. Set V1 = 〈A, a, z,m〉. L1 is a submodule
of V1. L1 is Z-lattice-like by [10, (25)], [7, (49)], [10, (28), (29)]. �

(38) Let us consider a Z-lattice L, a Z-sublattice L1 of L, vectors w1, w2
of L1, and vectors v1, v2 of L. Suppose w1 = v1 and w2 = v2. Then
〈〈w1, w2〉〉 = 〈〈v1, v2〉〉.



56 yuichi futa and yasunari shidama

Let L be an integral Z-lattice. Note that every Z-sublattice of L is integral.
Let L be a positive definite Z-lattice. Let us observe that every Z-sublattice

of L is positive definite.
Let V , W be vector space structures over ZR.
An R-form of V and W is a function from (the carrier of V )× (the carrier

of W ) into the carrier of RF. The functor NulFrForm(V,W ) yielding an R-form
of V and W is defined by the term

(Def. 10) (the carrier of V )× (the carrier of W ) 7−→ 0RF .

Let V , W be non empty vector space structures over ZR and f , g be R-forms
of V and W . The functor f + g yielding an R-form of V and W is defined by

(Def. 11) for every vector v of V and for every vector w of W , it(v, w) = f(v, w)+
g(v, w).

Let f be an R-form of V and W and a be an element of RF. The functor
a · f yielding an R-form of V and W is defined by

(Def. 12) for every vector v of V and for every vector w of W , it(v, w) = a·f(v, w).

The functor −f yielding an R-form of V and W is defined by

(Def. 13) for every vector v of V and for every vector w of W , it(v, w) = −f(v, w).

One can verify that the functor −f is defined by the term

(Def. 14) (−1RF) · f .

Let f , g be R-forms of V and W . The functor f − g yielding an R-form of
V and W is defined by the term

(Def. 15) f +−g.

Observe that the functor f − g is defined by

(Def. 16) for every vector v of V and for every vector w of W , it(v, w) = f(v, w)−
g(v, w).

Let us note that the functor f + g is commutative.
Now we state the propositions:

(39) Let us consider non empty vector space structures V , W over ZR, and
an R-form f of V and W . Then f + NulFrForm(V,W ) = f .

(40) Let us consider non empty vector space structures V , W over ZR, and
R-forms f , g, h of V and W . Then (f + g) + h = f + (g + h).

(41) Let us consider non empty vector space structures V , W over ZR, and
an R-form f of V and W . Then f − f = NulFrForm(V,W ).

(42) Let us consider non empty vector space structures V , W over ZR, an ele-
ment a of RF, and R-forms f , g of V and W . Then a · (f +g) = a ·f +a ·g.

Let us consider non empty vector space structures V , W over ZR, elements
a, b of RF, and an R-form f of V and W . Now we state the propositions:
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(43) (a+ b) · f = a · f + b · f .

(44) (a · b) · f = a · (b · f).

(45) Let us consider non empty vector space structures V , W over ZR, and
an R-form f of V and W . Then 1RF · f = f .

Let V be a vector space structure over ZR.
An R-functional of V is a function from the carrier of V into the carrier

of RF. Let V be a non empty vector space structure over ZR and f , g be R-
functionals of V . The functor f + g yielding an R-functional of V is defined
by

(Def. 17) for every element x of V , it(x) = f(x) + g(x).

Let f be an R-functional of V . The functor −f yielding an R-functional of
V is defined by

(Def. 18) for every element x of V , it(x) = −f(x).

Let f , g be R-functionals of V . The functor f − g yielding an R-functional
of V is defined by the term

(Def. 19) f +−g.

Let v be an element of RF and f be an R-functional of V . The functor v · f
yielding an R-functional of V is defined by

(Def. 20) for every element x of V , it(x) = v · f(x).

Let V be a vector space structure over ZR. The functor 0FrFunctional(V )
yielding an R-functional of V is defined by the term

(Def. 21) ΩV 7−→ 0RF .

Let V be a non empty vector space structure over ZR and F be an R-
functional of V . We say that F is homogeneous if and only if

(Def. 22) for every vector x of V and for every scalar r of V , F (r · x) = r · F (x).

We say that F is 0-preserving if and only if

(Def. 23) F (0V ) = 0RF .

Let V be a Z-module. Note that every R-functional of V which is homoge-
neous is also 0-preserving.

Let V be a non empty vector space structure over ZR. One can verify
that 0FrFunctional(V ) is additive and 0FrFunctional(V ) is homogeneous and
0FrFunctional(V ) is 0-preserving and there exists an R-functional of V which is
additive, homogeneous, and 0-preserving.

Now we state the propositions:

(46) Let us consider a non empty vector space structure V over ZR, and
R-functionals f , g of V . Then f + g = g + f .
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(47) Let us consider a non empty vector space structure V over ZR, and
R-functionals f , g, h of V . Then (f + g) + h = f + (g + h).

(48) Let us consider a non empty vector space structure V over ZR, and
an element x of V . Then (0FrFunctional(V ))(x) = 0RF .

Let us consider a non empty vector space structure V over ZR and an R-
functional f of V . Now we state the propositions:

(49) f + 0FrFunctional(V ) = f .

(50) f − f = 0FrFunctional(V ).

(51) Let us consider a non empty vector space structure V over ZR, an element
r of RF, and R-functionals f , g of V . Then r · (f + g) = r · f + r · g.

Let us consider a non empty vector space structure V over ZR, elements r,
s of RF, and an R-functional f of V . Now we state the propositions:

(52) (r + s) · f = r · f + s · f .

(53) (r · s) · f = r · (s · f).

(54) Let us consider a non empty vector space structure V over ZR, and
an R-functional f of V . Then 1RF · f = f .

Let V be a non empty vector space structure over ZR and f , g be additive
R-functionals of V . Observe that f + g is additive.

Let f be an additive R-functional of V . One can check that −f is additive.
Let v be an element of RF. Let us note that v · f is additive.
Let f , g be homogeneous R-functionals of V . Let us observe that f + g is

homogeneous.
Let f be a homogeneous R-functional of V . Note that −f is homogeneous.
Let v be an element of RF. Observe that v · f is homogeneous.
Let V , W be non empty vector space structures over ZR, f be an R-form of

V and W , and v be a vector of V . The functor FrFunctionalFAF(f, v) yielding
an R-functional of W is defined by the term

(Def. 24) (curry f)(v).

Let w be a vector of W . The functor FrFunctionalSAF(f, w) yielding an R-
functional of V is defined by the term

(Def. 25) (curry′ f)(w).

Now we state the propositions:

(55) Let us consider non empty vector space structures V , W over ZR, an R-
form f of V and W , and a vector v of V . Then

(i) dom FrFunctionalFAF(f, v) = the carrier of W , and

(ii) rng FrFunctionalFAF(f, v) ⊆ the carrier of RF, and

(iii) for every vector w of W , (FrFunctionalFAF(f, v))(w) = f(v, w).
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(56) Let us consider non empty vector space structures V , W over ZR, an R-
form f of V and W , and a vector w of W . Then

(i) dom FrFunctionalSAF(f, w) = the carrier of V , and

(ii) rng FrFunctionalSAF(f, w) ⊆ the carrier of RF, and

(iii) for every vector v of V , (FrFunctionalSAF(f, w))(v) = f(v, w).

(57) Let us consider a non empty vector space structure V over ZR, and
an element x of V . Then (0FrFunctional(V ))(x) = 0RF .

(58) Let us consider non empty vector space structures V , W over ZR, and
a vector v of V . Then FrFunctionalFAF(NulFrForm(V,W ), v) =
0FrFunctional(W ). The theorem is a consequence of (55).

(59) Let us consider non empty vector space structures V , W over ZR, and
a vector w of W . Then FrFunctionalSAF(NulFrForm(V,W ), w) =
0FrFunctional(V ). The theorem is a consequence of (56).

(60) Let us consider non empty vector space structures V , W over ZR, R-
forms f , g of V and W , and a vector w of W . Then FrFunctionalSAF(f +
g, w) = FrFunctionalSAF(f, w) + FrFunctionalSAF(g, w). The theorem is
a consequence of (56).

(61) Let us consider non empty vector space structures V , W over ZR, R-
forms f , g of V and W , and a vector v of V . Then FrFunctionalFAF(f +
g, v) = FrFunctionalFAF(f, v) + FrFunctionalFAF(g, v). The theorem is
a consequence of (55).

(62) Let us consider non empty vector space structures V , W over ZR, an R-
form f of V and W , an element a of RF, and a vector w of W . Then
FrFunctionalSAF(a · f, w) = a · FrFunctionalSAF(f, w). The theorem is
a consequence of (56).

(63) Let us consider non empty vector space structures V , W over ZR, an R-
form f of V and W , an element a of RF, and a vector v of V . Then
FrFunctionalFAF(a · f, v) = a · FrFunctionalFAF(f, v). The theorem is
a consequence of (55).

(64) Let us consider non empty vector space structures V , W over ZR, an R-
form f of V andW , and a vector w ofW . Then FrFunctionalSAF(−f, w) =
−FrFunctionalSAF(f, w). The theorem is a consequence of (56).

(65) Let us consider non empty vector space structures V , W over ZR, an R-
form f of V and W , and a vector v of V . Then FrFunctionalFAF(−f, v) =
−FrFunctionalFAF(f, v). The theorem is a consequence of (55).

(66) Let us consider non empty vector space structures V , W over ZR, R-
forms f , g of V and W , and a vector w of W . Then FrFunctionalSAF(f −
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g, w) = FrFunctionalSAF(f, w)− FrFunctionalSAF(g, w). The theorem is
a consequence of (56).

(67) Let us consider non empty vector space structures V , W over ZR, R-
forms f , g of V and W , and a vector v of V . Then FrFunctionalFAF(f −
g, v) = FrFunctionalFAF(f, v) − FrFunctionalFAF(g, v). The theorem is
a consequence of (55).

Let V ,W be non empty vector space structures over ZR, f be an R-functional
of V , and g be an R-functional of W . The functor FrFormFunctional(f, g) yiel-
ding an R-form of V and W is defined by

(Def. 26) for every vector v of V and for every vector w of W , it(v, w) = f(v)·g(w).

(68) Let us consider non empty vector space structures V , W over ZR, an R-
functional f of V , a vector v of V , and a vector w of W .
Then (FrFormFunctional(f, 0FrFunctional(W )))(v, w) = 0ZR .

(69) Let us consider non empty vector space structures V , W over ZR, an R-
functional g of W , a vector v of V , and a vector w of W .
Then (FrFormFunctional(0FrFunctional(V ), g))(v, w) = 0ZR .

(70) Let us consider non empty vector space structures V , W over ZR, and
an R-functional f of V . Then FrFormFunctional(f, 0FrFunctional(W )) =
NulFrForm(V,W ). The theorem is a consequence of (68).

(71) Let us consider non empty vector space structures V , W over ZR, and
an R-functional g of W . Then FrFormFunctional(0FrFunctional(V ), g) =
NulFrForm(V,W ). The theorem is a consequence of (69).

(72) Let us consider non empty vector space structures V , W over ZR, an R-
functional f of V , an R-functional g of W , and a vector v of V . Then
FrFunctionalFAF(FrFormFunctional(f, g), v) = f(v) · g. The theorem is
a consequence of (55).

(73) Let us consider non empty vector space structures V , W over ZR, an R-
functional f of V , an R-functional g of W , and a vector w of W . Then
FrFunctionalSAF(FrFormFunctional(f, g), w) = g(w) · f . The theorem is
a consequence of (56).

2. Bilinear Forms over Field of Reals and Their Properties

Let V , W be non empty vector space structures over ZR and f be an R-form
of V and W . We say that f is additive w.r.t. second argument if and only if

(Def. 27) for every vector v of V , FrFunctionalFAF(f, v) is additive.

We say that f is additive w.r.t. first argument if and only if

(Def. 28) for every vector w of W , FrFunctionalSAF(f, w) is additive.
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We say that f is homogeneous w.r.t. second argument if and only if

(Def. 29) for every vector v of V , FrFunctionalFAF(f, v) is homogeneous.

We say that f is homogeneous w.r.t. first argument if and only if

(Def. 30) for every vector w of W , FrFunctionalSAF(f, w) is homogeneous.

Observe that NulFrForm(V,W ) is additive w.r.t. second argument and
NulFrForm(V,W ) is additive w.r.t. first argument and there exists an R-

form of V and W which is additive w.r.t. second argument and additive w.r.t.
first argument and NulFrForm(V,W ) is homogeneous w.r.t. second argument
and NulFrForm(V,W ) is homogeneous w.r.t. first argument.

There exists an R-form of V and W which is additive w.r.t. second argu-
ment, homogeneous w.r.t. second argument, additive w.r.t. first argument, and
homogeneous w.r.t. first argument.

An R-bilinear form of V and W is an additive w.r.t. first argument, homo-
geneous w.r.t. first argument, additive w.r.t. second argument, homogeneous
w.r.t. second argument R-form of V and W . Let f be an additive w.r.t. second
argument R-form of V and W and v be a vector of V . One can check that
FrFunctionalFAF(f, v) is additive.

Let f be an additive w.r.t. first argument R-form of V and W and w be
a vector of W . Observe that FrFunctionalSAF(f, w) is additive.

Let f be a homogeneous w.r.t. second argument R-form of V and W and v

be a vector of V . One can check that FrFunctionalFAF(f, v) is homogeneous.
Let f be a homogeneous w.r.t. first argument R-form of V and W and w be

a vector of W . Observe that FrFunctionalSAF(f, w) is homogeneous.
Let f be an R-functional of V and g be an additive R-functional of W .

Observe that FrFormFunctional(f, g) is additive w.r.t. second argument.
Let f be an additive R-functional of V and g be an R-functional of W . One

can check that FrFormFunctional(f, g) is additive w.r.t. first argument.
Let f be an R-functional of V and g be a homogeneous R-functional of W .

Observe that FrFormFunctional(f, g) is homogeneous w.r.t. second argument.
Let f be a homogeneous R-functional of V and g be an R-functional of W .

One can check that FrFormFunctional(f, g) is homogeneous w.r.t. first argu-
ment.

Let V be a non trivial vector space structure over ZR, W be a non empty
vector space structure over ZR, and f be an R-functional of V . One can verify
that FrFormFunctional(f, g) is non trivial and FrFormFunctional(f, g) is non
trivial.

Let F be an R-functional of V . We say that F is 0-preserving if and only if

(Def. 31) F (0V ) = 0RF .
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Let V be a Z-module. One can check that every R-functional of V which is
homogeneous is also 0-preserving.

Let V be a non empty vector space structure over ZR. Let us observe that
0FrFunctional(V ) is 0-preserving and there exists an R-functional of V which is
additive, homogeneous, and 0-preserving.

Let V be a non trivial, free Z-module. Note that there exists an R-functional
of V which is additive, homogeneous, non constant, and non trivial.

(74) Let us consider a non trivial, free Z-module V , and a non constant, 0-
preserving R-functional f of V . Then there exists a vector v of V such
that

(i) v 6= 0V , and

(ii) f(v) 6= 0RF .

Let V , W be non trivial, free Z-modules, f be a non constant, 0-preserving
R-functional of V , and g be a non constant, 0-preserving R-functional of W .
Note that FrFormFunctional(f, g) is non constant.

Let V be a non empty vector space structure over ZR.
An R-linear functional of V is an additive, homogeneous R-functional of

V . Let V , W be non trivial, free Z-modules. Observe that there exists an R-
form of V and W which is non trivial, non constant, additive w.r.t. second
argument, homogeneous w.r.t. second argument, additive w.r.t. first argument,
and homogeneous w.r.t. first argument.

Let V , W be non empty vector space structures over ZR and f , g be additive
w.r.t. first argument R-forms of V and W . Let us observe that f + g is additive
w.r.t. first argument. Let f , g be additive w.r.t. second argument R-forms of V
and W . One can check that f + g is additive w.r.t. second argument.

Let f be an additive w.r.t. first argument R-form of V and W and a be
an element of RF. Let us observe that a · f is additive w.r.t. first argument.

Let f be an additive w.r.t. second argument R-form of V and W . Note that
a · f is additive w.r.t. second argument.

Let f be an additive w.r.t. first argument R-form of V and W . Let us observe
that −f is additive w.r.t. first argument.

Let f be an additive w.r.t. second argument R-form of V and W . Let us
observe that −f is additive w.r.t. second argument.

Let f , g be additive w.r.t. first argument R-forms of V and W . Observe that
f − g is additive w.r.t. first argument.

Let f , g be additive w.r.t. second argument R-forms of V and W . One can
check that f − g is additive w.r.t. second argument.

Let f , g be homogeneous w.r.t. first argument R-forms of V and W . Observe
that f + g is homogeneous w.r.t. first argument.
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Let f , g be homogeneous w.r.t. second argument R-forms of V and W . One
can verify that f + g is homogeneous w.r.t. second argument.

Let f be a homogeneous w.r.t. first argument R-form of V and W and a be
an element of RF. Observe that a · f is homogeneous w.r.t. first argument.

Let f be a homogeneous w.r.t. second argument R-form of V and W . One
can check that a · f is homogeneous w.r.t. second argument.

Let f be a homogeneous w.r.t. first argument R-form of V and W . Observe
that −f is homogeneous w.r.t. first argument. Let f be a homogeneous w.r.t.
second argument R-form of V and W . Observe that −f is homogeneous w.r.t.
second argument.

Let f , g be homogeneous w.r.t. first argument R-forms of V and W . Let us
note that f − g is homogeneous w.r.t. first argument.

Let f , g be homogeneous w.r.t. second argument R-forms of V and W . One
can verify that f − g is homogeneous w.r.t. second argument.

(75) Let us consider non empty vector space structures V , W over ZR, vectors
v, u of V , a vector w of W , and an R-form f of V and W . If f is additive
w.r.t. first argument, then f(v + u,w) = f(v, w) + f(u,w). The theorem
is a consequence of (56).

(76) Let us consider non empty vector space structures V ,W over ZR, a vector
v of V , vectors u, w of W , and an R-form f of V and W . If f is additive
w.r.t. second argument, then f(v, u+w) = f(v, u) +f(v, w). The theorem
is a consequence of (55).

(77) Let us consider non empty vector space structures V , W over ZR, vectors
v, u of V , vectors w, t of W , and an additive w.r.t. first argument, additive
w.r.t. second argument R-form f of V and W . Then f(v + u,w + t) =
f(v, w)+f(v, t)+(f(u,w)+f(u, t)). The theorem is a consequence of (75)
and (76).

(78) Let us consider right zeroed, non empty vector space structures V , W
over ZR, an additive w.r.t. second argument R-form f of V and W , and
a vector v of V . Then f(v, 0W ) = 0ZR . The theorem is a consequence of
(76).

(79) Let us consider right zeroed, non empty vector space structures V , W
over ZR, an additive w.r.t. first argument R-form f of V and W , and
a vector w of W . Then f(0V , w) = 0ZR . The theorem is a consequence of
(75).

Let us consider non empty vector space structures V , W over ZR, a vector
v of V , a vector w of W , an element a of ZR, and an R-form f of V and W .
Now we state the propositions:

(80) If f is homogeneous w.r.t. first argument, then f(a · v, w) = a · f(v, w).
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The theorem is a consequence of (56).

(81) If f is homogeneous w.r.t. second argument, then f(v, a ·w) = a ·f(v, w).
The theorem is a consequence of (55).

(82) Let us consider add-associative, right zeroed, right complementable,
vector distributive, scalar distributive, scalar associative, scalar uni-
tal, non empty vector space structures V , W over ZR, a homogeneous
w.r.t. first argument R-form f of V and W , and a vector w of W . Then
f(0V , w) = 0RF . The theorem is a consequence of (80).

(83) Let us consider add-associative, right zeroed, right complementable,
vector distributive, scalar distributive, scalar associative, scalar uni-
tal, non empty vector space structures V , W over ZR, a homogeneous
w.r.t. second argument R-form f of V and W , and a vector v of V . Then
f(v, 0W ) = 0RF . The theorem is a consequence of (81).

(84) Let us consider Z-modules V , W , vectors v, u of V , a vector w of W ,
and an additive w.r.t. first argument, homogeneous w.r.t. first argument
R-form f of V and W . Then f(v−u,w) = f(v, w)−f(u,w). The theorem
is a consequence of (75) and (80).

(85) Let us consider Z-modules V , W , a vector v of V , vectors w, t of W , and
an additive w.r.t. second argument, homogeneous w.r.t. second argument
R-form f of V and W . Then f(v, w − t) = f(v, w)− f(v, t). The theorem
is a consequence of (76) and (81).

(86) Let us consider Z-modules V , W , vectors v, u of V , vectors w, t of W ,
and an R-bilinear form f of V and W . Then f(v − u,w − t) = f(v, w) −
f(v, t)−(f(u,w)−f(u, t)). The theorem is a consequence of (84) and (85).

(87) Let us consider add-associative, right zeroed, right complementable,
vector distributive, scalar distributive, scalar associative, scalar unital,
non empty vector space structures V , W over ZR, vectors v, u of V , vectors
w, t of W , elements a, b of ZR, and an R-bilinear form f of V and W .
Then f(v+a ·u,w+b ·t) = f(v, w)+b ·f(v, t)+(a ·f(u,w)+a ·(b ·f(u, t))).
The theorem is a consequence of (77), (81), and (80).

(88) Let us consider Z-modules V , W , vectors v, u of V , vectors w, t of
W , elements a, b of ZR, and an R-bilinear form f of V and W . Then
f(v − a · u,w − b · t) = f(v, w)− b · f(v, t)− (a · f(u,w)− a · (b · f(u, t))).
The theorem is a consequence of (86), (81), and (80).

(89) Let us consider right zeroed, non empty vector space structures V , W
over ZR, and an R-form f of V and W . Suppose f is additive w.r.t. second
argument or additive w.r.t. first argument. Then f is constant if and only
if for every vector v of V and for every vector w of W , f(v, w) = 0ZR . The
theorem is a consequence of (78) and (79).
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3. Matrices of Bilinear Form over Field of Real Numbers

Let V1, V2 be finite rank, free Z-modules, b1 be an ordered basis of V1, b2 be
an ordered basis of V2, and f be an R-bilinear form of V1 and V2. The functor
Bilinear(f, b1, b2) yielding a matrix over RF of dimension len b1×len b2 is defined
by

(Def. 32) for every natural numbers i, j such that i ∈ dom b1 and j ∈ dom b2 holds
it i,j = f(b1i, b2j).

Now we state the propositions:

(90) Let us consider a finite rank, free Z-module V , an R-linear functional F
of V , a finite sequence y of elements of V , a finite sequence x of elements
of ZR, and finite sequences X, Y of elements of RF. Suppose X = x and
len y = lenx and lenX = lenY and for every natural number k such that
k ∈ Seg lenx holds Y (k) = F (yk). Then X · Y = F (

∑
lmlt(x, y)).

Proof: Define P[finite sequence of elements of V ] ≡ for every finite se-
quence x of elements of ZR for every finite sequences X, Y of elements of
RF such that X = x and len $1 = lenx and lenX = lenY and for eve-
ry natural number k such that k ∈ Seg lenx holds Y (k) = F ($1k) holds
X ·Y = F (

∑
lmlt(x, $1)). For every finite sequence y of elements of V and

for every element w of V such that P[y] holds P[y a 〈w〉] by [4, (22), (39),
(59)], [3, (11)]. P[εα], where α is the carrier of V by [17, (43)]. For every
finite sequence p of elements of V , P[p] from [6, Sch. 2]. �

(91) Let us consider finite rank, free Z-modules V1, V2, an ordered basis b2 of
V2, an ordered basis b3 of V2, an R-bilinear form f of V1 and V2, a vector
v1 of V1, a vector v2 of V2, and finite sequences X, Y of elements of RF.
Suppose lenX = len b2 and lenY = len b2 and for every natural number k
such that k ∈ Seg len b2 holds Y (k) = f(v1, b2k) and X = v2 → b2. Then
Y ·X = f(v1, v2). The theorem is a consequence of (55) and (90).

(92) Let us consider finite rank, free Z-modules V1, V2, an ordered basis b1
of V1, an R-bilinear form f of V1 and V2, a vector v1 of V1, a vector v2 of
V2, and finite sequences X, Y of elements of RF. Suppose lenX = len b1
and lenY = len b1 and for every natural number k such that k ∈ Seg len b1
holds Y (k) = f(b1k, v2) and X = v1 → b1. Then X · Y = f(v1, v2). The
theorem is a consequence of (56) and (90).

(93) Every matrix over ZR is a matrix over RF.
Let M be a matrix over ZR. The functor Z2R(M) yielding a matrix over RF

is defined by the term

(Def. 33) M .
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Let n, m be natural numbers and M be a matrix over ZR of dimension n×m.
Note that the functor Z2R(M) yields a matrix over RF of dimension n×m. Let
n be a natural number and M be a square matrix over ZR of dimension n. Let
us note that the functor Z2R(M) yields a square matrix over RF of dimension
n. Now we state the propositions:

(94) Let us consider natural numbers m, l, n, a matrix S over ZR of dimension
l×m, a matrix T over ZR of dimension m×n, a matrix S1 over RF of
dimension l×m, and a matrix T1 over RF of dimension m×n. If S = S1
and T = T1 and 0 < l and 0 < m, then S · T = S1 · T1.
Proof: Reconsider S3 = S · T as a matrix over ZR of dimension l×n.
Reconsider S2 = S1 · T1 as a matrix over RF of dimension l×n. For every
natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of S3 holds S3i,j = S2i,j
by [8, (87)], [13, (2), (3), (37)]. �

(95) Let us consider a natural number n. Then In×nZR = In×nRF .

(96) Let us consider finite rank, free Z-modules V1, V2, an ordered basis b1 of
V1, an ordered basis b2 of V2, an ordered basis b3 of V2, and an R-bilinear
form f of V1 and V2. Suppose 0 < rankV1. Then Bilinear(f, b1, b3) =
Bilinear(f, b1, b2) · (Z2R(AutMt(idV2 , b3, b2)))

T.
Proof: Set n = len b2. Reconsider I2 = AutMt(idV2 , b3, b2) as a square
matrix over ZR of dimension n. Reconsider M1 = Z2R(I2T) as a square
matrix over RF of dimension n. Set M2 = Bilinear(f, b1, b2) ·M1. For every
natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of Bilinear(f, b1, b3)
holds (Bilinear(f, b1, b3))i,j = M2i,j by [8, (87)], [13, (1)], (91). �

(97) Let us consider finite rank, free Z-modules V1, V2, an ordered basis b1 of
V1, an ordered basis b2 of V2, an ordered basis b3 of V1, and an R-bilinear
form f of V1 and V2. Suppose 0 < rankV1. Then Bilinear(f, b3, b2) =
Z2R(AutMt(idV1 , b3, b1)) · Bilinear(f, b1, b2).
Proof: Set n = len b3. Reconsider I2 = AutMt(idV1 , b3, b1) as a square
matrix over ZR of dimension n. Reconsider M1 = Z2R(I2) as a square
matrix over RF of dimension n. Set M2 = M1 ·Bilinear(f, b1, b2). For every
natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of Bilinear(f, b3, b2)
holds (Bilinear(f, b3, b2))i,j = M2i,j by [8, (87)], [4, (1)], [13, (1)], (92). �

(98) Let us consider a finite rank, free Z-module V , ordered bases b1, b2
of V , and an R-bilinear form f of V and V . Suppose 0 < rankV . Then
Bilinear(f, b2, b2) = Z2R(AutMt(idV , b2, b1))·Bilinear(f, b1, b1)·(Z2R(AutMt
(idV , b2, b1)))T. The theorem is a consequence of (97) and (96).

Let us consider a finite rank, free Z-module V , ordered bases b1, b2 of V ,
and a square matrix M over RF of dimension rankV .

Let us assume that M = AutMt(idV , b1, b2). Now we state the propositions:
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(99) (i) DetM = 1 and DetMT = 1, or

(ii) DetM = −1 and DetMT = −1.
The theorem is a consequence of (94) and (95).

(100) |DetM | = 1. The theorem is a consequence of (99).

Let us consider a finite rank, free Z-module V , ordered bases b1, b2 of V ,
and an R-bilinear form f of V and V . Now we state the propositions:

(101) Det Bilinear(f, b2, b2) = Det Bilinear(f, b1, b1). The theorem is a conse-
quence of (98) and (99).

(102) |Det Bilinear(f, b2, b2)| = |Det Bilinear(f, b1, b1)|.
Let V be a finite rank, free Z-module, f be an R-bilinear form of V and V ,

and b be an ordered basis of V . The functor GramMatrix(f, b) yielding a square
matrix over RF of dimension rankV is defined by the term

(Def. 34) Bilinear(f, b, b).

The functor GramDet(f) yielding an element of RF is defined by

(Def. 35) for every ordered basis b of V , it = Det GramMatrix(f, b).

Let L be a Z-lattice. The functor InnerProductL yielding an R-form of L
and L is defined by the term

(Def. 36) the scalar product of L.

One can check that InnerProductL is additive w.r.t. first argument, homoge-
neous w.r.t. first argument, additive w.r.t. second argument, and homogeneous
w.r.t. second argument.

Let b be an ordered basis of L. The functor GramMatrix(b) yielding a square
matrix over RF of dimension dim(L) is defined by the term

(Def. 37) GramMatrix(InnerProductL, b).

The functor GramDet(L) yielding an element of RF is defined by the term

(Def. 38) GramDet(InnerProductL).

(103) Let us consider an integral Z-lattice L. Then InnerProductL is a bilinear
form of L, L.
Proof: For every object z such that z ∈ (the carrier of L)× (the carrier
of L) holds (InnerProductL)(z) ∈ the carrier of ZR. Reconsider f =
InnerProductL as a form of L, L. For every vector v of L, f(·, v) is addi-
tive by [2, (70)], (8). For every vector v of L, f(·, v) is homogeneous by [2,
(70)], (9). For every vector v of L, f(v, ·) is additive by [2, (69)], (8). For
every vector v of L, f(v, ·) is homogeneous by [2, (69)], (9). �

(104) Let us consider an integral Z-lattice L, and an ordered basis b of L. Then
GramMatrix(b) is a square matrix over ZR of dimension dim(L).
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Proof: For every natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of
GramMatrix(b) holds (GramMatrix(b))i,j ∈ the carrier of ZR by [8, (87)].
�

Let L be an integral Z-lattice. Note that GramDet(L) is integer.
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