

Lattice of \mathbb{Z} -module

Yuichi Futa Japan Advanced Institute of Science and Technology Ishikawa, Japan Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this article, we formalize the definition of lattice of \mathbb{Z} -module and its properties in the Mizar system [5]. We formally prove that scalar products in lattices are bilinear forms over the field of real numbers \mathbb{R} . We also formalize the definitions of positive definite and integral lattices and their properties. Lattice of \mathbb{Z} -module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [14], and cryptographic systems with lattices [15] and coding theory [9].

MSC: 15A03 15A63 11E39 03B35

Keywords: \mathbb{Z} -lattice; Gram matrix; integral \mathbb{Z} -lattice; positive definite \mathbb{Z} -lattice MML identifier: **ZMODLAT1**, version: 8.1.04 5.36.1267

1. Definition of Lattices of \mathbb{Z} -module

Now we state the proposition:

(1) Let us consider non empty sets D, E, natural numbers n, m, and a matrix M over D of dimension $n \times m$. Suppose for every natural numbers i, j such that $\langle i, j \rangle \in$ the indices of M holds $M_{i,j} \in E$. Then M is a matrix over E of dimension $n \times m$.

Let a, b be elements of $\mathbb{F}_{\mathbb{Q}}$ and x, y be rational numbers. We identify x + y with a + b and $x \cdot y$ with $a \cdot b$. Let F be a 1-sorted structure. We consider structures of \mathbb{Z} -lattice over F which extend vector space structures over F and are systems

(a carrier, an addition, a zero, a left multiplication,

a scalar product)

where the carrier is a set, the addition is a binary operation on the carrier, the zero is an element of the carrier, the left multiplication is a function from (the carrier of F) × (the carrier) into the carrier, the scalar product is a function from (the carrier) × (the carrier) into the carrier of \mathbb{R}_{F} .

Note that there exists a structure of \mathbb{Z} -lattice over F which is strict and non empty.

Let D be a non empty set, Z be an element of D, a be a binary operation on D, m be a function from (the carrier of F) $\times D$ into D, and s be a function from $D \times D$ into the carrier of \mathbb{R}_F . One can check that $\langle D, a, Z, m, s \rangle$ is non empty.

Let X be a non empty structure of \mathbb{Z} -lattice over $\mathbb{Z}^{\mathbb{R}}$ and x, y be vectors of X. The functor $\langle x, y \rangle$ yielding an element of $\mathbb{R}_{\mathcal{F}}$ is defined by the term

(Def. 1) (the scalar product of X)($\langle x, y \rangle$).

Let x be a vector of X. The functor ||x|| yielding an element of $\mathbb{R}_{\mathcal{F}}$ is defined by the term

(Def. 2) $\langle x, x \rangle$.

Let X be a non empty structure of \mathbb{Z} -lattice over $\mathbb{Z}^{\mathbb{R}}$. We say that X is \mathbb{Z} -lattice-like if and only if

(Def. 3) for every vector x of X such that for every vector y of X, $\langle x, y \rangle = 0$ holds $x = 0_X$ and for every vectors x, y of X, $\langle x, y \rangle = \langle y, x \rangle$ and for every vectors x, y, z of X and for every element a of $\mathbb{Z}^{\mathbb{R}}$, $\langle x+y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ and $\langle a \cdot x, y \rangle = a \cdot \langle x, y \rangle$.

Let V be a \mathbb{Z} -module and s be a function from (the carrier of V)×(the carrier of V) into the carrier of $\mathbb{R}_{\mathbf{F}}$. The functor GenLat(V, s) yielding a non empty structure of \mathbb{Z} -lattice over $\mathbb{Z}^{\mathbf{R}}$ is defined by the term

(Def. 4) (the carrier of V, the addition of $V, 0_V$, the left multiplication of V, s).

Let us note that there exists a non empty structure of \mathbb{Z} -lattice over \mathbb{Z}^{R} which is vector distributive, scalar distributive, scalar associative, scalar unital, Abelian, add-associative, right zeroed, right complementable, and strict.

Let V be a \mathbb{Z} -module and s be a function from (the carrier of V)×(the carrier of V) into the carrier of \mathbb{R}_{F} . One can verify that $\mathrm{GenLat}(V, s)$ is Abelian, add-associative, right zeroed, right complementable, scalar distributive, vector distributive, scalar associative, and scalar unital.

Let us consider a \mathbb{Z} -module V and a function s from (the carrier of V) × (the carrier of V) into the carrier of \mathbb{R}_{F} . Now we state the propositions:

- (2) GenLat(V, s) is a submodule of V.
- (3) V is a submodule of GenLat(V, s).

Note that there exists an Abelian, add-associative, right zeroed, right complementable, scalar distributive, vector distributive, scalar associative, scalar unital, non empty structure of \mathbb{Z} -lattice over $\mathbb{Z}^{\mathbb{R}}$ which is free.

Let V be a free \mathbb{Z} -module and s be a function from (the carrier of V) × (the carrier of V) into the carrier of \mathbb{R}_{F} . Let us observe that $\mathrm{GenLat}(V, s)$ is free and there exists an Abelian, add-associative, right zeroed, right complementable, scalar distributive, vector distributive, scalar associative, scalar unital, non empty structure of \mathbb{Z} -lattice over \mathbb{Z}^{R} which is torsion-free.

Now we state the proposition:

(4) Let us consider a finite rank, free \mathbb{Z} -module V, and a function s from (the carrier of V) × (the carrier of V) into the carrier of \mathbb{R}_{F} .

Then GenLat(V, s) is finite rank. The theorem is a consequence of (2).

Let us note that there exists a free, Abelian, add-associative, right zeroed, right complementable, scalar distributive, vector distributive, scalar associative, scalar unital, non empty structure of \mathbb{Z} -lattice over $\mathbb{Z}^{\mathbb{R}}$ which is finite rank.

Let V be a finite rank, free \mathbb{Z} -module and s be a function from (the carrier of V) × (the carrier of V) into the carrier of \mathbb{R}_{F} . Let us note that $\mathrm{GenLat}(V, s)$ is finite rank.

Now we state the proposition:

(5) Let us consider a finite rank, free \mathbb{Z} -module V, and a function f from (the carrier of $\mathbf{0}_V$) × (the carrier of $\mathbf{0}_V$) into the carrier of \mathbb{R}_F . Suppose $f = (\text{the carrier of } \mathbf{0}_V) \times (\text{the carrier of } \mathbf{0}_V) \longmapsto \mathbf{0}_{\mathbb{R}_F}$. Then $\text{GenLat}(\mathbf{0}_V, f)$ is \mathbb{Z} -lattice-like.

PROOF: Set $X = \text{GenLat}(\mathbf{0}_V, f)$. For every vector x of X such that for every vector y of X, $\langle x, y \rangle = 0$ holds $x = 0_X$ by [10, (26)]. For every vectors x, y, z of X and for every element a of $\mathbb{Z}^{\mathbb{R}}$, $\langle x, y \rangle = \langle y, x \rangle$ and $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ and $\langle a \cdot x, y \rangle = a \cdot \langle x, y \rangle$ by [16, (7)], [8, (87)]. \Box

Note that there exists a non empty structure of \mathbb{Z} -lattice over \mathbb{Z}^{R} which is \mathbb{Z} -lattice-like and there exists a finite rank, free, Abelian, add-associative, right zeroed, right complementable, scalar distributive, vector distributive, scalar associative, scalar unital, non empty structure of \mathbb{Z} -lattice over \mathbb{Z}^{R} which is \mathbb{Z} -lattice-like.

There exists a finite rank, free, \mathbb{Z} -lattice-like, Abelian, add-associative, right zeroed, right complementable, scalar distributive, vector distributive, scalar associative, scalar unital, non empty structure of \mathbb{Z} -lattice over $\mathbb{Z}^{\mathbb{R}}$ which is strict.

A Z-lattice is a finite rank, free, Z-lattice-like, Abelian, add-associative,

right zeroed, right complementable, scalar distributive, vector distributive, scalar associative, scalar unital, non empty structure of \mathbb{Z} -lattice over \mathbb{Z}^{R} . Now we state the proposition:

(6) Let us consider a non trivial, torsion-free Z-module V, a submodule Z of V, a non zero vector v of V, and a function f from (the carrier of Z) × (the carrier of Z) into the carrier of ℝ_F. Suppose Z = Lin({v}) and for every vectors v₁, v₂ of Z and for every elements a, b of Z^R such that v₁ = a ⋅ v and v₂ = b ⋅ v holds f(v₁, v₂) = a ⋅ b. Then GenLat(Z, f) is Z-lattice-like.

PROOF: Set L = GenLat(Z, f). L is \mathbb{Z} -lattice-like by [10, (26)], [12, (19)], [10, (1)], [12, (21)]. \Box

Observe that there exists a \mathbb{Z} -lattice which is non trivial.

Let V be a torsion-free \mathbb{Z} -module. Let us observe that \mathbb{Z} -MQVectSp(V) is scalar distributive, vector distributive, scalar associative, scalar unital, add-associative, right zeroed, right complementable, and Abelian as a non empty vector space structure over $\mathbb{F}_{\mathbb{Q}}$.

Now we state the propositions:

(7) Let us consider a \mathbb{Z} -lattice L, and vectors v, u of L. Then

(i)
$$\langle v, -u \rangle = -\langle v, u \rangle$$
, and

(ii)
$$\langle -v, u \rangle = - \langle v, u \rangle.$$

- (8) Let us consider a \mathbb{Z} -lattice L, and vectors v, u, w of L. Then $\langle v, u+w \rangle = \langle v, u \rangle + \langle v, w \rangle$.
- (9) Let us consider a \mathbb{Z} -lattice L, vectors v, u of L, and an element a of $\mathbb{Z}^{\mathbb{R}}$. Then $\langle v, a \cdot u \rangle = a \cdot \langle v, u \rangle$.
- (10) Let us consider a \mathbb{Z} -lattice L, vectors v, u, w of L, and elements a, b of $\mathbb{Z}^{\mathbb{R}}$. Then
 - (i) $\langle a \cdot v + b \cdot u, w \rangle = a \cdot \langle v, w \rangle + b \cdot \langle u, w \rangle$, and
 - (ii) $\langle v, a \cdot u + b \cdot w \rangle = a \cdot \langle v, u \rangle + b \cdot \langle v, w \rangle.$

The theorem is a consequence of (8) and (9).

- (11) Let us consider a \mathbb{Z} -lattice L, and vectors v, u, w of L. Then
 - (i) $\langle v u, w \rangle = \langle v, w \rangle \langle u, w \rangle$, and
 - (ii) $\langle v, u w \rangle = \langle v, u \rangle \langle v, w \rangle$.

The theorem is a consequence of (8) and (9).

- (12) Let us consider a \mathbb{Z} -lattice L, and a vector v of L. Then
 - (i) $\langle v, 0_L \rangle = 0$, and
 - (ii) $\langle 0_L, v \rangle = 0.$

The theorem is a consequence of (11).

Let X be a \mathbb{Z} -lattice. We say that X is integral if and only if

(Def. 5) for every vectors v, u of $X, \langle v, u \rangle \in \mathbb{Z}$.

Observe that there exists a \mathbb{Z} -lattice which is integral.

Let L be an integral \mathbb{Z} -lattice and v, u be vectors of L. Let us observe that $\langle v, u \rangle$ is integer.

Let v be a vector of L. Let us note that ||v|| is integer. Now we state the propositions:

- (13) Let us consider a \mathbb{Z} -lattice L, a finite subset I of L, and a vector u of L. Suppose for every vector v of L such that $v \in I$ holds $\langle v, u \rangle \in \mathbb{Z}$. Let us consider a vector v of L. If $v \in \text{Lin}(I)$, then $\langle v, u \rangle \in \mathbb{Z}$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv$ for every finite subset I of L such that $\overline{I} = \$_1$ and for every vector v of L such that $v \in I$ holds $\langle v, u \rangle \in \mathbb{Z}$ for every vector v of L such that $v \in \text{Lin}(I)$ holds $\langle v, u \rangle \in \mathbb{Z}$. $\mathcal{P}[0]$ by [11, (67)], (12). For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [8, (40)], [11, (72)], [1, (44)], [8, (31)]. For every natural number n, $\mathcal{P}[n]$ from [3, Sch. 2]. \Box
- (14) Let us consider a \mathbb{Z} -lattice L, and a basis I of L. Suppose for every vectors v, u of L such that v, $u \in I$ holds $\langle v, u \rangle \in \mathbb{Z}$. Let us consider vectors v, u of L. Then $\langle v, u \rangle \in \mathbb{Z}$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every finite subset } I \text{ of } L \text{ such that } \overline{\overline{I}} = \$_1 \text{ and for every vectors } v, u \text{ of } L \text{ such that } v, u \in I \text{ holds } \langle v, u \rangle \in \mathbb{Z}$ for every vectors $v, u \text{ of } L \text{ such that } v, u \in \text{Lin}(I) \text{ holds } \langle v, u \rangle \in \mathbb{Z}$. $\mathcal{P}[0]$ by [11, (67)], (12). For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [8, (40)], [11, (72)], [1, (44)], [8, (31)]. For every natural number $n, \mathcal{P}[n]$ from [3, Sch. 2]. \Box

(15) Let us consider a \mathbb{Z} -lattice L, and a basis I of L. Suppose for every vectors v, u of L such that $v, u \in I$ holds $\langle v, u \rangle \in \mathbb{Z}$. Then L is integral.

Let X be a \mathbb{Z} -lattice. We say that X is positive definite if and only if

(Def. 6) for every vector v of X such that $v \neq 0_X$ holds ||v|| > 0.

Let us observe that there exists a \mathbb{Z} -lattice which is non trivial, integral, and positive definite.

Let us consider a positive definite \mathbb{Z} -lattice L and a vector v of L. Now we state the propositions:

(16) ||v|| = 0 if and only if $v = 0_L$.

(17) $||v|| \ge 0$. The theorem is a consequence of (12).

Let X be an integral Z-lattice. We say that X is even if and only if (Def. 7) for every vector v of X, ||v|| is even.

One can verify that there exists an integral \mathbb{Z} -lattice which is even.

Let L be a \mathbb{Z} -lattice. We introduce the notation dim(L) as a synonym of rank L.

Let v, u be vectors of L. We say that v, u are orthogonal if and only if (Def. 8) $\langle v, u \rangle = 0$.

Let us note that the predicate is symmetric.

Let us consider a \mathbb{Z} -lattice L and vectors v, u of L.

Let us assume that v, u are orthogonal. Now we state the propositions:

- (18) (i) v, -u are orthogonal, and
 - (ii) -v, u are orthogonal, and
 - (iii) -v, -u are orthogonal.

The theorem is a consequence of (7).

- (19) ||v + u|| = ||v|| + ||u||. The theorem is a consequence of (8).
- (20) ||v u|| = ||v|| + ||u||. The theorem is a consequence of (11).

Let L be a \mathbb{Z} -lattice.

A \mathbb{Z} -sublattice of L is a \mathbb{Z} -lattice and is defined by

(Def. 9) the carrier of $it \subseteq$ the carrier of L and $0_{it} = 0_L$ and the addition of $it = (\text{the addition of } L) \upharpoonright (\text{the carrier of } it) \text{ and the left multiplication of } it = (\text{the left multiplication of } L) \upharpoonright ((\text{the carrier of } \mathbb{Z}^{\mathbb{R}}) \times (\text{the carrier of } it))$ and the scalar product of $it = (\text{the scalar product of } L) \upharpoonright (\text{the carrier of } it)$.

Now we state the propositions:

- (21) Let us consider a \mathbb{Z} -lattice L. Then every \mathbb{Z} -sublattice of L is a submodule of L.
- (22) Let us consider an object x, a \mathbb{Z} -lattice L, and \mathbb{Z} -sublattices L_1 , L_2 of L. Suppose $x \in L_1$ and L_1 is a \mathbb{Z} -sublattice of L_2 . Then $x \in L_2$. The theorem is a consequence of (21).
- (23) Let us consider an object x, a \mathbb{Z} -lattice L, and a \mathbb{Z} -sublattice L_1 of L. If $x \in L_1$, then $x \in L$. The theorem is a consequence of (21).
- (24) Let us consider a \mathbb{Z} -lattice L, and a \mathbb{Z} -sublattice L_1 of L. Then every vector of L_1 is a vector of L. The theorem is a consequence of (21).
- (25) Let us consider a \mathbb{Z} -lattice L, and \mathbb{Z} -sublattices L_1 , L_2 of L. Then $0_{L_1} = 0_{L_2}$.
- (26) Let us consider a \mathbb{Z} -lattice L, a \mathbb{Z} -sublattice L_1 of L, vectors v_1 , v_2 of L, and vectors w_1 , w_2 of L_1 . If $w_1 = v_1$ and $w_2 = v_2$, then $w_1 + w_2 = v_1 + v_2$. The theorem is a consequence of (21).

- (27) Let us consider a \mathbb{Z} -lattice L, a \mathbb{Z} -sublattice L_1 of L, a vector v of L, a vector w of L_1 , and an element a of $\mathbb{Z}^{\mathbb{R}}$. If w = v, then $a \cdot w = a \cdot v$. The theorem is a consequence of (21).
- (28) Let us consider a \mathbb{Z} -lattice L, a \mathbb{Z} -sublattice L_1 of L, a vector v of L, and a vector w of L_1 . If w = v, then -w = -v. The theorem is a consequence of (21).
- (29) Let us consider a \mathbb{Z} -lattice L, a \mathbb{Z} -sublattice L_1 of L, vectors v_1 , v_2 of L, and vectors w_1 , w_2 of L_1 . If $w_1 = v_1$ and $w_2 = v_2$, then $w_1 - w_2 = v_1 - v_2$. The theorem is a consequence of (21).
- (30) Let us consider a \mathbb{Z} -lattice L, and a \mathbb{Z} -sublattice L_1 of L. Then $0_L \in L_1$. The theorem is a consequence of (21).
- (31) Let us consider a \mathbb{Z} -lattice L, and \mathbb{Z} -sublattices L_1, L_2 of L. Then $0_{L_1} \in L_2$. The theorem is a consequence of (21).
- (32) Let us consider a \mathbb{Z} -lattice L, and a \mathbb{Z} -sublattice L_1 of L. Then $0_{L_1} \in L$. The theorem is a consequence of (21).
- (33) Let us consider a \mathbb{Z} -lattice L, a \mathbb{Z} -sublattice L_1 of L, and vectors v_1, v_2 of L. If $v_1, v_2 \in L_1$, then $v_1 + v_2 \in L_1$. The theorem is a consequence of (21).
- (34) Let us consider a \mathbb{Z} -lattice L, a \mathbb{Z} -sublattice L_1 of L, a vector v of L, and an element a of $\mathbb{Z}^{\mathbb{R}}$. If $v \in L_1$, then $a \cdot v \in L_1$. The theorem is a consequence of (21).
- (35) Let us consider a \mathbb{Z} -lattice L, a \mathbb{Z} -sublattice L_1 of L, and a vector v of L. If $v \in L_1$, then $-v \in L_1$. The theorem is a consequence of (21).
- (36) Let us consider a \mathbb{Z} -lattice L, a \mathbb{Z} -sublattice L_1 of L, and vectors v_1, v_2 of L. If $v_1, v_2 \in L_1$, then $v_1 v_2 \in L_1$. The theorem is a consequence of (21).
- (37) Let us consider a positive definite \mathbb{Z} -lattice L, a non empty set A, an element z of A, a binary operation a on A, a function m from (the carrier of $\mathbb{Z}^{\mathbb{R}}$) × A into A, and a function s from $A \times A$ into the carrier of $\mathbb{R}_{\mathbb{F}}$. Suppose A is a linearly closed subset of L and $z = 0_L$ and a = (the addition of L) $\upharpoonright A$ and m = (the left multiplication of L) \upharpoonright ((the carrier of $\mathbb{Z}^{\mathbb{R}}$) × A) and s = (the scalar product of L) $\upharpoonright A$. Then $\langle A, a, z, m, s \rangle$ is a \mathbb{Z} -sublattice of L.

PROOF: Set $L_1 = \langle A, a, z, m, s \rangle$. Set $V_1 = \langle A, a, z, m \rangle$. L_1 is a submodule of V_1 . L_1 is \mathbb{Z} -lattice-like by [10, (25)], [7, (49)], [10, (28), (29)]. \Box

(38) Let us consider a Z-lattice L, a Z-sublattice L_1 of L, vectors w_1 , w_2 of L_1 , and vectors v_1 , v_2 of L. Suppose $w_1 = v_1$ and $w_2 = v_2$. Then $\langle w_1, w_2 \rangle = \langle v_1, v_2 \rangle$.

Let L be an integral \mathbb{Z} -lattice. Note that every \mathbb{Z} -sublattice of L is integral.

Let L be a positive definite \mathbb{Z} -lattice. Let us observe that every \mathbb{Z} -sublattice of L is positive definite.

Let V, W be vector space structures over $\mathbb{Z}^{\mathbb{R}}$.

An \mathbb{R} -form of V and W is a function from (the carrier of V) × (the carrier of W) into the carrier of \mathbb{R}_{F} . The functor NulFrForm(V, W) yielding an \mathbb{R} -form

of V and W is defined by the term

(Def. 10) (the carrier of V) × (the carrier of W) $\mapsto 0_{\mathbb{R}_{\mathrm{F}}}$.

Let V, W be non empty vector space structures over $\mathbb{Z}^{\mathbb{R}}$ and f, g be \mathbb{R} -forms of V and W. The functor f + g yielding an \mathbb{R} -form of V and W is defined by

(Def. 11) for every vector v of V and for every vector w of W, it(v, w) = f(v, w) + g(v, w).

Let f be an \mathbb{R} -form of V and W and a be an element of \mathbb{R}_{F} . The functor $a \cdot f$ yielding an \mathbb{R} -form of V and W is defined by

- (Def. 12) for every vector v of V and for every vector w of W, $it(v, w) = a \cdot f(v, w)$. The functor -f yielding an \mathbb{R} -form of V and W is defined by
- (Def. 13) for every vector v of V and for every vector w of W, it(v, w) = -f(v, w). One can verify that the functor -f is defined by the term
- (Def. 14) $(-1_{\mathbb{R}_{\mathrm{F}}}) \cdot f$.

Let f, g be \mathbb{R} -forms of V and W. The functor f - g yielding an \mathbb{R} -form of V and W is defined by the term

(Def. 15) f + -g.

Observe that the functor f - g is defined by

(Def. 16) for every vector v of V and for every vector w of W, it(v, w) = f(v, w) - g(v, w).

Let us note that the functor f + g is commutative.

Now we state the propositions:

- (39) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, and an \mathbb{R} -form f of V and W. Then f + NulFrForm(V, W) = f.
- (40) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, and \mathbb{R} -forms f, g, h of V and W. Then (f+g) + h = f + (g+h).
- (41) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, and an \mathbb{R} -form f of V and W. Then $f f = \operatorname{NulFrForm}(V, W)$.
- (42) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, an element a of \mathbb{R}_{F} , and \mathbb{R} -forms f, g of V and W. Then $a \cdot (f+g) = a \cdot f + a \cdot g$. Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, elements

a, b of \mathbb{R}_{F} , and an \mathbb{R} -form f of V and W. Now we state the propositions:

- $(43) \quad (a+b) \cdot f = a \cdot f + b \cdot f.$
- $(44) \quad (a \cdot b) \cdot f = a \cdot (b \cdot f).$
- (45) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, and an \mathbb{R} -form f of V and W. Then $1_{\mathbb{R}_{\mathbb{F}}} \cdot f = f$.

Let V be a vector space structure over $\mathbb{Z}^{\mathbb{R}}$.

An \mathbb{R} -functional of V is a function from the carrier of V into the carrier of \mathbb{R}_{F} . Let V be a non empty vector space structure over \mathbb{Z}^{R} and f, g be \mathbb{R} functionals of V. The functor f + g yielding an \mathbb{R} -functional of V is defined by

(Def. 17) for every element x of V, it(x) = f(x) + g(x).

Let f be an \mathbb{R} -functional of V. The functor -f yielding an \mathbb{R} -functional of V is defined by

(Def. 18) for every element x of V, it(x) = -f(x).

Let f, g be \mathbb{R} -functionals of V. The functor f - g yielding an \mathbb{R} -functional of V is defined by the term

(Def. 19) f + -g.

Let v be an element of \mathbb{R}_{F} and f be an \mathbb{R} -functional of V. The functor $v \cdot f$ yielding an \mathbb{R} -functional of V is defined by

(Def. 20) for every element x of V, $it(x) = v \cdot f(x)$.

Let V be a vector space structure over $\mathbb{Z}^{\mathbb{R}}$. The functor 0FrFunctional(V) yielding an \mathbb{R} -functional of V is defined by the term

(Def. 21) $\Omega_V \longmapsto 0_{\mathbb{R}_F}$.

Let V be a non empty vector space structure over $\mathbb{Z}^{\mathbb{R}}$ and F be an \mathbb{R} -functional of V. We say that F is homogeneous if and only if

(Def. 22) for every vector x of V and for every scalar r of V, $F(r \cdot x) = r \cdot F(x)$.

We say that F is 0-preserving if and only if

(Def. 23) $F(0_V) = 0_{\mathbb{R}_F}$.

Let V be a \mathbb{Z} -module. Note that every \mathbb{R} -functional of V which is homogeneous is also 0-preserving.

Let V be a non empty vector space structure over $\mathbb{Z}^{\mathbb{R}}$. One can verify that 0FrFunctional(V) is additive and 0FrFunctional(V) is homogeneous and 0FrFunctional(V) is 0-preserving and there exists an \mathbb{R} -functional of V which is additive, homogeneous, and 0-preserving.

Now we state the propositions:

(46) Let us consider a non empty vector space structure V over $\mathbb{Z}^{\mathbb{R}}$, and \mathbb{R} -functionals f, g of V. Then f + g = g + f.

- (47) Let us consider a non empty vector space structure V over $\mathbb{Z}^{\mathbb{R}}$, and \mathbb{R} -functionals f, g, h of V. Then (f+g) + h = f + (g+h).
- (48) Let us consider a non empty vector space structure V over $\mathbb{Z}^{\mathbb{R}}$, and an element x of V. Then $(0\text{FrFunctional}(V))(x) = 0_{\mathbb{R}_{\mathrm{F}}}$.

Let us consider a non empty vector space structure V over $\mathbb{Z}^{\mathbb{R}}$ and an \mathbb{R} -functional f of V. Now we state the propositions:

- (49) f + 0FrFunctional(V) = f.
- (50) f f = 0FrFunctional(V).
- (51) Let us consider a non empty vector space structure V over $\mathbb{Z}^{\mathbb{R}}$, an element r of \mathbb{R}_{F} , and \mathbb{R} -functionals f, g of V. Then $r \cdot (f+g) = r \cdot f + r \cdot g$.

Let us consider a non empty vector space structure V over $\mathbb{Z}^{\mathbb{R}}$, elements r, s of \mathbb{R}_{F} , and an \mathbb{R} -functional f of V. Now we state the propositions:

- (52) $(r+s) \cdot f = r \cdot f + s \cdot f.$
- (53) $(r \cdot s) \cdot f = r \cdot (s \cdot f).$
- (54) Let us consider a non empty vector space structure V over $\mathbb{Z}^{\mathbb{R}}$, and an \mathbb{R} -functional f of V. Then $1_{\mathbb{R}_{\mathbb{F}}} \cdot f = f$.

Let V be a non empty vector space structure over $\mathbb{Z}^{\mathbb{R}}$ and f, g be additive \mathbb{R} -functionals of V. Observe that f + g is additive.

Let f be an additive \mathbb{R} -functional of V. One can check that -f is additive. Let v be an element of \mathbb{R}_{F} . Let us note that $v \cdot f$ is additive.

Let f, g be homogeneous \mathbb{R} -functionals of V. Let us observe that f + g is homogeneous.

Let f be a homogeneous \mathbb{R} -functional of V. Note that -f is homogeneous. Let v be an element of \mathbb{R}_{F} . Observe that $v \cdot f$ is homogeneous.

Let V, W be non empty vector space structures over $\mathbb{Z}^{\mathbb{R}}$, f be an \mathbb{R} -form of V and W, and v be a vector of V. The functor FrFunctionalFAF(f, v) yielding an \mathbb{R} -functional of W is defined by the term

(Def. 24) (curry f)(v).

Let w be a vector of W. The functor $\operatorname{FrFunctionalSAF}(f, w)$ yielding an \mathbb{R} functional of V is defined by the term

(Def. 25) (curry' f)(w).

Now we state the propositions:

- (55) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, an \mathbb{R} -form f of V and W, and a vector v of V. Then
 - (i) dom FrFunctional FAF(f, v) = the carrier of W, and
 - (ii) rng FrFunctionalFAF $(f, v) \subseteq$ the carrier of \mathbb{R}_{F} , and
 - (iii) for every vector w of W, (FrFunctionalFAF(f, v))(w) = f(v, w).

- (56) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, an \mathbb{R} -form f of V and W, and a vector w of W. Then
 - (i) dom FrFunctionalSAF(f, w) = the carrier of V, and
 - (ii) rng FrFunctionalSAF $(f, w) \subseteq$ the carrier of \mathbb{R}_{F} , and
 - (iii) for every vector v of V, (FrFunctionalSAF(f, w))(v) = f(v, w).
- (57) Let us consider a non empty vector space structure V over $\mathbb{Z}^{\mathbb{R}}$, and an element x of V. Then $(0\text{FrFunctional}(V))(x) = 0_{\mathbb{R}_{\mathrm{F}}}$.
- (58) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, and a vector v of V. Then FrFunctionalFAF(NulFrForm(V, W), v) =0FrFunctional(W). The theorem is a consequence of (55).
- (59) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, and a vector w of W. Then FrFunctionalSAF(NulFrForm(V, W), w) =0FrFunctional(V). The theorem is a consequence of (56).
- (60) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}, \mathbb{R}$ forms f, g of V and W, and a vector w of W. Then FrFunctionalSAF(f + g, w) = FrFunctionalSAF(f, w) + FrFunctionalSAF(g, w). The theorem is
 a consequence of (56).
- (61) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, \mathbb{R} forms f, g of V and W, and a vector v of V. Then FrFunctionalFAF(f + g, v) = FrFunctionalFAF(f, v) + FrFunctionalFAF(g, v). The theorem is
 a consequence of (55).
- (62) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, an \mathbb{R} form f of V and W, an element a of \mathbb{R}_{F} , and a vector w of W. Then
 FrFunctionalSAF $(a \cdot f, w) = a \cdot \operatorname{FrFunctionalSAF}(f, w)$. The theorem is
 a consequence of (56).
- (63) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, an \mathbb{R} form f of V and W, an element a of \mathbb{R}_{F} , and a vector v of V. Then
 FrFunctionalFAF $(a \cdot f, v) = a \cdot \mathrm{FrFunctionalFAF}(f, v)$. The theorem is
 a consequence of (55).
- (64) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, an \mathbb{R} -form f of V and W, and a vector w of W. Then FrFunctionalSAF(-f, w) = -FrFunctionalSAF(f, w). The theorem is a consequence of (56).
- (65) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, an \mathbb{R} -form f of V and W, and a vector v of V. Then FrFunctionalFAF(-f, v) = -FrFunctionalFAF(f, v). The theorem is a consequence of (55).
- (66) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}, \mathbb{R}$ forms f, g of V and W, and a vector w of W. Then FrFunctionalSAF(f f)

g, w) = FrFunctionalSAF(f, w) - FrFunctionalSAF(g, w). The theorem is a consequence of (56).

(67) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}, \mathbb{R}$ forms f, g of V and W, and a vector v of V. Then FrFunctionalFAF(f - g, v) = FrFunctionalFAF(f, v) - FrFunctionalFAF(g, v). The theorem is
a consequence of (55).

Let V, W be non empty vector space structures over $\mathbb{Z}^{\mathbb{R}}$, f be an \mathbb{R} -functional of V, and g be an \mathbb{R} -functional of W. The functor FrFormFunctional(f, g) yielding an \mathbb{R} -form of V and W is defined by

- (Def. 26) for every vector v of V and for every vector w of W, $it(v, w) = f(v) \cdot g(w)$.
 - (68) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, an \mathbb{R} -functional f of V, a vector v of V, and a vector w of W. Then (FrFormFunctional(f, 0FrFunctional(W))) $(v, w) = 0_{\mathbb{Z}^{\mathbb{R}}}$.
 - (69) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, an \mathbb{R} functional g of W, a vector v of V, and a vector w of W. Then (FrFormFunctional(0FrFunctional(V), g)) $(v, w) = 0_{\mathbb{Z}^{\mathbb{R}}}$.
 - (70) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, and an \mathbb{R} -functional f of V. Then FrFormFunctional(f, 0FrFunctional(W)) = NulFrForm(V, W). The theorem is a consequence of (68).
 - (71) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, and an \mathbb{R} -functional g of W. Then FrFormFunctional(0FrFunctional(V), g) = NulFrForm(V, W). The theorem is a consequence of (69).
 - (72) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, an \mathbb{R} -functional f of V, an \mathbb{R} -functional g of W, and a vector v of V. Then FrFunctionalFAF(FrFormFunctional $(f,g), v) = f(v) \cdot g$. The theorem is a consequence of (55).
 - (73) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, an \mathbb{R} -functional f of V, an \mathbb{R} -functional g of W, and a vector w of W. Then FrFunctionalSAF(FrFormFunctional $(f,g), w) = g(w) \cdot f$. The theorem is a consequence of (56).
 - 2. BILINEAR FORMS OVER FIELD OF REALS AND THEIR PROPERTIES

Let V, W be non empty vector space structures over $\mathbb{Z}^{\mathbb{R}}$ and f be an \mathbb{R} -form of V and W. We say that f is additive w.r.t. second argument if and only if (Def. 27) for every vector v of V, FrFunctionalFAF(f, v) is additive.

We say that f is additive w.r.t. first argument if and only if

(Def. 28) for every vector w of W, FrFunctionalSAF(f, w) is additive.

We say that f is homogeneous w.r.t. second argument if and only if

(Def. 29) for every vector v of V, FrFunctionalFAF(f, v) is homogeneous.

We say that f is homogeneous w.r.t. first argument if and only if

(Def. 30) for every vector w of W, FrFunctionalSAF(f, w) is homogeneous.

Observe that NuFrForm(V, W) is additive w.r.t. second argument and

NulFrForm(V, W) is additive w.r.t. first argument and there exists an \mathbb{R} -form of V and W which is additive w.r.t. second argument and additive w.r.t. first argument and NulFrForm(V, W) is homogeneous w.r.t. second argument and NulFrForm(V, W) is homogeneous w.r.t. first argument.

There exists an \mathbb{R} -form of V and W which is additive w.r.t. second argument, homogeneous w.r.t. second argument, additive w.r.t. first argument, and homogeneous w.r.t. first argument.

An \mathbb{R} -bilinear form of V and W is an additive w.r.t. first argument, homogeneous w.r.t. first argument, additive w.r.t. second argument, homogeneous w.r.t. second argument \mathbb{R} -form of V and W. Let f be an additive w.r.t. second argument \mathbb{R} -form of V and W and v be a vector of V. One can check that FrFunctionalFAF(f, v) is additive.

Let f be an additive w.r.t. first argument \mathbb{R} -form of V and W and w be a vector of W. Observe that FrFunctionalSAF(f, w) is additive.

Let f be a homogeneous w.r.t. second argument \mathbb{R} -form of V and W and v be a vector of V. One can check that $\operatorname{FrFunctionalFAF}(f, v)$ is homogeneous.

Let f be a homogeneous w.r.t. first argument \mathbb{R} -form of V and W and w be a vector of W. Observe that $\operatorname{FrFunctionalSAF}(f, w)$ is homogeneous.

Let f be an \mathbb{R} -functional of V and g be an additive \mathbb{R} -functional of W. Observe that $\operatorname{FrFormFunctional}(f,g)$ is additive w.r.t. second argument.

Let f be an additive \mathbb{R} -functional of V and g be an \mathbb{R} -functional of W. One can check that $\operatorname{FrFormFunctional}(f,g)$ is additive w.r.t. first argument.

Let f be an \mathbb{R} -functional of V and g be a homogeneous \mathbb{R} -functional of W. Observe that $\operatorname{FrFormFunctional}(f,g)$ is homogeneous w.r.t. second argument.

Let f be a homogeneous \mathbb{R} -functional of V and g be an \mathbb{R} -functional of W. One can check that $\operatorname{FrFormFunctional}(f,g)$ is homogeneous w.r.t. first argument.

Let V be a non trivial vector space structure over $\mathbb{Z}^{\mathbb{R}}$, W be a non empty vector space structure over $\mathbb{Z}^{\mathbb{R}}$, and f be an \mathbb{R} -functional of V. One can verify that $\operatorname{FrFormFunctional}(f,g)$ is non trivial and $\operatorname{FrFormFunctional}(f,g)$ is non trivial.

Let F be an \mathbb{R} -functional of V. We say that F is 0-preserving if and only if (Def. 31) $F(0_V) = 0_{\mathbb{R}_F}$. Let V be a \mathbb{Z} -module. One can check that every \mathbb{R} -functional of V which is homogeneous is also 0-preserving.

Let V be a non empty vector space structure over $\mathbb{Z}^{\mathbb{R}}$. Let us observe that 0FrFunctional(V) is 0-preserving and there exists an \mathbb{R} -functional of V which is additive, homogeneous, and 0-preserving.

Let V be a non trivial, free \mathbb{Z} -module. Note that there exists an \mathbb{R} -functional of V which is additive, homogeneous, non constant, and non trivial.

- (74) Let us consider a non trivial, free \mathbb{Z} -module V, and a non constant, 0-preserving \mathbb{R} -functional f of V. Then there exists a vector v of V such that
 - (i) $v \neq 0_V$, and
 - (ii) $f(v) \neq 0_{\mathbb{R}_{\mathrm{F}}}$.

Let V, W be non trivial, free \mathbb{Z} -modules, f be a non constant, 0-preserving \mathbb{R} -functional of V, and g be a non constant, 0-preserving \mathbb{R} -functional of W. Note that $\operatorname{FrFormFunctional}(f,g)$ is non constant.

Let V be a non empty vector space structure over $\mathbb{Z}^{\mathbb{R}}$.

An \mathbb{R} -linear functional of V is an additive, homogeneous \mathbb{R} -functional of V. Let V, W be non trivial, free \mathbb{Z} -modules. Observe that there exists an \mathbb{R} -form of V and W which is non trivial, non constant, additive w.r.t. second argument, homogeneous w.r.t. second argument, additive w.r.t. first argument, and homogeneous w.r.t. first argument.

Let V, W be non empty vector space structures over $\mathbb{Z}^{\mathbb{R}}$ and f, g be additive w.r.t. first argument \mathbb{R} -forms of V and W. Let us observe that f + g is additive w.r.t. first argument. Let f, g be additive w.r.t. second argument \mathbb{R} -forms of Vand W. One can check that f + g is additive w.r.t. second argument.

Let f be an additive w.r.t. first argument \mathbb{R} -form of V and W and a be an element of \mathbb{R}_{F} . Let us observe that $a \cdot f$ is additive w.r.t. first argument.

Let f be an additive w.r.t. second argument \mathbb{R} -form of V and W. Note that $a \cdot f$ is additive w.r.t. second argument.

Let f be an additive w.r.t. first argument \mathbb{R} -form of V and W. Let us observe that -f is additive w.r.t. first argument.

Let f be an additive w.r.t. second argument \mathbb{R} -form of V and W. Let us observe that -f is additive w.r.t. second argument.

Let f, g be additive w.r.t. first argument \mathbb{R} -forms of V and W. Observe that f - g is additive w.r.t. first argument.

Let f, g be additive w.r.t. second argument \mathbb{R} -forms of V and W. One can check that f - g is additive w.r.t. second argument.

Let f, g be homogeneous w.r.t. first argument \mathbb{R} -forms of V and W. Observe that f + g is homogeneous w.r.t. first argument.

Let f, g be homogeneous w.r.t. second argument \mathbb{R} -forms of V and W. One can verify that f + g is homogeneous w.r.t. second argument.

Let f be a homogeneous w.r.t. first argument \mathbb{R} -form of V and W and a be an element of \mathbb{R}_{F} . Observe that $a \cdot f$ is homogeneous w.r.t. first argument.

Let f be a homogeneous w.r.t. second argument \mathbb{R} -form of V and W. One can check that $a \cdot f$ is homogeneous w.r.t. second argument.

Let f be a homogeneous w.r.t. first argument \mathbb{R} -form of V and W. Observe that -f is homogeneous w.r.t. first argument. Let f be a homogeneous w.r.t. second argument \mathbb{R} -form of V and W. Observe that -f is homogeneous w.r.t. second argument.

Let f, g be homogeneous w.r.t. first argument \mathbb{R} -forms of V and W. Let us note that f - g is homogeneous w.r.t. first argument.

Let f, g be homogeneous w.r.t. second argument \mathbb{R} -forms of V and W. One can verify that f - g is homogeneous w.r.t. second argument.

- (75) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, vectors v, u of V, a vector w of W, and an \mathbb{R} -form f of V and W. If f is additive w.r.t. first argument, then f(v + u, w) = f(v, w) + f(u, w). The theorem is a consequence of (56).
- (76) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, a vector v of V, vectors u, w of W, and an \mathbb{R} -form f of V and W. If f is additive w.r.t. second argument, then f(v, u+w) = f(v, u) + f(v, w). The theorem is a consequence of (55).
- (77) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, vectors v, u of V, vectors w, t of W, and an additive w.r.t. first argument, additive w.r.t. second argument \mathbb{R} -form f of V and W. Then f(v + u, w + t) = f(v, w) + f(v, t) + (f(u, w) + f(u, t)). The theorem is a consequence of (75) and (76).
- (78) Let us consider right zeroed, non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, an additive w.r.t. second argument \mathbb{R} -form f of V and W, and a vector v of V. Then $f(v, 0_W) = 0_{\mathbb{Z}^{\mathbb{R}}}$. The theorem is a consequence of (76).
- (79) Let us consider right zeroed, non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, an additive w.r.t. first argument \mathbb{R} -form f of V and W, and a vector w of W. Then $f(0_V, w) = 0_{\mathbb{Z}^{\mathbb{R}}}$. The theorem is a consequence of (75).

Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, a vector v of V, a vector w of W, an element a of $\mathbb{Z}^{\mathbb{R}}$, and an \mathbb{R} -form f of V and W. Now we state the propositions:

(80) If f is homogeneous w.r.t. first argument, then $f(a \cdot v, w) = a \cdot f(v, w)$.

The theorem is a consequence of (56).

- (81) If f is homogeneous w.r.t. second argument, then $f(v, a \cdot w) = a \cdot f(v, w)$. The theorem is a consequence of (55).
- (82) Let us consider add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, scalar unital, non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, a homogeneous w.r.t. first argument \mathbb{R} -form f of V and W, and a vector w of W. Then $f(0_V, w) = 0_{\mathbb{R}_{\mathrm{F}}}$. The theorem is a consequence of (80).
- (83) Let us consider add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, scalar unital, non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, a homogeneous w.r.t. second argument \mathbb{R} -form f of V and W, and a vector v of V. Then $f(v, 0_W) = 0_{\mathbb{R}_{\mathbb{F}}}$. The theorem is a consequence of (81).
- (84) Let us consider Z-modules V, W, vectors v, u of V, a vector w of W, and an additive w.r.t. first argument, homogeneous w.r.t. first argument \mathbb{R} -form f of V and W. Then f(v-u,w) = f(v,w) f(u,w). The theorem is a consequence of (75) and (80).
- (85) Let us consider \mathbb{Z} -modules V, W, a vector v of V, vectors w, t of W, and an additive w.r.t. second argument, homogeneous w.r.t. second argument \mathbb{R} -form f of V and W. Then f(v, w - t) = f(v, w) - f(v, t). The theorem is a consequence of (76) and (81).
- (86) Let us consider Z-modules V, W, vectors v, u of V, vectors w, t of W, and an R-bilinear form f of V and W. Then f(v u, w t) = f(v, w) f(v, t) (f(u, w) f(u, t)). The theorem is a consequence of (84) and (85).
- (87) Let us consider add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, scalar unital, non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, vectors v, u of V, vectors w, t of W, elements a, b of $\mathbb{Z}^{\mathbb{R}}$, and an \mathbb{R} -bilinear form f of V and W. Then $f(v+a \cdot u, w+b \cdot t) = f(v, w) + b \cdot f(v, t) + (a \cdot f(u, w) + a \cdot (b \cdot f(u, t)))$. The theorem is a consequence of (77), (81), and (80).
- (88) Let us consider Z-modules V, W, vectors v, u of V, vectors w, t of W, elements a, b of $\mathbb{Z}^{\mathbb{R}}$, and an R-bilinear form f of V and W. Then $f(v a \cdot u, w b \cdot t) = f(v, w) b \cdot f(v, t) (a \cdot f(u, w) a \cdot (b \cdot f(u, t)))$. The theorem is a consequence of (86), (81), and (80).
- (89) Let us consider right zeroed, non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, and an \mathbb{R} -form f of V and W. Suppose f is additive w.r.t. second argument or additive w.r.t. first argument. Then f is constant if and only if for every vector v of V and for every vector w of W, $f(v, w) = 0_{\mathbb{Z}^{\mathbb{R}}}$. The theorem is a consequence of (78) and (79).

3. MATRICES OF BILINEAR FORM OVER FIELD OF REAL NUMBERS

Let V_1 , V_2 be finite rank, free \mathbb{Z} -modules, b_1 be an ordered basis of V_1 , b_2 be an ordered basis of V_2 , and f be an \mathbb{R} -bilinear form of V_1 and V_2 . The functor Bilinear (f, b_1, b_2) yielding a matrix over \mathbb{R}_F of dimension len $b_1 \times \text{len } b_2$ is defined by

(Def. 32) for every natural numbers i, j such that $i \in \text{dom } b_1$ and $j \in \text{dom } b_2$ holds $it_{i,j} = f(b_{1i}, b_{2j})$.

Now we state the propositions:

(90) Let us consider a finite rank, free \mathbb{Z} -module V, an \mathbb{R} -linear functional F of V, a finite sequence y of elements of V, a finite sequence x of elements of $\mathbb{Z}^{\mathbb{R}}$, and finite sequences X, Y of elements of $\mathbb{R}_{\mathbb{F}}$. Suppose X = x and len y = len x and len X = len Y and for every natural number k such that $k \in \text{Seg len } x$ holds $Y(k) = F(y_k)$. Then $X \cdot Y = F(\sum \text{lmlt}(x, y))$.

PROOF: Define $\mathcal{P}[\text{finite sequence of elements of } V] \equiv \text{for every finite sequence } x \text{ of elements of } \mathbb{Z}^{\mathbb{R}} \text{ for every finite sequences } X, Y \text{ of elements of } \mathbb{R}_{\mathrm{F}} \text{ such that } X = x \text{ and } \mathrm{len } \$_1 = \mathrm{len } x \text{ and } \mathrm{len } X = \mathrm{len } Y \text{ and for every natural number } k \text{ such that } k \in \mathrm{Seg \, len } x \text{ holds } Y(k) = F(\$_{1k}) \text{ holds } X \cdot Y = F(\sum \mathrm{lmlt}(x, \$_1)).$ For every finite sequence y of elements of V and for every element w of V such that $\mathcal{P}[y]$ holds $\mathcal{P}[y \cap \langle w \rangle]$ by $[4, (22), (39), (59)], [3, (11)]. \mathcal{P}[\varepsilon_{\alpha}],$ where α is the carrier of V by [17, (43)]. For every finite sequence p of elements of $V, \mathcal{P}[p]$ from $[6, \mathrm{Sch. 2}].$

- (91) Let us consider finite rank, free Z-modules V_1 , V_2 , an ordered basis b_2 of V_2 , an ordered basis b_3 of V_2 , an R-bilinear form f of V_1 and V_2 , a vector v_1 of V_1 , a vector v_2 of V_2 , and finite sequences X, Y of elements of \mathbb{R}_F . Suppose len $X = \text{len } b_2$ and len $Y = \text{len } b_2$ and for every natural number k such that $k \in \text{Seg len } b_2$ holds $Y(k) = f(v_1, b_{2k})$ and $X = v_2 \rightarrow b_2$. Then $Y \cdot X = f(v_1, v_2)$. The theorem is a consequence of (55) and (90).
- (92) Let us consider finite rank, free \mathbb{Z} -modules V_1 , V_2 , an ordered basis b_1 of V_1 , an \mathbb{R} -bilinear form f of V_1 and V_2 , a vector v_1 of V_1 , a vector v_2 of V_2 , and finite sequences X, Y of elements of \mathbb{R}_F . Suppose len $X = \text{len } b_1$ and len $Y = \text{len } b_1$ and for every natural number k such that $k \in \text{Seg len } b_1$ holds $Y(k) = f(b_{1k}, v_2)$ and $X = v_1 \to b_1$. Then $X \cdot Y = f(v_1, v_2)$. The theorem is a consequence of (56) and (90).
- (93) Every matrix over \mathbb{Z}^{R} is a matrix over \mathbb{R}_{F} .

Let M be a matrix over $\mathbb{Z}^{\mathbb{R}}$. The functor $\mathbb{Z}2\mathbb{R}(M)$ yielding a matrix over $\mathbb{R}_{\mathbb{F}}$ is defined by the term

(Def. 33) M.

Let n, m be natural numbers and M be a matrix over $\mathbb{Z}^{\mathbb{R}}$ of dimension $n \times m$. Note that the functor $\mathbb{Z}2\mathbb{R}(M)$ yields a matrix over $\mathbb{R}_{\mathbb{F}}$ of dimension $n \times m$. Let n be a natural number and M be a square matrix over $\mathbb{Z}^{\mathbb{R}}$ of dimension n. Let us note that the functor $\mathbb{Z}2\mathbb{R}(M)$ yields a square matrix over $\mathbb{R}_{\mathbb{F}}$ of dimension n. Let n. Now we state the propositions:

- (94) Let us consider natural numbers m, l, n, a matrix S over $\mathbb{Z}^{\mathbb{R}}$ of dimension $l \times m$, a matrix T over $\mathbb{Z}^{\mathbb{R}}$ of dimension $m \times n$, a matrix S_1 over $\mathbb{R}_{\mathbb{F}}$ of dimension $l \times m$, and a matrix T_1 over $\mathbb{R}_{\mathbb{F}}$ of dimension $m \times n$. If $S = S_1$ and $T = T_1$ and 0 < l and 0 < m, then $S \cdot T = S_1 \cdot T_1$.
 - PROOF: Reconsider $S_3 = S \cdot T$ as a matrix over $\mathbb{Z}^{\mathbb{R}}$ of dimension $l \times n$. Reconsider $S_2 = S_1 \cdot T_1$ as a matrix over $\mathbb{R}_{\mathbb{F}}$ of dimension $l \times n$. For every natural numbers i, j such that $\langle i, j \rangle \in$ the indices of S_3 holds $S_{3i,j} = S_{2i,j}$ by [8, (87)], [13, (2), (3), (37)]. \Box
- (95) Let us consider a natural number *n*. Then $I_{\mathbb{Z}^R}^{n \times n} = I_{\mathbb{R}_F}^{n \times n}$.
- (96) Let us consider finite rank, free \mathbb{Z} -modules V_1 , V_2 , an ordered basis b_1 of V_1 , an ordered basis b_2 of V_2 , an ordered basis b_3 of V_2 , and an \mathbb{R} -bilinear form f of V_1 and V_2 . Suppose $0 < \operatorname{rank} V_1$. Then $\operatorname{Bilinear}(f, b_1, b_3) = \operatorname{Bilinear}(f, b_1, b_2) \cdot (\mathbb{Z}2\mathbb{R}(\operatorname{AutMt}(\operatorname{id}_{V_2}, b_3, b_2)))^{\mathrm{T}}$.

PROOF: Set $n = \text{len } b_2$. Reconsider $I_2 = \text{AutMt}(\text{id}_{V_2}, b_3, b_2)$ as a square matrix over $\mathbb{Z}^{\mathbb{R}}$ of dimension n. Reconsider $M_1 = \mathbb{Z}2\mathbb{R}(I_2^{\mathsf{T}})$ as a square matrix over \mathbb{R}_{F} of dimension n. Set $M_2 = \text{Bilinear}(f, b_1, b_2) \cdot M_1$. For every natural numbers i, j such that $\langle i, j \rangle \in \text{the indices of Bilinear}(f, b_1, b_3)$ holds $(\text{Bilinear}(f, b_1, b_3))_{i,j} = M_{2i,j}$ by [8, (87)], [13, (1)], (91). \Box

(97) Let us consider finite rank, free \mathbb{Z} -modules V_1 , V_2 , an ordered basis b_1 of V_1 , an ordered basis b_2 of V_2 , an ordered basis b_3 of V_1 , and an \mathbb{R} -bilinear form f of V_1 and V_2 . Suppose $0 < \operatorname{rank} V_1$. Then $\operatorname{Bilinear}(f, b_3, b_2) = \mathbb{Z}2\mathbb{R}(\operatorname{AutMt}(\operatorname{id}_{V_1}, b_3, b_1)) \cdot \operatorname{Bilinear}(f, b_1, b_2).$

PROOF: Set $n = \text{len } b_3$. Reconsider $I_2 = \text{AutMt}(\text{id}_{V_1}, b_3, b_1)$ as a square matrix over $\mathbb{Z}^{\mathbb{R}}$ of dimension n. Reconsider $M_1 = \mathbb{Z}2\mathbb{R}(I_2)$ as a square matrix over $\mathbb{R}_{\mathbb{F}}$ of dimension n. Set $M_2 = M_1 \cdot \text{Bilinear}(f, b_1, b_2)$. For every natural numbers i, j such that $\langle i, j \rangle \in \text{the indices of Bilinear}(f, b_3, b_2)$ holds $(\text{Bilinear}(f, b_3, b_2))_{i,j} = M_{2i,j}$ by [8, (87)], [4, (1)], [13, (1)], (92). \Box

(98) Let us consider a finite rank, free Z-module V, ordered bases b_1 , b_2 of V, and an R-bilinear form f of V and V. Suppose $0 < \operatorname{rank} V$. Then $\operatorname{Bilinear}(f, b_2, b_2) = \mathbb{Z}2\mathbb{R}(\operatorname{AutMt}(\operatorname{id}_V, b_2, b_1)) \cdot \operatorname{Bilinear}(f, b_1, b_1) \cdot (\mathbb{Z}2\mathbb{R}(\operatorname{AutMt}(\operatorname{id}_V, b_2, b_1)))^{\mathrm{T}}$. The theorem is a consequence of (97) and (96).

Let us consider a finite rank, free \mathbb{Z} -module V, ordered bases b_1 , b_2 of V, and a square matrix M over \mathbb{R}_F of dimension rank V.

Let us assume that $M = \text{AutMt}(\text{id}_V, b_1, b_2)$. Now we state the propositions:

(99) (i) Det M = 1 and Det $M^{T} = 1$, or

(ii) Det M = -1 and Det $M^{T} = -1$.

The theorem is a consequence of (94) and (95).

(100) $|\det M| = 1$. The theorem is a consequence of (99).

Let us consider a finite rank, free \mathbb{Z} -module V, ordered bases b_1 , b_2 of V, and an \mathbb{R} -bilinear form f of V and V. Now we state the propositions:

(101) Det Bilinear (f, b_2, b_2) = Det Bilinear (f, b_1, b_1) . The theorem is a consequence of (98) and (99).

(102) $|\operatorname{Det Bilinear}(f, b_2, b_2)| = |\operatorname{Det Bilinear}(f, b_1, b_1)|.$

Let V be a finite rank, free \mathbb{Z} -module, f be an \mathbb{R} -bilinear form of V and V, and b be an ordered basis of V. The functor GramMatrix(f, b) yielding a square matrix over \mathbb{R}_{F} of dimension rank V is defined by the term

(Def. 34) $\operatorname{Bilinear}(f, b, b)$.

The functor $\operatorname{GramDet}(f)$ yielding an element of \mathbb{R}_{F} is defined by

(Def. 35) for every ordered basis b of V, it = Det GramMatrix(f, b).

Let L be a Z-lattice. The functor InnerProduct L yielding an R-form of L and L is defined by the term

(Def. 36) the scalar product of L.

One can check that InnerProduct L is additive w.r.t. first argument, homogeneous w.r.t. first argument, additive w.r.t. second argument, and homogeneous w.r.t. second argument.

Let b be an ordered basis of L. The functor $\operatorname{GramMatrix}(b)$ yielding a square matrix over \mathbb{R}_{F} of dimension $\dim(L)$ is defined by the term

(Def. 37) $\operatorname{GramMatrix}(\operatorname{InnerProduct} L, b).$

The functor $\operatorname{GramDet}(L)$ yielding an element of \mathbb{R}_{F} is defined by the term

- (Def. 38) $\operatorname{GramDet}(\operatorname{InnerProduct} L)$.
 - (103) Let us consider an integral \mathbb{Z} -lattice L. Then InnerProduct L is a bilinear form of L, L.

PROOF: For every object z such that $z \in (\text{the carrier of } L) \times (\text{the carrier of } L)$ holds $(\text{InnerProduct } L)(z) \in \text{the carrier of } \mathbb{Z}^{\mathbb{R}}$. Reconsider f = InnerProduct L as a form of L, L. For every vector v of L, $f(\cdot, v)$ is additive by [2, (70)], (8). For every vector v of L, $f(\cdot, v)$ is homogeneous by [2, (70)], (9). For every vector v of L, $f(v, \cdot)$ is additive by [2, (69)], (8). For every vector v of L, $f(v, \cdot)$ is additive by [2, (69)], (8). For every vector v of L, $f(v, \cdot)$ is additive by [2, (69)], (8). For every vector v of L, $f(v, \cdot)$ is additive by [2, (69)], (9).

(104) Let us consider an integral \mathbb{Z} -lattice L, and an ordered basis b of L. Then GramMatrix(b) is a square matrix over $\mathbb{Z}^{\mathbb{R}}$ of dimension dim(L).

PROOF: For every natural numbers i, j such that $\langle i, j \rangle \in$ the indices of GramMatrix(b) holds $(\text{GramMatrix}(b))_{i,j} \in$ the carrier of $\mathbb{Z}^{\mathbb{R}}$ by [8, (87)].

Let L be an integral \mathbb{Z} -lattice. Note that $\operatorname{GramDet}(L)$ is integer.

References

- [1] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543–547, 1990.
- [2] Grzegorz Bancerek. Curried and uncurried functions. *Formalized Mathematics*, 1(3): 537–541, 1990.
- [3] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41–46, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
- [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [9] Wolfgang Ebeling. Lattices and Codes. Advanced Lectures in Mathematics. Springer Fachmedien Wiesbaden, 2013.
- [10] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Z-modules. Formalized Mathematics, 20(1):47–59, 2012. doi:10.2478/v10037-012-0007-z.
- [11] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Quotient module of Z-module. Formalized Mathematics, 20(3):205-214, 2012. doi:10.2478/v10037-012-0024-y.
- [12] Yuichi Futa, Hiroyuki Okazaki, Kazuhisa Nakasho, and Yasunari Shidama. Torsion Z-module and torsion-free Z-module. *Formalized Mathematics*, 22(4):277–289, 2014. doi:10.2478/forma-2014-0028.
- [13] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Matrix of Z-module. Formalized Mathematics, 23(1):29–49, 2015. doi:10.2478/forma-2015-0003.
- [14] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational coefficients. *Mathematische Annalen*, 261(4), 1982.
- [15] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: A cryptographic perspective. *The International Series in Engineering and Computer Science*, 2002.
- [16] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.
- [17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.

Received December 30, 2015