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Summary. Proving properties of distributed algorithms is still a highly
challenging problem and various approaches that have been proposed to tackle
it [1] can be roughly divided into state-based and event-based proofs. Informally
speaking, state-based approaches define the behavior of a distributed algorithm
as a set of sequences of memory states during its executions, while event-based
approaches treat the behaviors by means of events which are produced by the
executions of an algorithm. Of course, combined approaches are also possible.

Analysis of the literature [1], [7], [12], [9], [13], [14], [15] shows that state-
based approaches are more widely used than event-based approaches for proving
properties of algorithms, and the difficulties in the event-based approach are
often emphasized. We believe, however, that there is a certain naturalness and
intuitive content in event-based proofs of correctness of distributed algorithms
that makes this approach worthwhile. Besides, state-based proofs of correctness
of distributed algorithms are usually applicable only to discrete-time models of
distributed systems and cannot be easily adapted to the continuous time case
which is important in the domain of cyber-physical systems. On the other hand,
event-based proofs can be readily applied to continuous-time / hybrid models of
distributed systems.

In the paper [2] we presented a compositional approach to reasoning about
behavior of distributed systems in terms of events. Compositionality here means
(informally) that semantics and properties of a program is determined by seman-
tics of processes and process communication mechanisms. We demonstrated the
proposed approach on a proof of the mutual exclusion property of the Peterson’s
algorithm [11]. We have also demonstrated an application of this approach for
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proving the mutual exclusion property in the setting of continuous-time models
of cyber-physical systems in [8].

Using Mizar [3], in this paper we give a formal proof of the mutual exclusion
property of the Peterson’s algorithm in Mizar on the basis of the event-based
approach proposed in [2]. Firstly, we define an event-based model of a shared-
memory distributed system as a multi-sorted algebraic structure in which sorts
are events, processes, locations (i.e. addresses in the shared memory), traces (of
the system). The operations of this structure include a binary precedence relation
¬ on the set of events which turns it into a linear preorder (events are considered
simultaneous, if e1 ¬ e2 and e2 ¬ e1), special predicates which check if an event
occurs in a given process or trace, predicates which check if an event causes the
system to read from or write to a given memory location, and a special partial
function “val of” on events which gives the value associated with a memory read
or write event (i.e. a value which is written or is read in this event) [2]. Then we
define several natural consistency requirements (axioms) for this structure which
must hold in every distributed system, e.g. each event occurs in some process,
etc. (details are given in [2]).

After this we formulate and prove the main theorem about the mutual exc-
lusion property of the Peterson’s algorithm in an arbitrary consistent algebraic
structure of events. Informally, the main theorem states that if a system consists
of two processes, and in some trace there occur two events e1 and e2 in different
processes and each of these events is preceded by a series of three special events
(in the same process) guaranteed by execution of the Peterson’s algorithm (set-
ting the flag of the current process, writing the identifier of the opposite process
to the “turn” shared variable, and reading zero from the flag of the opposite
process or reading the identifier of the current process from the “turn” variable),
and moreover, if neither process writes to the flag of the opposite process or
writes its own identifier to the “turn” variable, then either the events e1 and e2
coincide, or they are not simultaneous (mutual exclusion property).
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1. Preliminaries

We consider values〈true, false〉 which extend 1-sorted structures and are
systems

〈〈a carrier, a true, a false〉〉
where the carrier is a set, the true is an element of the carrier, the false is
an element of the carrier.

Let A be a value〈true, false〉. We say that A is consistent if and only if

(Def. 1) the true of A 6= the false of A.

Let us observe that there exists a value〈true, false〉 which is consistent.
A value with bool is a consistent value〈true, false〉. Let A be a relational

structure. We say that A is strongly connected if and only if

(Def. 2) the internal relation of A is strongly connected in the carrier of A.

Let us observe that there exists a relational structure which is non empty,
reflexive, transitive, and strongly connected.

A linear preorder is a reflexive, transitive, strongly connected relational
structure. Let V be a value with bool. We consider events structures over V and
are systems

〈〈events,processes, locations, traces,

a proc-E, a trace-E, a read-E, a write-E, a val〉〉
where the events constitute a non empty linear preorder, the processes con-
stitute a non empty set, the locations constitute a non empty set, the tra-
ces constitute a non empty set, the proc-E is a function from the proces-
ses into 2(the carrier of the events), the trace-E is a function from the traces into
2(the carrier of the events), the read-E is a function from the locations
into 2(the carrier of the events), the write-E is a function from the locations
into 2(the carrier of the events), the val is a partial function from the carrier of
the events to the carrier of V .

Let S be an events structure over V .
A process of S is an element of the processes of S.
An event of S is an element of the carrier of the events of S.
An event set of S is a subset of the carrier of the events of S.
A location of S is an element of the locations of S.
A trace of S is an element of the traces of S. From now on V denotes a value

with bool, a, a1, a2 denote elements of the carrier of V , S denotes an events
structure over V , p, p1, p2 denote processes of S, x, x1, x2 denote locations of S,
t denotes traces of S, e, e0, e1, e2, e3 denote events of S, and E denotes an event
set of S.

Let us consider V , S, e, and x. We say that e reads x if and only if
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(Def. 3) e ∈ (the read-E of S)(x).

We say that e writes to x if and only if

(Def. 4) e ∈ (the write-E of S)(x).

Let us consider E. We say that E reads x if and only if

(Def. 5) there exists e such that e ∈ E and e reads x.

We say that E writes to x if and only if

(Def. 6) there exists e such that e ∈ E and e writes to x.

Let us consider e and t. We say that e ∈ t if and only if

(Def. 7) e ∈ (the trace-E of S)(t).

Let us consider p. We say that e ∈ p if and only if

(Def. 8) e ∈ (the proc-E of S)(p).

The value associated with event e is defined by the term

(Def. 9) (the val of S)(e).

Let us consider p and t. We say that e ∈ p, t if and only if

(Def. 10) e ∈ p and e ∈ t.
Let us consider x and a. We say that e writes to x the value a if and only if

(Def. 11) e writes to x and the value associated with event e = a.

We say that e reads from x the value a if and only if

(Def. 12) e reads x and the value associated with event e = a.

We say that S is process-complete if and only if

(Def. 13) for every t and e such that e ∈ t there exists p such that e ∈ p.
We say that S is process-ordered if and only if

(Def. 14) for every p, e1, and e2 such that e1, e2 ∈ p holds if e1 ¬ e2 ¬ e1, then
e1 = e2.

We say that S is rw-ordered if and only if

(Def. 15) for every x, e1, and e2 such that (e1 reads x or e1 writes to x) and (e2
reads x or e2 writes to x) holds if e1 ¬ e2 ¬ e1, then e1 = e2.

We say that S is rw-consistent if and only if

(Def. 16) for every t, x, e, and a such that e ∈ t and e reads x and the value
associated with event e = a there exists e0 such that e0 ∈ t and e0 < e
and e0 writes to x and the value associated with event e0 = a and for
every e1 such that e1 ∈ t and e1 ¬ e and e1 writes to x holds e1 ¬ e0.

We say that S is rw-exclusive if and only if

(Def. 17) for every e, x1, and x2, it is not true that e reads x1 and e writes to x2.

We say that S is consistent if and only if
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(Def. 18) S is process-complete, process-ordered, rw-ordered, rw-consistent, and
rw-exclusive.

One can check that there exists an events structure over V which is consi-
stent.

A distributed system with shared memory over a set of values V is a consi-
stent events structure over V .

2. Peterson’s Algorithm

From now on D denotes a distributed system with shared memory over a set
of values V , p, p1, p2 denote processes of D, x, x1, x2, f1, f2, t1 denote locations
of D, t denotes traces of D, e, e0, e1, e2, e3 denote events of D, and E denotes
an event set of D.

Let us consider V , D, e1, and e2. We say that e1 � e2 if and only if

(Def. 19) e1 ¬ e2 and e2 6¬ e1.
The interval (e1, e2) yielding an event set of D is defined by the term

(Def. 20) {e : e1 < e < e2}.

Let us consider p and t. The (e1, e2) interval in (p, t) yielding an event set
of D is defined by the term

(Def. 21) {e : e1 < e < e2 and e ∈ p, t}.

Now we state the propositions:

(1) The (e1, e2) interval in (p, t) ⊆ the interval (e1, e2).

(2) (i) e1 ¬ e2, or

(ii) e2 ¬ e1.
(3) Suppose e ∈ p, t and e1 < e < e2. Then e ∈ the (e1, e2) interval in (p, t).

(4) If e1 < e2, then e1 ¬ e2.
(5) If e1, e2 ∈ p and e1 < e2, then e1 � e2.
(6) If e1 ∈ p, t and e2 ∈ p, t and e1 < e2, then e1 � e2.
(7) If e1 � e2, then e1 < e2.

(8) If e1, e2 ∈ p, then e1 = e2 or e1 � e2 or e2 � e1.
(9) If e1 ¬ e2 ¬ e3, then e1 ¬ e3.

(10) If e1 ¬ e2 � e3, then e1 � e3.
(11) If e1 � e2 ¬ e3, then e1 � e3.
(12) If e1 � e2 � e3, then e1 � e3.

Let us consider V , D, e1, and e2. We say that e1 and e2 are simultaneous
events if and only if
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(Def. 22) e1 ¬ e2 ¬ e1.
Now we state the proposition:

(13) If e1 and e2 are not simultaneous events, then e1 � e2 or e2 � e1.
Let us consider V , D, p, t, e, x1, x2, t1, a1, and a2. We say that e is a

Peterson critical section with respect to p, x1, x2, t1, a1, a2 and t if and only if

(Def. 23) there exists e1 and there exists e2 and there exists e3 such that e1 ∈ p, t
and e2 ∈ p, t and e3 ∈ p, t and e1 < e2 < e3 < e and e1 writes to x1 the
value the true of V and the (e1, e) interval in (p, t) does not write to x1
and e2 writes to t1 the value a2 and the (e2, e) interval in (p, t) does not
write to t1 and (e3 reads from x2 the value the false of V or e3 reads from
t1 the value a1).

Let E1 be a set. We say that E1 are Peterson critical sections in t if and only
if

(Def. 24) there exists p1 and there exists p2 such that for every process p of D,
p = p1 or p = p2 and there exists f1 and there exists f2 and there exists
t1 such that for every e such that e ∈ p1, t holds e does not write to f2
and e does not write to t1 the value the false of V and for every e such
that e ∈ p2, t holds e does not write to f1 and e does not write to t1 the
value the true of V and for every e such that e ∈ E1 holds e is a Peterson
critical section with respect to p1, f1, f2, t1, the false of V , the true of
V and t and e is a Peterson critical section with respect to p2, f2, f1, t1,
the true of V , the false of V and t.

Now we state the propositions:

(14) Suppose e1, e2 ∈ t and e1 reads from x the value a1 and e2 reads from x
the value a2 and e1 ¬ e2 and a1 6= a2. Then there exists e such that

(i) e ∈ t, and

(ii) e1 � e� e2, and

(iii) e writes to x the value a2.

The theorem is a consequence of (9) and (2).

(15) Main result: Mutual exclusion property of Peterson’s algo-
rithm:
If e1, e2 ∈ t and {e1, e2} are Peterson critical sections in t, then e1 = e2
or e1 � e2 or e2 � e1. The theorem is a consequence of (2), (5), (9), (11),
(10), and (14).
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