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Summary. The notion of the characteristic of rings and its basic properties
are formalized [14], [39], [20]. Classification of prime fields in terms of isomor-
phisms with appropriate fields (Q or Z/p) are presented. To facilitate reasonings
within the field of rational numbers, values of numerators and denominators of
basic operations over rationals are computed.
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1. Preliminaries

Now we state the propositions:

(1) Let us consider a function f , a set A, and objects a, b. If a, b ∈ A, then
(f � A)(a, b) = f(a, b).

(2) +C � R = +R.
Proof: Set c = +C � R. For every object z such that z ∈ dom c holds
c(z) = +R(z) by [7, (49)]. �

(3) ·C � R = ·R.
Proof: Set d = ·C � R. For every object z such that z ∈ dom d holds
d(z) = ·R(z) by [7, (49)]. �
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(4) +Q � Z = +Z.
Proof: Set c = +Q � Z. For every object z such that z ∈ dom c holds
c(z) = (+Z)(z) by [7, (49)]. �

(5) ·Q � Z = ·Z.
Proof: Set d = ·Q � Z. For every object z such that z ∈ dom d holds
d(z) = ·Z(z) by [7, (49)]. �

2. Properties of Fractions

From now on p, q denote rational numbers, g, m, m1, m2, n, n1, n2 denote
natural numbers, and i, j denote integers.

Now we state the propositions:

(6) If n | i, then i div n = i
n .

(7) i div(gcd(i, n)) = i
gcd(i,n) . The theorem is a consequence of (6).

(8) n div(gcd(n, i)) = n
gcd(n,i) . The theorem is a consequence of (6).

(9) If g | i and g | m, then i
m = idiv g

m div g .

(10) i
m = i div(gcd(i,m))

m div(gcd(i,m)) . The theorem is a consequence of (9).

(11) If 0 < m and m · i | m, then i = 1 or i = −1.

(12) If 0 < m and m · n | m, then n = 1.

(13) If m | i, then idivm | i. The theorem is a consequence of (6).

Let us assume that m 6= 0. Now we state the propositions:

(14) gcd(idiv(gcd(i,m)),mdiv(gcd(i,m))) = 1. The theorem is a consequen-
ce of (6) and (11).

(15) (i) den( im) = mdiv(gcd(i,m)), and

(ii) num( im) = i div(gcd(i,m)).
The theorem is a consequence of (10) and (14).

(16) (i) den( im) = m
gcd(i,m) , and

(ii) num( im) = i
gcd(i,m) .

The theorem is a consequence of (15), (8), and (7).

(17) (i) den(−( im)) = m div(gcd(−i,m)), and

(ii) num(−( im)) = −idiv(gcd(−i,m)).
The theorem is a consequence of (15).

(18) (i) den(−( im)) = m
gcd(−i,m) , and

(ii) num(−( im)) = −i
gcd(−i,m) .

The theorem is a consequence of (17), (8), and (7).
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(19) (i) den(mi )−1 = m div(gcd(m, i)), and

(ii) num(mi )−1 = i div(gcd(m, i)).
The theorem is a consequence of (15).

(20) (i) den(mi )−1 = m
gcd(m,i) , and

(ii) num(mi )−1 = i
gcd(m,i) .

The theorem is a consequence of (19), (8), and (7).

Let us assume that m 6= 0 and n 6= 0. Now we state the propositions:

(21) (i) den(( im) + ( jn)) = m · n div(gcd(i · n+ j ·m,m · n)), and

(ii) num(( im) + ( jn)) = i · n+ j ·m div(gcd(i · n+ j ·m,m · n)).
The theorem is a consequence of (15).

(22) (i) den(( im) + ( jn)) = m·n
gcd(i·n+j·m,m·n) , and

(ii) num(( im) + ( jn)) = i·n+j·m
gcd(i·n+j·m,m·n) .

The theorem is a consequence of (21), (8), and (7).

(23) (i) den(( im)− ( jn)) = m · n div(gcd(i · n− j ·m,m · n)), and

(ii) num(( im)− ( jn)) = i · n− j ·m div(gcd(i · n− j ·m,m · n)).
The theorem is a consequence of (15).

(24) (i) den(( im)− ( jn)) = m·n
gcd(i·n−j·m,m·n) , and

(ii) num(( im)− ( jn)) = i·n−j·m
gcd(i·n−j·m,m·n) .

The theorem is a consequence of (23), (8), and (7).

(25) (i) den(( im) · ( jn)) = m · n div(gcd(i · j,m · n)), and

(ii) num(( im) · ( jn)) = i · j div(gcd(i · j,m · n)).
The theorem is a consequence of (15).

(26) (i) den(( im) · ( jn)) = m·n
gcd(i·j,m·n) , and

(ii) num(( im) · ( jn)) = i·j
gcd(i·j,m·n) .

The theorem is a consequence of (25), (8), and (7).

(27) (i) den(
( i
m
)

(n
j
) ) = m · n div(gcd(i · j,m · n)), and

(ii) num(
( i
m
)

(n
j
) ) = i · j div(gcd(i · j,m · n)).

The theorem is a consequence of (15).

(28) (i) den(
( i
m
)

(n
j
) ) = m·n

gcd(i·j,m·n) , and

(ii) num(
( i
m
)

(n
j
) ) = i·j

gcd(i·j,m·n) .

The theorem is a consequence of (27), (8), and (7).

Now we state the propositions:
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(29) den p = den p div(gcd(num p,den p)). The theorem is a consequence of
(15).

(30) num p = num p div(gcd(num p,den p)). The theorem is a consequence of
(15).

Let us assume thatm = den p and i = num p. Now we state the propositions:

(31) (i) den(−p) = m div(gcd(−i,m)), and

(ii) num(−p) = −idiv(gcd(−i,m)).
The theorem is a consequence of (17).

(32) (i) den(−p) = m
gcd(−i,m) , and

(ii) num(−p) = −i
gcd(−i,m) .

The theorem is a consequence of (31), (8), and (7).

Let us assume that m = den p and n = num p and n 6= 0. Now we state the
propositions:

(33) (i) den p−1 = n div(gcd(n,m)), and

(ii) num p−1 = m div(gcd(n,m)).
The theorem is a consequence of (19).

(34) (i) den p−1 = n
gcd(n,m) , and

(ii) num p−1 = m
gcd(n,m) .

The theorem is a consequence of (33), (8), and (7).

Let us assume that m = den p and n = den q and i = num p and j = num q.
Now we state the propositions:

(35) (i) den(p+ q) = m · n div(gcd(i · n+ j ·m,m · n)), and

(ii) num(p+ q) = i · n+ j ·mdiv(gcd(i · n+ j ·m,m · n)).
The theorem is a consequence of (21).

(36) (i) den(p+ q) = m·n
gcd(i·n+j·m,m·n) , and

(ii) num(p+ q) = i·n+j·m
gcd(i·n+j·m,m·n) .

The theorem is a consequence of (35), (8), and (7).

(37) (i) den(p− q) = m · n div(gcd(i · n− j ·m,m · n)), and

(ii) num(p− q) = i · n− j ·mdiv(gcd(i · n− j ·m,m · n)).
The theorem is a consequence of (23).

(38) (i) den(p− q) = m·n
gcd(i·n−j·m,m·n) , and

(ii) num(p− q) = i·n−j·m
gcd(i·n−j·m,m·n) .

The theorem is a consequence of (37), (8), and (7).

(39) (i) den(p · q) = m · n div(gcd(i · j,m · n)), and
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(ii) num(p · q) = i · j div(gcd(i · j,m · n)).
The theorem is a consequence of (25).

(40) (i) den(p · q) = m·n
gcd(i·j,m·n) , and

(ii) num(p · q) = i·j
gcd(i·j,m·n) .

The theorem is a consequence of (39), (8), and (7).

Let us assume that m1 = den p and m2 = den q and n1 = num p and
n2 = num q and n2 6= 0. Now we state the propositions:

(41) (i) den(pq ) = m1 · n2 div(gcd(n1 ·m2,m1 · n2)), and

(ii) num(pq ) = n1 ·m2 div(gcd(n1 ·m2,m1 · n2)).
The theorem is a consequence of (27).

(42) (i) den(pq ) = m1·n2
gcd(n1·m2,m1·n2) , and

(ii) num(pq ) = n1·m2
gcd(n1·m2,m1·n2) .

The theorem is a consequence of (41), (8), and (7).

3. Preliminaries about Rings and Fields

In the sequel R denotes a ring and F denotes a field.
Let us note that there exists an element of ZR which is positive and there

exists an element of ZR which is negative.
Let a, b be elements of FQ and x, y be rational numbers. We identify x+ y

with a + b. We identify x · y with a · b. Let a be an element of FQ and x be
a rational number. We identify −x with −a. Let a be a non zero element of
FQ. We identify x−1 with a−1. Let a, b be elements of FQ and x, y be rational
numbers. We identify x−y with a−b. Let a be an element of FQ and b be a non
zero element of FQ. We identify xy with ab . Let F be a field. Let us observe that
(1F )−1 reduces to 1F .

Let R, S be rings. We say that R includes an isomorphic copy of S if and
only if

(Def. 1) there exists a strict subring T of R such that T and S are isomorphic.

We introduce the notation R includes S as a synonym of R includes an
isomorphic copy of S.

Let us observe that the predicate R and S are isomorphic is reflexive.
Now we state the propositions:

(43) Let us consider a field E. Then every subfield of E is a subring of E.

(44) Let us consider rings R, S, T . If R and S are isomorphic and S and T
are isomorphic, then R and T are isomorphic.



338 christoph schwarzweller and artur korniłowicz

(45) Let us consider a field F , and a subring R of F . Then R is a subfield of
F if and only if R is a field.

(46) Let us consider a field E, and a strict subfield F of E. Then E includes
F .

(47) ZR is a subring of FQ.

(48) RF is a subfield of CF.
Let R be an integral domain. Observe that there exists an integral doma-

in which is R-homomorphic and there exists a commutative ring which is R-
homomorphic and there exists a ring which is R-homomorphic.

Let R be a field. Let us note that there exists an integral domain which is
R-homomorphic.

Let F be a field, R be an F -homomorphic ring, and f be a homomorphism
from F to R. Note that Im f is almost left invertible.

Let F be an integral domain, E be an F -homomorphic integral domain, and
f be a homomorphism from F to E. Note that Im f is non degenerated.

Let us consider a ring R, an R-homomorphic ring E, a subring K of R,
a function f from R into E, and a function g from K into E. Now we state the
propositions:

(49) If g = f�(the carrier of K) and f is additive, then g is additive. The
theorem is a consequence of (1).

(50) If g = f�(the carrier of K) and f is multiplicative, then g is multiplica-
tive. The theorem is a consequence of (1).

(51) If g = f�(the carrier of K) and f is unity-preserving, then g is unity-
preserving.

Now we state the propositions:

(52) Let us consider a ring R, an R-homomorphic ring E, and a subring K
of R. Then E is K-homomorphic. The theorem is a consequence of (49),
(50), and (51).

(53) Let us consider a ring R, an R-homomorphic ring E, a subring K of
R, a K-homomorphic ring E1, and a homomorphism f from R to E. If
E = E1, then f�K is a homomorphism from K to E1. The theorem is
a consequence of (49), (50), and (51).

Let us consider a field F , an F -homomorphic field E, a subfield K of F ,
a function f from F into E, and a function g from K into E. Now we state the
propositions:

(54) If g = f�(the carrier of K) and f is additive, then g is additive. The
theorem is a consequence of (1).
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(55) If g = f�(the carrier of K) and f is multiplicative, then g is multiplica-
tive. The theorem is a consequence of (1).

(56) If g = f�(the carrier of K) and f is unity-preserving, then g is unity-
preserving.

Now we state the propositions:

(57) Let us consider a field F , an F -homomorphic field E, and a subfield K
of F . Then E is K-homomorphic. The theorem is a consequence of (54),
(55), and (56).

(58) Let us consider a field F , an F -homomorphic field E, a subfield K of
F , a K-homomorphic field E1, and a homomorphism f from F to E. If
E = E1, then f�K is a homomorphism from K to E1. The theorem is
a consequence of (54), (55), and (56).

Let n be a natural number. We introduce the notation Z /n as a synonym
of ZRn .

One can verify that Z /n is finite.
Let n be a non trivial natural number. One can check that Z /n is non

degenerated.
Let n be a positive natural number. Note that Z /n is Abelian, add-associative,

right zeroed, and right complementable and Z /n is associative, well unital, di-
stributive, and commutative.

Let p be a prime number. Observe that Z /p is almost left invertible.

4. Embedding the Integers in Rings

Let R be an add-associative, right zeroed, right complementable, non empty
double loop structure, a be an element of R, and i be an integer. The functor
i ? a yielding an element of R is defined by

(Def. 2) there exists a natural number n such that i = n and it = n · a or i = −n
and it = −n · a.

Let us consider an add-associative, right zeroed, right complementable,
non empty double loop structure R and an element a of R. Now we state the
propositions:

(59) 0 ? a = 0R.

(60) 1 ? a = a.

(61) (−1) ? a = −a.
Now we state the propositions:
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(62) Let us consider an add-associative, right zeroed, right complementable,
Abelian, non empty double loop structure R, an element a of R, and
integers i, j. Then (i+ j) ? a = i ? a+ j ? a.
Proof: Define P[integer] ≡ for every integer k such that k = $1 holds
(i+ k) ? a = i ? a+ k ? a. For every integer u such that P[u] holds P[u− 1]
and P[u+ 1] by [36, (8)]. For every integer i, P[i] from [34, Sch. 4]. �

(63) Let us consider an add-associative, right zeroed, right complementable,
Abelian, non empty double loop structure R, an element a of R, and
an integer i. Then (−i) ? a = −i ? a.
Proof: Define P[integer] ≡ for every integer k such that k = $1 holds
(−k) ? a = −k ? a. For every integer u such that P[u] holds P[u − 1] and
P[u+ 1] by [36, (33), (30)]. For every integer i, P[i] from [34, Sch. 4]. �

Let us consider an add-associative, right zeroed, right complementable,
Abelian, non empty double loop structure R, an element a of R, and integers
i, j. Now we state the propositions:

(64) (i− j) ? a = i ? a− j ? a. The theorem is a consequence of (62) and (63).

(65) i · j ? a = i ?(j ? a).
Proof: Define P[integer] ≡ for every integer k such that k = $1 holds
k · j ? a = k ?(j ? a). For every integer u such that P[u] holds P[u− 1] and
P[u+ 1]. For every integer i, P[i] from [34, Sch. 4]. �

(66) i ?(j ? a) = j ?(i ? a). The theorem is a consequence of (65).

Now we state the propositions:

(67) Let us consider an add-associative, right zeroed, right complementable,
Abelian, left unital, distributive, non empty double loop structure R,
and integers i, j. Then i · j ? 1R = (i ? 1R) · (j ? 1R).
Proof: Define P[integer] ≡ for every integer k such that k = $1 holds
k · j ? 1R = (k ? 1R) · (j ? 1R). For every integer u such that P[u] holds
P[u−1] and P[u+ 1] by (64), [18, (9)], (60), (62). For every integer i, P[i]
from [34, Sch. 4]. �

(68) Let us consider a ring R, an R-homomorphic ring S, a homomorphism f
from R to S, an element a of R, and an integer i. Then f(i ? a) = i ? f(a).
Proof: Define P[integer] ≡ for every integer j such that j = $1 holds
f(j ? a) = j ? f(a). For every integer i such that P[i] holds P[i − 1] and
P[i + 1] by (62), (60), [36, (8)], (61). For every integer i, P[i] from [34,
Sch. 4]. �
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5. Mono- and Isomorphisms of Rings

Let R, S be rings. We say that S is R-monomorphic if and only if

(Def. 3) there exists a function f from R into S such that f is monomorphic.

Let R be a ring. Note that there exists a ring which is R-monomorphic.
Let R be a commutative ring. One can check that there exists a commutative

ring which is R-monomorphic and there exists a ring which is R-monomorphic.
Let R be an integral domain. One can verify that there exists an integral

domain which is R-monomorphic and there exists a commutative ring which is
R-monomorphic and there exists a ring which is R-monomorphic.

LetR be a field. Let us observe that there exists a field which isR-monomorphic
and there exists an integral domain which is R-monomorphic and there exists
a commutative ring which is R-monomorphic and there exists a ring which is
R-monomorphic.

Let R be a ring and S be an R-monomorphic ring. Let us note that there exi-
sts a function from R into S which is additive, multiplicative, unity-preserving,
and monomorphic.

A monomorphism of R and S is an additive, multiplicative, unity-preserving,
monomorphic function from R into S. One can check that every S-monomorphic
ring is R-monomorphic and every R-monomorphic ring is R-homomorphic.

Let S be an R-monomorphic ring and f be a monomorphism of R and S.
Let us note that (f−1)−1 reduces to f .

Now we state the propositions:

(69) Let us consider a ring R, an R-homomorphic ring S, an S-homomorphic
ring T , a homomorphism f from R to S, and a homomorphism g from S
to T . Then ker f ⊆ ker g · f .

(70) Let us consider a ring R, an R-homomorphic ring S, an S-monomorphic
ring T , a homomorphism f from R to S, and a monomorphism g of S and
T . Then ker f = ker g · f . The theorem is a consequence of (69).

(71) Let us consider a ringR, and a subring S ofR. ThenR is S-monomorphic.

(72) Let us consider rings R, S. Then S is an R-monomorphic ring if and
only if S includes R. The theorem is a consequence of (44).

Let R, S be rings. We say that S is R-isomorphic if and only if

(Def. 4) there exists a function f from R into S such that f is isomorphism.

Let R be a ring. Let us note that there exists a ring which is R-isomorphic.
Let R be a commutative ring. Note that there exists a commutative ring

which is R-isomorphic and there exists a ring which is R-isomorphic.
Let R be an integral domain. One can check that there exists an integral

domain which is R-isomorphic and there exists a commutative ring which is
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R-isomorphic and there exists a ring which is R-isomorphic.
Let R be a field. One can verify that there exists a field which is R-isomorphic

and there exists an integral domain which is R-isomorphic and there exists
a commutative ring which is R-isomorphic and there exists a ring which is R-
isomorphic.

Let R be a ring and S be an R-isomorphic ring. Observe that there exists
a function from R into S which is additive, multiplicative, unity-preserving, and
isomorphism.

An isomorphism between R and S is an additive, multiplicative, unity-
preserving, isomorphism function from R into S. Let f be an isomorphism
between R and S. Let us note that the functor f−1 yields a function from S
into R. One can check that there exists a function from S into R which is
additive, multiplicative, unity-preserving, and isomorphism.

An isomorphism between S and R is an additive, multiplicative, unity-
preserving, isomorphism function from S into R. One can check that every S-
isomorphic ring is R-isomorphic and every R-isomorphic ring is R-monomorphic.

Now we state the propositions:

(73) Let us consider a ring R, an R-isomorphic ring S, and an isomorphism
f between R and S. Then f−1 is an isomorphism between S and R.

(74) Let us consider a ring R, and an R-isomorphic ring S. Then R is S-
isomorphic. The theorem is a consequence of (73).

Let R be a commutative ring. Let us note that every R-isomorphic ring
is commutative. Let R be an integral domain. One can check that every R-
isomorphic ring is non degenerated and integral domain-like.

Let F be a field. One can verify that every F -isomorphic ring is almost left
invertible.

(75) Let us consider fields E, F . Then E includes F if and only if there exists
a strict subfield K of E such that K and F are isomorphic.

6. Characteristic of Rings

Let R be a ring. The functor char(R) yielding a natural number is defined
by

(Def. 5) it ? 1R = 0R and it 6= 0 and for every positive natural number m such
that m < it holds m? 1R 6= 0R or it = 0 and for every positive natural
number m, m? 1R 6= 0R.

Let n be a natural number. We say that R has characteristic n if and only if

(Def. 6) char(R) = n.
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Now we state the propositions:

(76) char(ZR) = 0.

(77) Let us consider a positive natural number n. Then char(Z /n) = n. The
theorem is a consequence of (60) and (59).

Observe that ZR has characteristic 0.
Let n be a positive natural number. Note that Z /n has characteristic n.
Let n be a natural number. One can check that there exists a commutative

ring which has characteristic n.
Let n be a positive natural number and R be a ring with characteristic n.

Let us note that char(R) is positive.
Let R be a ring. The functor charSetR yielding a subset of N is defined by

the term

(Def. 7) {n, where n is a positive natural number : n ? 1R = 0R}.

Let n be a positive natural number and R be a ring with characteristic n.
Note that charSetR is non empty.

Now we state the propositions:

(78) Let us consider a ring R. Then char(R) = 0 if and only if charSetR = ∅.
(79) Let us consider a positive natural number n, and a ring R with charac-

teristic n. Then char(R) = min charSetR.

(80) Let us consider a ring R. Then char(R) = min∗ charSetR. The theorem
is a consequence of (78) and (79).

(81) Let us consider a prime number p, a ring R with characteristic p, and
a positive natural number n. Then n is an element of charSetR if and only
if p | n. The theorem is a consequence of (67), (62), and (79).

Let R be a ring. The functor canHomZ(R) yielding a function from ZR into
R is defined by

(Def. 8) for every element x of ZR, it(x) = x ? 1R.

Observe that canHomZ(R) is additive, multiplicative, and unity-preserving
and every ring is (ZR)-homomorphic.

Now we state the propositions:

(82) Let us consider a ring R, and a non negative element n of ZR. Then
char(R) = n if and only if ker canHomZ(R) = {n}–ideal. The theorem is
a consequence of (64), (63), and (80).

(83) Let us consider a ring R. Then char(R) = 0 if and only if canHomZ(R)
is monomorphic. The theorem is a consequence of (82).

LetR be a ring with characteristic 0. Observe that canHomZ(R) is monomor-
phic and there exists a function from ZR into R which is additive, multiplicative,
unity-preserving, and monomorphic.
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Now we state the propositions:

(84) Let us consider a ring R, and a homomorphism f from ZR to R. Then
f = canHomZ(R).
Proof: Define P[integer] ≡ for every integer j such that j = $1 holds
f(j) = j ? 1R. For every integer u such that P[u] holds P[u − 1] and
P[u + 1] by [16, (8)], (60), (64), (62). For every integer i, P[i] from [34,
Sch. 4]. �

(85) Let us consider a homomorphism f from ZR to ZR. Then f = idZR . The
theorem is a consequence of (84).

(86) Let us consider an integral domain R. Then

(i) char(R) = 0, or

(ii) char(R) is prime.

The theorem is a consequence of (60) and (67).

(87) Let us consider a ring R, and an R-homomorphic ring S. Then char(S) |
char(R). The theorem is a consequence of (84), (69), and (82).

(88) Let us consider a ring R, and an R-monomorphic ring S. Then char(S) =
char(R). The theorem is a consequence of (84), (70), and (82).

(89) Let us consider a ring R, and a subring S of R. Then char(S) = char(R).
The theorem is a consequence of (71) and (88).

Let n be a natural number and R be a ring with characteristic n. One can
verify that every ring which is R-monomorphic has also characteristic n and
every subring of R has characteristic n and CF has characteristic 0 and RF has
characteristic 0 and FQ has characteristic 0 and there exists a field which has
characteristic 0.

Let p be a prime number. Let us note that there exists a field which has
characteristic p. Let R be an integral domain with characteristic p. One can
verify that char(R) is prime.

Let F be a field with characteristic 0. Note that every subfield of F has
characteristic 0. Let p be a prime number and F be a field with characteristic p.
Note that every subfield of F has characteristic p.

7. Prime Fields

Let F be a field. The functor carrier∩F yielding a subset of F is defined by
the term

(Def. 9) {x, where x is an element of F : for every subfield K of F , x ∈ K}.

The functor PrimeFieldF yielding a strict double loop structure is defined
by
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(Def. 10) the carrier of it = carrier∩F and the addition of it = (the addition
of F ) � carrier∩F and the multiplication of it = (the multiplication of
F ) � carrier∩F and the one of it = 1F and the zero of it = 0F .

One can verify that PrimeFieldF is non degenerated and PrimeFieldF is
Abelian, add-associative, right zeroed, and right complementable and PrimeField
F is commutative and PrimeFieldF is associative, well unital, distributive, and
almost left invertible.

Let us note that the functor PrimeFieldF yields a strict subfield of F . Now
we state the propositions:

(90) Let us consider a field F , and a strict subfield E of PrimeFieldF . Then
E = PrimeFieldF .

(91) Let us consider a field F , and a subfield E of F . Then PrimeFieldF is
a subfield of E.

Let us consider fields F , K. Now we state the propositions:

(92) K = PrimeFieldF if and only if K is a strict subfield of F and for every
strict subfield E of K, E = K. The theorem is a consequence of (91) and
(90).

(93) K = PrimeFieldF if and only if K is a strict subfield of F and for every
subfield E of F , K is a subfield of E. The theorem is a consequence of
(91).

Now we state the propositions:

(94) Let us consider a field E, and a subfield F of E. Then PrimeFieldF =
PrimeFieldE. The theorem is a consequence of (93) and (92).

(95) Let us consider a field F . Then PrimeField PrimeFieldF = PrimeFieldF .

Let F be a field. Let us observe that PrimeFieldF is prime.
Now we state the propositions:

(96) Let us consider a field F . Then F is prime if and only if F = PrimeFieldF .

(97) Let us consider a field F with characteristic 0, and non zero integers i,
j. Suppose j | i. Then (idiv j) ? 1F = (i ? 1F ) · (j ? 1F )−1.
Proof: Consider k being an integer such that i = j · k. j ? 1F 6= 0F by
[34, (3)], (63), [36, (17)]. i ? 1F 6= 0F by [34, (3)], (63), [36, (17)]. �

Let x be an element of FQ. Note that the functor denx yields a positive
element of ZR. One can check that the functor numx yields an element of ZR.
Let F be a field. The functor canHomQ(F ) yielding a function from FQ into F
is defined by

(Def. 11) for every element x of FQ, it(x) = (canHomZ(F ))(numx)
(canHomZ(F ))(denx) .

Observe that canHomQ(F ) is unity-preserving.
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Let F be a field with characteristic 0. One can check that canHomQ(F )
is additive and multiplicative and every field with characteristic 0 is (FQ)-
monomorphic.

Now we state the proposition:

(98) Let us consider a field F . Then canHomZ(F ) = canHomQ(F )�Z.

Let us observe that there exists a field which is (FQ)-homomorphic and has
characteristic 0.

Now we state the proposition:

(99) Let us consider an (FQ)-homomorphic field F with characteristic 0, and
a homomorphism f from FQ to F . Then f = canHomQ(F ).
Proof: Set g = canHomQ(F ). Define P[integer] ≡ for every element j of
FQ such that j = $1 holds f(j) = g(j). For every integer i, P[i] from [34,
Sch. 4]. For every integer i and for every element j of FQ such that j = i
holds f(j) = (canHomZ(F ))(i) by (98), [7, (49)]. �

One can verify that FQ is (FQ)-homomorphic.
Let F be a field with characteristic 0. One can verify that PrimeFieldF is

(FQ)-homomorphic.
Now we state the proposition:

(100) Let us consider a homomorphism f from FQ to FQ. Then f = idFQ . The
theorem is a consequence of (99).

Let F be a field, S be an F -homomorphic field, and f be a homomorphism
from F to S. One can verify that the functor Im f yields a strict subfield of S.
Let F be a field with characteristic 0. Let us note that canHomQ(PrimeFieldF )
is onto.

Now we state the propositions:

(101) Let us consider a field F with characteristic 0. Then FQ and PrimeFieldF
are isomorphic.

(102) PrimeField FQ = FQ.

(103) Let us consider a field F with characteristic 0. Then F includes FQ.

(104) Let us consider a field F with characteristic 0, and a field E. If F includes
E, then E includes FQ. The theorem is a consequence of (72) and (88).

(105) Let us consider a prime number p, a ring R with characteristic p, and
an integer i. Then i ? 1R = (i mod p) ? 1R. The theorem is a consequence
of (67) and (62).

Let p be a prime number and F be a field. The functor canHomZ /p(F )
yielding a function from Z /p into F is defined by the term

(Def. 12) canHomZ(F )�(the carrier of Z /p).
Note that canHomZ /p(F ) is unity-preserving.
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Let F be a field with characteristic p. One can verify that canHomZ /p(F )
is additive and multiplicative and every field with characteristic p is (Z /p)-
monomorphic and there exists a field which is (Z /p)-homomorphic and has
characteristic p and Z /p is (Z /p)-homomorphic.

Now we state the propositions:

(106) Let us consider a prime number p, a (Z /p)-homomorphic field F with
characteristic p, and a homomorphism f from Z /p to F . Then f =
canHomZ /p(F ).
Proof: Set g = canHomZ /p(F ). Reconsider p1 = p − 1 as an element
of N. Define P[natural number] ≡ for every element j of Z /p such that
j = $1 holds f(j) = g(j). For every element k of N such that 0 ¬ k < p1
holds if P[k], then P[k + 1] by [3, (13), (44)], [29, (14), (7)]. For every
element k of N such that 0 ¬ k ¬ p1 holds P[k] from [34, Sch. 7]. �

(107) Let us consider a prime number p, and a homomorphism f from Z /p to
Z /p. Then f = idZ /p. The theorem is a consequence of (106).

Let p be a prime number and F be a field with characteristic p. Observe that
PrimeFieldF is (Z /p)-homomorphic and canHomZ /p(PrimeFieldF ) is onto.

Now we state the propositions:

(108) Let us consider a prime number p, and a field F with characteristic p.
Then Z /p and PrimeFieldF are isomorphic.

(109) Let us consider a prime number p, and a strict subfield F of Z /p. Then
F = Z /p.

(110) Let us consider a prime number p. Then PrimeField Z /p = Z /p.
(111) Let us consider a prime number p, and a field F with characteristic p.

Then F includes Z /p.
(112) Let us consider a prime number p, a field F with characteristic p, and

a field E. If F includes E, then E includes Z /p. The theorem is a conse-
quence of (72) and (88).

Let p be a prime number. One can check that Z /p is prime.
Now we state the propositions:

(113) Let us consider a field F . Then char(F ) = 0 if and only if PrimeFieldF
and FQ are isomorphic. The theorem is a consequence of (101), (43), and
(89).

(114) Let us consider a prime number p, and a field F . Then char(F ) = p if
and only if PrimeFieldF and Z /p are isomorphic. The theorem is a con-
sequence of (108), (43), and (89).

(115) Let us consider a strict field F . Then F is prime if and only if F and
FQ are isomorphic or there exists a prime number p such that F and Z /p
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are isomorphic. The theorem is a consequence of (86), (101), (108), (44),
(57), and (58).
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