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Summary. In this article, conservation rules of the direct sum decomposi-
tion of groups are mainly discussed. In the first section, we prepare miscellaneous
definitions and theorems for further formalization in Mizar [5]. In the next three
sections, we formalized the fact that the property of direct sum decomposition is
preserved against the substitutions of the subscript set, flattening of direct sum,
and layering of direct sum, respectively. We referred to [14], [13] [6] and [11] in
the formalization.
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1. Preliminaries

Let I, J be non empty sets, a be a function from I into J , and F be a multi-
plicative magma family of J . Observe that the functor F ·a yields a multiplicative
magma family of I. Let F be a group family of J . Let us observe that the functor
F · a yields a group family of I. Let G be a group and F be a subgroup family
of J and G. The functor F · a yielding a subgroup family of I and G is defined
by the term

(Def. 1) F · a.
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The scheme Sch1 deals with a set A and a 1-sorted structure B and a unary
functor F yielding a set and states that

(Sch. 1) There exists a function f such that dom f = A and for every element x
of B such that x ∈ A holds f(x) = F(x).

Let I be a set. Let us note that there exists a many sorted set indexed by I
which is non-empty and disjoint valued.

Now we state the propositions:

(1) Let us consider a non-empty, disjoint valued function f . If
⋃
f is finite,

then dom f is finite.
Proof: For every objects x, y such that x, y ∈ dom f and f(x) = f(y)
holds x = y by [7, (3)]. �

(2) Let us consider non empty sets X, Y, sets X0, Y0, and a function f from
X into Y. Suppose f is bijective and rng(f�X0) = Y0. Then (f�X0)−1 =
f−1�Y0.
Proof: For every object x such that x ∈ dom(f−1�Y0) holds (f−1�Y0)(x) =
(f�X0)−1(x) by [18, (62)], [7, (49), (33)], [18, (59)]. �

2. Conservation Rule of Direct Sum Decomposition for
Substitution of Subscript Set

Now we state the proposition:

(3) Let us consider non empty sets I, J , a function a from I into J , a multipli-
cative magma family F of J , and an element x of

∏
F . Then x·a ∈

∏
(F ·a).

Proof: Reconsider y = x·a as a many sorted set indexed by I. Reconsider
z = the support of F ·a as a many sorted set indexed by I. For every object
i such that i ∈ I holds y(i) ∈ z(i) by [7, (13)]. �

Let I, J be non empty sets, a be a function from I into J , and F be a multi-
plicative magma family of J . The functor Trans

∏
(F, a) yielding a function from∏

F into
∏

(F · a) is defined by

(Def. 2) for every element x of
∏
F , it(x) = x · a.

Now we state the proposition:

(4) Let us consider non empty sets I, J , a function a from I into J , and
a multiplicative magma family F of J . Then Trans

∏
(F, a) is multiplicati-

ve.
Proof: Reconsider f = Trans

∏
(F, a) as a function from

∏
F into

∏
(F ·a).

For every elements x, y of
∏
F , f(x · y) = f(x) · f(y) by (3), [7, (13)], [10,

(1)], [18, (27)]. �
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Let I, J be non empty sets, a be a function from I into J , and F be a group
family of J . Let us observe that the functor Trans

∏
(F, a) yields a homomor-

phism from
∏
F to

∏
(F · a). Now we state the propositions:

(5) Let us consider non empty sets I, J , a function a from I into J , a mul-
tiplicative magma family F of J , and an element y of

∏
(F · a). If a is

bijective, then y · a−1 ∈
∏
F .

Proof: Set x = y · a−1. For every object j such that j ∈ J holds x(j) ∈
(the support of F )(j) by [7, (32), (13)]. �

(6) Let us consider non empty sets I, J , a function a from I into J , and
functions x, y. Suppose domx = I and dom y = J and a is bijective. Then
x = y · a if and only if y = x · a−1.

(7) Let us consider non empty sets I, J , a multiplicative magma family F

of J , and a function a from I into J . Suppose a is bijective. Then

(i) dom Trans
∏

(F, a) = Ω∏F , and

(ii) rng Trans
∏

(F, a) = Ω∏(F ·a).
The theorem is a consequence of (5) and (6).

(8) Let us consider non empty sets I, J , a function a from I into J , and
a multiplicative magma family F of J . If a is bijective, then Trans

∏
(F, a)

is bijective.
Proof: Reconsider f = Trans

∏
(F, a) as a function from

∏
F into

∏
(F ·a).

dom f = Ω∏F and rng f = Ω∏(F ·a). For every objects x, y such that x,
y ∈ dom f and f(x) = f(y) holds x = y by [7, (86)]. �

Let us consider non empty sets I, J , a function a from I into J , a group
family F of J , and a function x. Now we state the propositions:

(9) If a is one-to-one, then a◦(support(x · a, F · a)) ⊆ support(x, F ).
Proof: For every object j such that j ∈ a◦(support(x · a, F · a)) holds
j ∈ support(x, F ) by [7, (13)]. �

(10) If a is onto, then support(x, F ) ⊆ a◦(support(x · a, F · a)).
Proof: For every object j such that j ∈ support(x, F ) holds
j ∈ a◦(support(x · a, F · a)) by [8, (11)], [7, (13)]. �

(11) If a is one-to-one, then if x ∈ sumF , then x ·a ∈ sum(F ·a). The theorem
is a consequence of (3) and (9).

(12) If a is bijective, then x ∈ sumF iff x · a ∈ sum(F · a) and domx = J .
The theorem is a consequence of (11).

Let I, J be non empty sets, a be a function from I into J , and F be a group
family of J . Assume a is bijective. The functor Trans

∑
(F, a) yielding a function

from sumF into sum(F · a) is defined by the term
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(Def. 3) Trans
∏

(F, a)� sumF .

Now we state the proposition:

(13) Let us consider groups G, H, a subgroup H0 of H, and a homomorphism
f from G to H. Suppose rng f ⊆ ΩH0 . Then f is a homomorphism from
G to H0.
Proof: Reconsider g = f as a function from G into H0. For every elements
a, b of G, g(a · b) = g(a) · g(b) by [16, (43)]. �

Let I, J be non empty sets, a be a function from I into J , and F be a group
family of J . Assume a is bijective. Let us observe that the functor Trans

∑
(F, a)

yields a homomorphism from sumF to sum(F ·a). Now we state the propositions:

(14) Let us consider non empty sets I, J , a function a from I into J , and
a group family F of J . If a is bijective, then Trans

∑
(F, a) is bijective.

Proof: Reconsider f = Trans
∏

(F, a) as a homomorphism from
∏
F to∏

(F · a). Reconsider g = Trans
∑

(F, a) as a homomorphism from sumF

to sum(F · a). f is bijective. For every object y such that y ∈ Ωsum(F ·a)
holds y ∈ rng g by [16, (42)], (5), (6), (12). �

(15) Let us consider a group G, non empty sets I, J , a direct sum components
F of G and J , and a function a from I into J . If a is bijective, then F · a
is a direct sum components of G and I. The theorem is a consequence of
(14).

(16) Let us consider a non empty set I, and a group G. Then every internal
direct sum components of G and I is a subgroup family of I and G.

(17) Let us consider non empty sets I, J , a group G, a function x from I into
G, a function y from J into G, and a function a from I into J . Suppose a
is onto and x = y · a. Then support y = a◦(supportx).

(18) Let us consider non empty sets I, J , a commutative group G, a finite-
support function x from I into G, a finite-support function y from J into
G, and a function a from I into J . If a is bijective and x = y · a, then∏
x =
∏
y.

Proof: Reconsider S1 = supportx as a finite set. Reconsider S2 = support
y as a finite set. Reconsider s1 = CFS(S1) as a finite sequence of elements
of S1. Reconsider s2 = CFS(S2) as a finite sequence of elements of S2.
Reconsider x1 = x�S1 as a function from S1 into G. Consider x2 being
a finite sequence of elements of G such that

∏
x1 =

∏
x2 and x2 = x1 · s1.

Reconsider y1 = y�S2 as a function from S2 into G. Consider y2 being
a finite sequence of elements of G such that

∏
y1 =

∏
y2 and y2 = y1 · s2.

S2 = a◦S1. S1 = S2 by [1, (66)], [8, (25)], [17, (63)], [8, (17), (29)]. Re-
consider n = S1 as a natural number. Reconsider a1 = a�S1 as a function
from S1 into J . Reconsider a2 = s2

−1 as a function from S2 into Seg n.
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Reconsider p = a2 ·a1 · s1 as a function. If S2 is not empty, then x2 = y2 ·p
by [18, (27)], [7, (3), (12), (47)]. �

(19) Let us consider non empty sets I, J , a group G, a finite-support function
x from I into G, a finite-support function y from J into G, and a function a
from I into J . Suppose a is bijective and x = y·a and for every elements i, j
of I, x(i)·x(j) = x(j)·x(i). Then

∏
x =
∏
y. The theorem is a consequence

of (18).

(20) Let us consider a group G, non empty sets I, J , an internal direct sum
components F of G and J , and a function a from I into J . Suppose a is
bijective. Then F · a is an internal direct sum components of G and I.
Proof: Reconsider E = F · a as a direct sum components of G and I.
For every element i of I, E(i) is a subgroup of G by [7, (13)]. There exists
a homomorphism h from sumE to G such that h is bijective and for
every finite-support function x from I into G such that x ∈ sumE holds
h(x) =

∏
x by (14), [17, (62), (63)], [12, (25)]. �

3. Conservation Rule of Direct Sum Decomposition for Flattening

Let I be a non empty set and J be a many sorted set indexed by I.
A J-indexed family of multiplicative magma families is a many sorted set

indexed by I and is defined by

(Def. 4) for every element i of I, it(i) is a multiplicative magma family of J(i).

A J-indexed family of group families is a J-indexed family of multiplicative
magma families and is defined by

(Def. 5) for every element i of I, it(i) is a group family of J(i).

Let N be a J-indexed family of multiplicative magma families and i be
an element of I. One can verify that the functor N(i) yields a multiplicative
magma family of J(i). Let N be a J-indexed family of group families. Observe
that the functor N(i) yields a group family of J(i). Let J be a disjoint valued
many sorted set indexed by I and F be a J-indexed family of group families.
One can verify that the functor

⋃
F yields a group family of

⋃
J . Now we state

the proposition:

(21) Let us consider a non empty set I, a disjoint valued many sorted set J
indexed by I, a J-indexed family of group families F , an element j of I,
and an object i. If i ∈ J(j), then (

⋃
F )(i) = F (j)(i).

Let I be a non empty set, J be a many sorted set indexed by I, and F be a J-
indexed family of multiplicative magma families. The functor ProdBundle(F )
yielding a multiplicative magma family of I is defined by
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(Def. 6) for every element i of I, it(i) =
∏

(F (i)).

Let F be a J-indexed family of group families.
Note that the functor ProdBundle(F ) yields a group family of I. The functor

SumBundle(F ) yielding a group family of I is defined by

(Def. 7) for every element i of I, it(i) = sum(F (i)).

Let F be a J-indexed family of multiplicative magma families. The functor
d
∏
F yielding a multiplicative magma is defined by the term

(Def. 8)
∏

ProdBundle(F ).

Let J be a non-empty many sorted set indexed by I. One can check that
d
∏
F is non empty and constituted functions.
Let F be a J-indexed family of group families. Observe that d

∏
F is group-

like and associative.
The functor d

∑
F yielding a group is defined by the term

(Def. 9) sum SumBundle(F ).

Note that d
∑
F is non empty and constituted functions.

Let us consider a non empty set I and group families F1, F2 of I.
Let us assume that for every element i of I, F1(i) is a subgroup of F2(i).

Now we state the propositions:

(22)
∏
F1 is a subgroup of

∏
F2.

Proof: For every object x such that x ∈ Ω∏F1 holds x ∈ Ω∏F2 . Re-
consider f2 = (the multiplication of

∏
F2) � Ω∏F1 as a function from

Ω∏F1 ×Ω∏F1 into Ω∏F2 . Reconsider f1 = the multiplication of
∏
F1 as

a function from Ω∏F1 × Ω∏F1 into Ω∏F2 . For every sets x, y such that
x, y ∈ Ω∏F1 holds f1(x, y) = f2(x, y) by [10, (1)], [16, (43)], [7, (49)], [9,
(87)]. �

(23) sumF1 is a subgroup of sumF2.
Proof: For every object x such that x ∈ ΩsumF1 holds x ∈ ΩsumF2 by
[16, (40)], (22), [16, (42), (44)].

∏
F1 is a subgroup of

∏
F2. �

(24) Let us consider a non empty set I, a non-empty many sorted set J
indexed by I, and a J-indexed family of group families F . Then d

∑
F is

a subgroup of d
∏
F . The theorem is a consequence of (22).

Let I be a non empty set, J be a non-empty, disjoint valued many sorted
set indexed by I, and F be a J-indexed family of group families. One can verify
that the functor d

∑
F yields a subgroup of d

∏
F . The functor dProd2Prod(F )

yielding a homomorphism from d
∏
F to

∏⋃
F is defined by

(Def. 10) for every element x of d
∏
F and for every element i of I, x(i) = it(x)�J(i).

Now we state the proposition:
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(25) Let us consider a non empty set I, a non-empty, disjoint valued ma-
ny sorted set J indexed by I, a J-indexed family of group families F ,
an element y of

∏⋃
F , and an element i of I. Then y�J(i) ∈

∏
(F (i)).

Proof: Set x = y�J(i). Set z = the support of F (i). For every object j
such that j ∈ J(i) holds x(j) ∈ z(j) by [7, (49), (1)]. �

Let I be a non empty set, J be a non-empty, disjoint valued many sorted
set indexed by I, and F be a J-indexed family of group families. Note that
dProd2Prod(F ) is bijective.

The functor Prod2dProd(F ) yielding a homomorphism from
∏⋃

F to d
∏
F

is defined by the term

(Def. 11) (dProd2Prod(F ))−1.

Now we state the proposition:

(26) Let us consider a non empty set I, a non-empty, disjoint valued many sor-
ted set J indexed by I, a J-indexed family of group families F , an element
x of
∏⋃

F , and an element i of I. Then x�J(i) = (Prod2dProd(F ))(x)(i).

Let I be a non empty set, J be a non-empty, disjoint valued many sorted
set indexed by I, and F be a J-indexed family of group families. Note that
Prod2dProd(F ) is bijective.

(27) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, and a J-indexed family of group families F .
Then Prod2dProd(F ) = (dProd2Prod(F ))−1.

Let I be a non empty set, J be a non-empty, disjoint valued many sorted set
indexed by I, F be a J-indexed family of group families, and x be a function.
The functor rsupport(x, F ) yielding a disjoint valued many sorted set indexed
by I is defined by

(Def. 12) for every element i of I, it(i) = support(x�J(i), F (i)).

Now we state the propositions:

(28) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, a J-indexed family of group families F , and
a function x. Then support(x,

⋃
F ) =

⋃
rsupport(x, F ).

Proof: Set y = rsupport(x, F ). For every object j, j ∈ support(x,
⋃
F )

iff j ∈
⋃
y by (21), [7, (49), (3)], [9, (74)]. �

(29) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, a J-indexed family of group families F , and
functions x, y, z. Suppose z ∈ d

∏
F and x = (dProd2Prod(F ))(z). Then

(i) rsupport(x, F )� support(z,SumBundle(F )) is a non-empty, disjoint
valued many sorted set indexed by support(z,SumBundle(F )), and

(ii) support(x,
⋃
F ) =

⋃
(rsupport(x, F )� support(z, SumBundle(F ))).
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Proof: Set s1 = rsupport(x, F ). Set s2 = support(z,SumBundle(F )). Set
f = s1�s2. For every objects s, t such that s 6= t holds f(s) misses f(t) by
[7, (47)]. ∅ /∈ rng f by [7, (47)], [10, (5)], [16, (44)]. support(x,

⋃
F ) =

⋃
s1.

For every object k such that k ∈ support(x,
⋃
F ) holds k ∈

⋃
(s1�s2) by

[10, (6)], [16, (44)], [18, (57)], [7, (47), (3)]. �

(30) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, a J-indexed family of group families F , and
a function y. Suppose y ∈ sum

⋃
F . Then there exists a function x such

that

(i) y = (dProd2Prod(F ))(x), and

(ii) x ∈ d
∑
F .

Proof: Consider x being an element of Ωd
∏
F such that y = (dProd2Prod

(F ))(x). Set s1 = rsupport(y, F ). support(y,
⋃
F ) =

⋃
s1. For every ele-

ment i of I, x(i) ∈ (SumBundle(F ))(i) by [7, (3)], [9, (74)], [12, (8)]. Set
S = SumBundle(F ). Reconsider W = the support of S as a many sorted
set indexed by I. For every object i such that i ∈ I holds x(i) ∈ W (i).
Reconsider s2 = s1� support(x,SumBundle(F )) as a non-empty, disjoint
valued many sorted set indexed by support(x,SumBundle(F )).

⋃
s2 is fi-

nite. dom s2 is finite. �

(31) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, a J-indexed family of group families F , and func-
tions x, y. Suppose x, x ∈ d

∑
F . Then (dProd2Prod(F ))(x) ∈ sum

⋃
F .

Proof: Reconsider y = (dProd2Prod(F ))(x) as an element of
∏⋃

F . Set
s1 = rsupport(y, F ). Reconsider s2 = s1� support(x,SumBundle(F )) as
a non-empty, disjoint valued many sorted set indexed by
support(x,SumBundle(F )). For every object i such that i ∈ dom s2 holds
s2(i) is finite by [16, (40)], [7, (49)]. support(y,

⋃
F ) is finite. �

(32) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, and a J-indexed family of group families F .
Then rng(dProd2Prod(F )� d

∑
F ) = Ωsum

⋃
F .

Proof: For every object y, y ∈ rng(dProd2Prod(F )�Ωd
∑
F ) iff y ∈

Ωsum
⋃
F by [18, (61)], (31), [7, (47)], (30). �

Let I be a non empty set, J be a non-empty, disjoint valued many sorted
set indexed by I, and F be a J-indexed family of group families. The functor
dSum2Sum(F ) yielding a homomorphism from d

∑
F to sum

⋃
F is defined by

the term

(Def. 13) dProd2Prod(F )� d
∑
F .

One can verify that dSum2Sum(F ) is bijective.
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The functor Sum2dSum(F ) yielding a homomorphism from sum
⋃
F to d

∑
F

is defined by the term

(Def. 14) (dSum2Sum(F ))−1.

Now we state the proposition:

(33) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, and a J-indexed family of group families F .
Then Sum2dSum(F ) = Prod2dProd(F )� sum

⋃
F . The theorem is a con-

sequence of (2).

Let I be a non empty set, J be a non-empty, disjoint valued many sorted
set indexed by I, and F be a J-indexed family of group families. One can check
that Sum2dSum(F ) is bijective.

Now we state the proposition:

(34) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, and a J-indexed family of group families F .
Then dSum2Sum(F ) = (Sum2dSum(F ))−1.

Let I be a non empty set, G be a group, and F be an internal direct sum
components of G and I. The functor InterHom(F ) yielding a homomorphism
from sumF to G is defined by

(Def. 15) it is bijective and for every finite-support function x from I into G such
that x ∈ sumF holds it(x) =

∏
x.

Let J be a non-empty, disjoint valued many sorted set indexed by I, M
be a direct sum components of G and I, N be a J-indexed family of group
families, and h be a many sorted set indexed by I. Assume for every element
i of I, there exists a homomorphism h0 from (SumBundle(N))(i) to M(i) such
that h0 = h(i) and h0 is bijective. The functor ProdHom(G,M,N, h) yielding
a homomorphism from d

∑
N to sumM is defined by

(Def. 16) it = SumMap(SumBundle(N),M, h) and it is bijective.

Now we state the propositions:

(35) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, a group G, a direct sum components M of
G and I, and a J-indexed family of group families N . Suppose for every
element i of I, N(i) is a direct sum components of M(i) and J(i). Then⋃
N is a direct sum components of G and

⋃
J .

Proof: Consider f2 being a homomorphism from sumM to G such that f2
is bijective. Define P(object) = Ωsum(N($1(∈I))). Consider D2 being a func-
tion such that domD2 = I and for every object i such that i ∈ I holds
D2(i) = P(i) from [7, Sch. 3]. Define Q(object) = ΩM($1(∈I)). Consider
R1 being a function such that domR1 = I and for every object i such
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that i ∈ I holds R1(i) = Q(i) from [7, Sch. 3]. Define R[object, object] ≡
there exists a homomorphism f3 from sum(N($1(∈ I))) to M($1(∈ I))
such that f3 = $2 and f3 is bijective. For every element i of I, there exi-
sts an element y of

⋃
D2→̇

⋃
R1 such that R[i, y] by [7, (3)], [9, (74)].

Consider f1 being a function from I into
⋃
D2→̇

⋃
R1 such that for every

element i of I, R[i, f1(i)] from [8, Sch. 3]. For every element i of I, there
exists a homomorphism h0 from (SumBundle(N))(i) to M(i) such that
h0 = f1(i) and h0 is bijective. �

(36) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, a group G, an internal direct sum components
M of G and I, and a J-indexed family of group families N . Suppose for
every element i of I, N(i) is an internal direct sum components of M(i)
and J(i). Then

⋃
N is an internal direct sum components of G and

⋃
J .

Proof: Consider f3 being a homomorphism from sumM to G such that f3
is bijective and for every finite-support function x from I into G such that
x ∈ sumM holds f3(x) =

∏
x. Define Q[object, object] ≡ there exists

an internal direct sum components N1 of M($1(∈ I)) and J($1(∈ I))
such that N1 = N($1) and $2 = InterHom(N1). For every object x such
that x ∈ I there exists an object y such that Q[x, y]. Consider f1 being
a function such that dom f1 = I and for every object i such that i ∈ I holds
Q[i, f1(i)] from [7, Sch. 2]. Set f2 = ProdHom(G,M,N, f1). For every
element i of I, there exists a homomorphism h0 from (SumBundle(N))(i)
to M(i) such that h0 = f1(i) and h0 is bijective and for every finite-support
function x from J(i) into M(i) such that x ∈ (SumBundle(N))(i) holds
h0(x) =

∏
x. For every element i of I, there exists a homomorphism h0

from (SumBundle(N))(i) to M(i) such that h0 = f1(i) and h0 is bijective.
Reconsider h = f3 · f2 ·Sum2dSum(N) as a homomorphism from sum

⋃
N

to G. Reconsider U2 =
⋃
J as a non empty set. Reconsider U3 =

⋃
N as

a direct sum components of G and U2. For every object j such that j ∈ U2
holds U3(j) is a subgroup of G by (21), [16, (56)]. For every finite-support
function x from U2 into G such that x ∈ sumU3 holds h(x) =

∏
x by [16,

(42), (40)], [7, (13)], [8, (5), (15)]. �

4. Conservation Rule of Direct Sum Decomposition for Layering

Now we state the propositions:

(37) Let us consider a non empty set I, a non-empty, disjoint valued ma-
ny sorted set J indexed by I, a group G, a group family M of I, and
a J-indexed family of group families N . Suppose

⋃
N is a direct sum com-

ponents of G and
⋃
J and for every element i of I, N(i) is a direct sum
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components of M(i) and J(i). Then M is a direct sum components of G
and I.
Proof: Set U3 =

⋃
N . Consider f4 being a homomorphism from sumU3 to

G such that f4 is bijective. Define P(object) = the carrier of sum(N($1(∈
I))). Consider D2 being a function such that domD2 = I and for eve-
ry object i such that i ∈ I holds D2(i) = P(i) from [7, Sch. 3]. Define
Q(object) = the carrier of M($1(∈ I)). Consider R1 being a function such
that domR1 = I and for every object i such that i ∈ I holds R1(i) = Q(i)
from [7, Sch. 3]. Define R[object, object] ≡ there exists a homomorphism
f3 from M($1(∈ I)) to sum(N($1(∈ I))) such that f3 = $2 and f3 is bi-
jective. For every element i of I, there exists an element y of

⋃
R1→̇

⋃
D2

such that R[i, y] by [17, (62), (63)], [7, (3)], [9, (74)]. Consider f1 being
a function from I into

⋃
R1→̇

⋃
D2 such that for every element i of I,

R[i, f1(i)] from [8, Sch. 3]. For every element i of I, there exists a homo-
morphism h0 from M(i) to (SumBundle(N))(i) such that h0 = f1(i) and
h0 is bijective. �

(38) Let us consider a non empty set I, a non-empty, disjoint valued many
sorted set J indexed by I, a group G, a subgroup family M of I and G,
and a J-indexed family of group families N . Suppose

⋃
N is an internal

direct sum components of G and
⋃
J and for every element i of I, N(i) is

an internal direct sum components of M(i) and J(i). Then M is an internal
direct sum components of G and I.
Proof: Reconsider U2 =

⋃
J as a non empty set. Consider f4 being

a homomorphism from sum
⋃
N to G such that f4 is bijective and for every

finite-support function x from U2 into G such that x ∈ sum
⋃
N holds

f4(x) =
∏
x. Define Q[object, object] ≡ there exists an internal direct

sum components N1 of M($1(∈ I)) and J($1(∈ I)) such that N1 = N($1)
and $2 = (InterHom(N1))−1. For every object x such that x ∈ I there
exists an object y such that Q[x, y].

Consider f1 being a function such that dom f1 = I and for every
object i such that i ∈ I holds Q[i, f1(i)] from [7, Sch. 2]. Reconsider
f3 = SumMap(M, (SumBundle(N)), f1) as a homomorphism from sumM

to d
∑
N . For every element i of I, there exists a homomorphism h0 from

M(i) to (SumBundle(N))(i) such that h0 = f1(i) and h0 is bijective by
[17, (62), (63)]. Reconsider h = f4 ·dSum2Sum(N) ·f3 as a homomorphism
from sumM to G. For every element i of I, there exists a homomorphism
h0 from (SumBundle(N))(i) to M(i) such that h0−1 = f1(i) and h0 is
bijective and for every finite-support function x from J(i) into M(i) such
that x ∈ (SumBundle(N))(i) holds h0(x) =

∏
x. For every element i of I,

there exists a homomorphism h0 from (SumBundle(N))(i) to M(i) such
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that h0−1 = f1(i) and h0 is bijective. For every finite-support function x

from I into G such that x ∈ sumM holds h(x) =
∏
x by [16, (40)], [7,

(13)], [8, (5), (15)]. �

(39) Let us consider a non empty set I2, and a group family F2 of I2. Suppose

for every element i of I2, F2(i) = 1. Then α = 1, where α is the carrier
of sumF2.
Proof: For every object x such that x ∈ ΩsumF2 holds x = 1sumF2 by
[16, (42)], [1, (30)], [2, (102)], [10, (5)]. �

(40) Let us consider a non empty set I, a group G, and a finite-support
function x from I into G. Suppose for every object i such that i ∈ I holds
x(i) = 1G. Then

∏
x = 1G.

(41) Let us consider a non empty set I, a group G, a finite-support function
x from I into G, and an element a of G. If I = {1, 2} and x = 〈a,1G〉,
then

∏
x = a.

Proof: Reconsider i1 = 1 as an element of I. Set y = (I 7−→ 1G)+·(i1, a).
For every object i such that i ∈ domx holds x(i) = y(i) by [3, (44)], [4,
(31), (32)], [15, (7)]. �

(42) Let us consider a group G, non empty sets I1, I2, a direct sum compo-
nents F1 of G and I1, and a group family F2 of I2. Suppose I1 misses I2
and for every element i of I2, F2(i) = 1. Then F1+·F2 is a direct sum
components of G and I1 ∪ I2.
Proof: Reconsider I = {1, 2} as a non empty set. Set J = {〈〈1, I1〉〉, 〈〈2,
I2〉〉}. For every objects x, y1, y2 such that 〈〈x, y1〉〉, 〈〈x, y2〉〉 ∈ J holds
y1 = y2. ∅ /∈ rng J . For every objects i, j such that i 6= j holds J(i)
misses J(j). Reconsider M = 〈sumF1, sumF2〉 as a group family of I.
ΩsumF2 = 1. Consider w being an object such that {w} = ΩsumF2 . For
every functions x, y such that x, y ∈ Ω∏M and x(1) = y(1) holds x = y

by [12, (5)], [3, (44)].
Consider h1 being a homomorphism from sumF1 to G such that

h1 is bijective. Set C1 = the carrier of
∏
M . Set C2 = the carrier of

G. Define P[element of C1, element of C2] ≡ $2 = h1($1(1)). For every
element x of C1, there exists an element y of C2 such that P[x, y] by
[12, (5)], [3, (44)], [8, (5)]. Consider h being a function from C1 into C2
such that for every element x of C1, P[x, h(x)] from [8, Sch. 3]. For every
objects x1, x2 such that x1, x2 ∈ C1 and h(x1) = h(x2) holds x1 = x2
by [12, (5)], [3, (44)], [8, (19)]. For every object y such that y ∈ C2 there
exists an object x such that x ∈ C1 and y = h(x) by [8, (11)], [3, (44)].
For every elements a, b of C1, h(a · b) = h(a) · h(b) by [3, (44)], [12, (5)],
[10, (1)]. Reconsider M = 〈sumF1, sumF2〉 as a direct sum components
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of G and I. Set N = 〈F1, F2〉. For every element i of I, N(i) is a group
family of J(i) by [3, (44)]. For every element i of I, N(i) is a direct sum
components of M(i) and J(i) by [3, (44)]. For every object x such that
x ∈ domF1 ∪ domF2 holds if x ∈ domF2, then (

⋃
N)(x) = F2(x) and if

x /∈ domF2, then (
⋃
N)(x) = F1(x) by (21), [3, (44)]. �

(43) Let us consider a group G, non empty sets I1, I2, an internal direct
sum components F1 of G and I1, and a subgroup family F2 of I2 and G.
Suppose I1 misses I2 and F2 = I2 7−→ {1}G. Then F1+·F2 is an internal
direct sum components of G and I1 ∪ I2.
Proof: Reconsider I = {1, 2} as a non empty set. Set J = {〈〈1, I1〉〉, 〈〈2,
I2〉〉}. For every objects x, y1, y2 such that 〈〈x, y1〉〉, 〈〈x, y2〉〉 ∈ J holds
y1 = y2. ∅ /∈ rng J . For every objects i, j such that i 6= j holds J(i)
misses J(j). Reconsider M = 〈G, {1}G〉 as a group family of I. For every
functions x, y such that x, y ∈ Ω∏M and x(1) = y(1) holds x = y by
[12, (5)], [3, (44)]. Set h1 = id(the carrier of G). Set C1 = the carrier of∏
M . Set C2 = the carrier of G. Define P[element of C1, element of C2] ≡

$2 = h1($1(1)). For every element x of C1, there exists an element y of C2
such that P[x, y] by [12, (5)], [3, (44)], [8, (5)]. Consider h being a function
from C1 into C2 such that for every element x of C1, P[x, h(x)] from [8,
Sch. 3]. For every objects x1, x2 such that x1, x2 ∈ C1 and h(x1) = h(x2)
holds x1 = x2 by [12, (5)], [3, (44)], [8, (19)]. For every object y such that
y ∈ C2 there exists an object x such that x ∈ C1 and y = h(x) by [8, (11)],
[3, (44)]. For every elements a, b of C1, h(a · b) = h(a) · h(b) by [3, (44)],
[12, (5)], [10, (1)].

Reconsider M = 〈G, {1}G〉 as a direct sum components of G and I.
For every element i of I, M(i) is a subgroup of G by [3, (44)], [16, (54)]. For
every finite-support function x from I into G such that x ∈ sumM holds
h(x) =

∏
x by [10, (9)], [3, (44)], (41). Set N = 〈F1, F2〉. For every element

i of I, N(i) is a group family of J(i) by [3, (44)]. For every element i of I,
N(i) is an internal direct sum components of M(i) and J(i) by [3, (44)],
[15, (7)], [1, (30)], (39). For every object x such that x ∈ domF1 ∪domF2
holds if x ∈ domF2, then (

⋃
N)(x) = F2(x) and if x /∈ domF2, then

(
⋃
N)(x) = F1(x) by (21), [3, (44)]. �
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