

Construction of Measure from Semialgebra of Sets¹

Noboru Endou Gifu National College of Technology Gifu, Japan

Summary. In our previous article [22], we showed complete additivity as a condition for extension of a measure. However, this condition premised the existence of a σ -field and the measure on it. In general, the existence of the measure on σ -field is not obvious. On the other hand, the proof of existence of a measure on a semialgebra is easier than in the case of a σ -field. Therefore, in this article we define a measure (pre-measure) on a semialgebra and extend it to a measure on a σ -field. Furthermore, we give a σ -measure as an extension of the measure on a σ -field. We follow [24], [10], and [31].

MSC: 28A12 03B35

Keywords: measure theory; pre-measure

MML identifier: MEASURE9, version: 8.1.04 5.34.1256

The notation and terminology used in this paper have been introduced in the following articles: [1], [2], [19], [11], [5], [12], [17], [32], [13], [14], [26], [6], [7], [22], [20], [18], [21], [3], [4], [15], [27], [28], [35], [36], [30], [29], [23], [34], [8], [9], [25], and [16].

1. Joining Finite Sequences

Now we state the propositions:

- (1) Let us consider a binary relation K. If rng K is empty-membered, then $\bigcup \operatorname{rng} K = \emptyset$.
- (2) Let us consider a function K. Then rng K is empty-membered if and only if for every object x, $K(x) = \emptyset$.

¹This work was supported by JSPS KAKENHI 23500029.

Let D be a set, F be a set of finite sequences of D, f be a finite sequence of elements of F, and n be a natural number. Note that the functor f(n) yields a finite sequence of elements of D. Let Y be a set of finite sequences of D and F be a finite sequence of elements of Y. The functor Length F yielding a finite sequence of elements of \mathbb{N} is defined by

(Def. 1) dom it = dom F and for every natural number n such that $n \in \text{dom } it$ holds it(n) = len(F(n)).

Now we state the propositions:

- (3) Let us consider a set D, a set Y of finite sequences of D, and a finite sequence F of elements of Y. Suppose for every natural number n such that $n \in \text{dom } F \text{ holds } F(n) = \varepsilon_D$. Then $\sum \text{Length } F = 0$.
- (4) Let us consider a set D, a set Y of finite sequences of D, a finite sequence F of elements of Y, and a natural number k. Suppose k < len F. Then $\text{Length}(F \upharpoonright (k+1)) = \text{Length}(F \upharpoonright k) \cap \langle \text{len}(F(k+1)) \rangle$.
- (5) Let us consider a set D, a set Y of finite sequences of D, a finite sequence F of elements of Y, and a natural number n. Suppose $1 \le n \le \sum \text{Length } F$. Then there exist natural numbers k, m such that
 - (i) $1 \le m \le \text{len}(F(k+1))$, and
 - (ii) k < len F, and
 - (iii) $m + \sum \text{Length}(F \upharpoonright k) = n$, and
 - (iv) $n \leq \sum \text{Length}(F \upharpoonright (k+1))$.

The theorem is a consequence of (4).

- (6) Let us consider a set D, a set Y of finite sequences of D, and finite sequences F_1 , F_2 of elements of Y. Then Length $(F_1 \cap F_2) = \text{Length } F_1 \cap \text{Length } F_2$.
- (7) Let us consider a set D, a set Y of finite sequences of D, a finite sequence F of elements of Y, and natural numbers k_1 , k_2 . Suppose $k_1 \leq k_2$. Then $\sum \text{Length}(F \upharpoonright k_1) \leq \sum \text{Length}(F \upharpoonright k_2)$. The theorem is a consequence of (6).
- (8) Let us consider a set D, a set Y of finite sequences of D, a finite sequence F of elements of Y, and natural numbers m_1 , m_2 , k_1 , k_2 . Suppose $1 \leq m_1$ and $1 \leq m_2$ and $m_1 + \sum \operatorname{Length}(F \upharpoonright k_1) = m_2 + \sum \operatorname{Length}(F \upharpoonright k_2)$ and $m_1 + \sum \operatorname{Length}(F \upharpoonright k_1) \leq \sum \operatorname{Length}(F \upharpoonright (k_1 + 1))$ and $m_2 + \sum \operatorname{Length}(F \upharpoonright k_2) \leq \sum \operatorname{Length}(F \upharpoonright (k_2 + 1))$. Then
 - (i) $m_1 = m_2$, and
 - (ii) $k_1 = k_2$.

The theorem is a consequence of (7).

Let D be a non empty set, Y be a set of finite sequences of D, and F be a finite sequence of elements of Y. The functor joinedFinSeq F yielding a finite sequence of elements of D is defined by

(Def. 2) len $it = \sum \operatorname{Length} F$ and for every natural number n such that $n \in \operatorname{dom} it$ there exist natural numbers k, m such that $1 \leqslant m \leqslant \operatorname{len}(F(k+1))$ and $k < \operatorname{len} F$ and $m + \sum \operatorname{Length}(F \upharpoonright k) = n$ and $n \leqslant \sum \operatorname{Length}(F \upharpoonright (k+1))$ and it(n) = F(k+1)(m).

Let D be a set, Y be a set of finite sequences of D and s be a sequence of Y. The functor Length s yielding a sequence of \mathbb{N} is defined by

(Def. 3) for every natural number n, it(n) = len(s(n)).

Let s be a sequence of \mathbb{N} . One can check that the functor $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}$ yields a sequence of \mathbb{N} . Let D be a non empty set. Let us note that there exists a set of finite sequences of D which is non empty and has a non-empty element.

Let us consider a non empty set D, a non empty set Y of finite sequences of D with a non-empty element, a non-empty sequence s of Y, and a natural number n. Now we state the propositions:

- (9) (i) $len(s(n)) \ge 1$, and
 - (ii) $n < (\sum_{\alpha=0}^{\kappa} (\operatorname{Length} s)(\alpha))_{\kappa \in \mathbb{N}}(n) < (\sum_{\alpha=0}^{\kappa} (\operatorname{Length} s)(\alpha))_{\kappa \in \mathbb{N}}(n+1).$ PROOF: Define $\mathcal{P}[\operatorname{natural number}] \equiv \$_1 < (\sum_{\alpha=0}^{\kappa} (\operatorname{Length} s)(\alpha))_{\kappa \in \mathbb{N}}(\$_1).$ For every natural number k, $\operatorname{len}(s(k)) \geqslant 1$ by [5, (20)]. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number k, $\mathcal{P}[k]$ from $[3, \operatorname{Sch. 2}]$. \square
- (10) There exist natural numbers k, m such that
 - (i) $m \in dom(s(k))$, and
 - (ii) $(\sum_{\alpha=0}^{\kappa} (\operatorname{Length} s)(\alpha))_{\kappa \in \mathbb{N}}(k) \operatorname{len}(s(k)) + m 1 = n.$

The theorem is a consequence of (9).

- (11) Let us consider a non empty set D, a non empty set Y of finite sequences of D with a non-empty element, and a non-empty sequence s of Y. Then $(\sum_{\alpha=0}^{\kappa}(\text{Length }s)(\alpha))_{\kappa\in\mathbb{N}}$ is increasing.
- (12) Let us consider a non empty set D, a non empty set Y of finite sequences of D with a non-empty element, a non-empty sequence s of Y, and natural numbers m_1 , m_2 , k_1 , k_2 . Suppose $m_1 \in \text{dom}(s(k_1))$ and $m_2 \in \text{dom}(s(k_2))$ and $(\sum_{\alpha=0}^{\kappa} (\text{Length } s)(\alpha))_{\kappa \in \mathbb{N}}(k_1) \text{len}(s(k_1)) + m_1 = (\sum_{\alpha=0}^{\kappa} (\text{Length } s)(\alpha))_{\kappa \in \mathbb{N}}(k_2) \text{len}(s(k_2)) + m_2$. Then
 - (i) $m_1 = m_2$, and
 - (ii) $k_1 = k_2$.

The theorem is a consequence of (11).

(13) Let us consider a non empty set D, a set Y of finite sequences of D with a non-empty element, and a non-empty sequence s of Y. Then there exists an increasing sequence N of \mathbb{N} such that for every natural number k, $N(k) = (\sum_{\alpha=0}^{\kappa} (\operatorname{Length} s)(\alpha))_{\kappa \in \mathbb{N}}(k) - 1$.

PROOF: Define $\mathcal{P}[\text{natural number, natural number}] \equiv \$_2 = (\sum_{\alpha=0}^{\kappa} (\text{Length } s)(\alpha))_{\kappa \in \mathbb{N}}(\$_1) - 1$. For every element k of \mathbb{N} , there exists an element n of \mathbb{N} such that $\mathcal{P}[k,n]$ by (9), [3, (20)]. Consider N being a function from \mathbb{N} into \mathbb{N} such that for every element k of \mathbb{N} , $\mathcal{P}[k,N(k)]$ from [14, Sch. 3]. For every natural number k, $N(k) = (N_1 + N_2)$

 $(\sum_{\alpha=0}^{\kappa}(\operatorname{Length} s)(\alpha))_{\kappa\in\mathbb{N}}(k)-1.$ For every natural number $n,\ N(n)< N(n+1).$ \square

Let D be a non empty set, Y be a set of finite sequences of D with a non-empty element, and s be a non-empty sequence of Y. The functor joinedSeq s yielding a sequence of D is defined by

(Def. 4) for every natural number n, there exist natural numbers k, m such that $m \in \text{dom}(s(k))$ and $(\sum_{\alpha=0}^{\kappa}(\text{Length }s)(\alpha))_{\kappa \in \mathbb{N}}(k) - \text{len}(s(k)) + m - 1 = n$ and it(n) = s(k)(m).

Now we state the propositions:

- (14) Let us consider a non empty set D, a set Y of finite sequences of D with a non-empty element, a non-empty sequence s of Y, and a sequence s_1 of D. Suppose for every natural number n, $s_1(n) = (\text{joinedSeq } s)((\sum_{\alpha=0}^{\kappa} (\text{Length } s)(\alpha))_{\kappa \in \mathbb{N}}(n) 1)$. Then s_1 is a subsequence of joinedSeq s.
 - PROOF: Consider N being an increasing sequence of \mathbb{N} such that for every natural number n, $N(n) = (\sum_{\alpha=0}^{\kappa} (\operatorname{Length} s)(\alpha))_{\kappa \in \mathbb{N}}(n) 1$. For every element n of \mathbb{N} , $s_1(n) = (\operatorname{joinedSeq} s \cdot N)(n)$ by [14, (15)]. \square
- (15) Let us consider a non empty set D, a set Y of finite sequences of D with a non-empty element, a non-empty sequence s of Y, and natural numbers k, m. Suppose $m \in \text{dom}(s(k))$. Then there exists a natural number n such that
 - (i) $n = (\sum_{\alpha=0}^{\kappa} (\text{Length } s)(\alpha))_{\kappa \in \mathbb{N}}(k) \text{len}(s(k)) + m 1$, and
 - (ii) (joinedSeq s)(n) = s(k)(m).

The theorem is a consequence of (12).

Let us consider a non empty set D, a set Y of finite sequences of D, and a finite sequence F of elements of Y. Now we state the propositions:

(16) Suppose for every natural numbers n, m such that $n \neq m$ holds $\bigcup \operatorname{rng}(F(n))$ misses $\bigcup \operatorname{rng}(F(m))$ and for every natural number n, F(n) is disjoint valued. Then joinedFinSeq F is disjoint valued.

(17) rng joinedFinSeq $F = \bigcup \{ \operatorname{rng}(F(n)), \text{ where } n \text{ is a natural number } : n \in \operatorname{dom} F \}$. The theorem is a consequence of (4), (7), and (8).

2. Extended Real-Valued Matrix

Let x be an extended real number. One can check that the functor $\langle x \rangle$ yields a finite sequence of elements of $\overline{\mathbb{R}}$. Let e be a finite sequence of elements of $\overline{\mathbb{R}}^*$. The functor $\sum e$ yielding a finite sequence of elements of $\overline{\mathbb{R}}$ is defined by

(Def. 5) len it = len e and for every natural number k such that $k \in \text{dom } it$ holds $it(k) = \sum (e(k))$.

Let M be a matrix over $\overline{\mathbb{R}}$. The functor SumAll M yielding an element of $\overline{\mathbb{R}}$ is defined by the term

(Def. 6) $\sum \sum M$.

Now we state the propositions:

- (18) Let us consider a matrix M over $\overline{\mathbb{R}}$. Then
 - (i) $\operatorname{len} \sum M = \operatorname{len} M$, and
 - (ii) for every natural number i such that $i \in \text{Seg len } M$ holds $(\sum M)(i) = \sum \text{Line}(M, i)$.
- (19) Let us consider a finite sequence F of elements of \mathbb{R} . Suppose for every natural number i such that $i \in \text{dom } F$ holds $F(i) \neq -\infty$. Then $\sum F \neq -\infty$.

PROOF: Consider f being a function from \mathbb{N} into $\overline{\mathbb{R}}$ such that $\sum F = f(\operatorname{len} F)$ and f(0) = 0 and for every natural number i such that $i < \operatorname{len} F$ holds f(i+1) = f(i) + F(i+1). Define $\mathcal{P}[\operatorname{natural number}] \equiv \operatorname{if} \$_1 \leq \operatorname{len} F$, then $f(\$_1) \neq -\infty$. For every natural number j such that $\mathcal{P}[j]$ holds $\mathcal{P}[j+1]$ by [3, (13), (11)], [33, (25)]. For every natural number $i, \mathcal{P}[i]$ from $[3, \operatorname{Sch. 2}]$. \square

(20) Let us consider finite sequences F, G, H of elements of \mathbb{R} . Suppose $-\infty \notin \operatorname{rng} F$ and $-\infty \notin \operatorname{rng} G$ and $\operatorname{dom} F = \operatorname{dom} G$ and H = F + G. Then $\sum H = \sum F + \sum G$.

PROOF: Consider h being a function from $\mathbb N$ into $\overline{\mathbb R}$ such that $\sum H = h(\operatorname{len} H)$ and $h(0) = 0_{\overline{\mathbb R}}$ and for every natural number i such that $i < \operatorname{len} H$ holds h(i+1) = h(i) + H(i+1). Consider f being a function from $\mathbb N$ into $\overline{\mathbb R}$ such that $\sum F = f(\operatorname{len} F)$ and $f(0) = 0_{\overline{\mathbb R}}$ and for every natural number i such that $i < \operatorname{len} F$ holds f(i+1) = f(i) + F(i+1). Consider g being a function from $\mathbb N$ into $\overline{\mathbb R}$ such that $\sum G = g(\operatorname{len} G)$ and $g(0) = 0_{\overline{\mathbb R}}$ and for every natural number i such that $i < \operatorname{len} G$ holds g(i+1) = g(i) + G(i+1). Define $\mathcal P[\operatorname{natural number}] \equiv \operatorname{if} \$_1 \leqslant \operatorname{len} H$, then $h(\$_1) = f(\$_1) + g(\$_1)$. For

- every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [3, (13), (11)], [33, (25)], [13, (3)]. For every natural number i, $\mathcal{P}[i]$ from [3, Sch. 2]. \square
- (21) Let us consider an extended real number r, and a finite sequence F of elements of $\overline{\mathbb{R}}$. Then $\sum (F \cap \langle r \rangle) = \sum F + r$.

 PROOF: Consider f being a function from \mathbb{N} into $\overline{\mathbb{R}}$ such that $\sum (F \cap \langle r \rangle) = f(\operatorname{len}(F \cap \langle r \rangle))$ and f(0) = 0 and for every natural number i such that $i < \operatorname{len}(F \cap \langle r \rangle)$ holds $f(i+1) = f(i) + (F \cap \langle r \rangle)(i+1)$. Consider g being a function from \mathbb{N} into $\overline{\mathbb{R}}$ such that $\sum F = g(\operatorname{len} F)$ and g(0) = 0 and for every natural number i such that $i < \operatorname{len} F$ holds g(i+1) = g(i) + F(i+1). Define $\mathcal{P}[\operatorname{natural number}] \equiv \operatorname{if} \$_1 \leqslant \operatorname{len} F$, then $f(\$_1) = g(\$_1)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [3, (13)], [5, (64)], [3, (11)]. For every natural number i, $\mathcal{P}[i]$ from $[3, \operatorname{Sch. 2}]$. \square
- (22) Let us consider an extended real number r, and a natural number i. If r is real, then $\sum (i \mapsto r) = i \cdot r$.

 PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \sum (\$_1 \mapsto r) = \$_1 \cdot r$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$ by [12, (60)], (21). For every natural number i, $\mathcal{P}[i]$ from [3, Sch. 2]. \square
- (23) Let us consider a matrix M over $\overline{\mathbb{R}}$. If len M=0, then SumAll M=0.
- (24) Let us consider a natural number m, and a matrix M over $\overline{\mathbb{R}}$ of dimension $m \times 0$. Then SumAll M = 0. The theorem is a consequence of (23) and (22).
- (25) Let us consider natural numbers n, m, k, a matrix M_1 over $\overline{\mathbb{R}}$ of dimension $n \times k$, and a matrix M_2 over $\overline{\mathbb{R}}$ of dimension $m \times k$. Then $\sum (M_1 \cap M_2) = \sum M_1 \cap \sum M_2$.

Let us consider matrices M_1 , M_2 over $\overline{\mathbb{R}}$. Now we state the propositions:

- (26) Suppose for every natural number i such that $i \in \text{dom } M_1 \text{ holds } -\infty \notin \text{rng}(M_1(i))$ and for every natural number i such that $i \in \text{dom } M_2 \text{ holds } -\infty \notin \text{rng}(M_2(i))$. Then $\sum M_1 + \sum M_2 = \sum (M_1 \cap M_2)$. The theorem is a consequence of (19).
- (27) Suppose len $M_1 = \text{len } M_2$ and for every natural number i such that $i \in \text{dom } M_1 \text{ holds } -\infty \notin \text{rng}(M_1(i))$ and for every natural number i such that $i \in \text{dom } M_2 \text{ holds } -\infty \notin \text{rng}(M_2(i))$. Then SumAll $M_1 + \text{SumAll } M_2 = \text{SumAll}(M_1 \cap M_2)$. The theorem is a consequence of (19), (26), and (20).

Now we state the propositions:

(28) Let us consider a finite sequence p of elements of $\overline{\mathbb{R}}$. Suppose $-\infty \notin \operatorname{rng} p$. Then $\operatorname{SumAll}\langle p \rangle = \operatorname{SumAll}\langle p \rangle^{\mathrm{T}}$. PROOF: Define x[finite sequence of elements of $\overline{\mathbb{R}}$] \equiv if $-\infty \notin \operatorname{rng} \$_1$, then $\operatorname{SumAll}\langle \$_1 \rangle = \operatorname{SumAll}\langle \$_1 \rangle^{\mathrm{T}}$. For every finite sequence p of elements of $\overline{\mathbb{R}}$ and for every element x of $\overline{\mathbb{R}}$ such that x[p] holds $x[p \cap \langle x \rangle]$ by [5, (31),

- (38), (6)]. $x[\varepsilon_{\overline{\mathbb{R}}}]$. For every finite sequence p of elements of $\overline{\mathbb{R}}$, x[p] from [12, Sch. 2]. \square
- (29) Let us consider an extended real number p, and a matrix M over $\overline{\mathbb{R}}$. Suppose for every natural number i such that $i \in \text{dom } M$ holds $p \notin \text{rng}(M(i))$. Let us consider a natural number j. If $j \in \text{dom } M^{\mathrm{T}}$, then $p \notin \text{rng}(M^{\mathrm{T}}(j))$.
- (30) Let us consider a matrix M over $\overline{\mathbb{R}}$. Suppose for every natural number i such that $i \in \text{dom } M$ holds $-\infty \notin \text{rng}(M(i))$. Then SumAll $M = \text{SumAll } M^{\mathrm{T}}$.

PROOF: Define $x[\text{natural number}] \equiv \text{for every matrix } M \text{ over } \overline{\mathbb{R}} \text{ such that len } M = \$_1 \text{ and for every natural number } i \text{ such that } i \in \text{dom } M \text{ holds } -\infty \notin \text{rng}(M(i)) \text{ holds SumAll } M = \text{SumAll } M^{\mathrm{T}}. \text{ For every natural number } n \text{ such that } x[n] \text{ holds } x[n+1] \text{ by } [3, (11)], [33, (25)], [5, (40)], (28). x[0]. \text{ For every natural number } n, x[n] \text{ from } [3, \text{Sch. 2}]. \square$

3. Definition of Pre-Measure

Let x be an object. Let us observe that $\langle x \rangle$ is disjoint valued. Now we state the proposition:

(31) Let us consider a set X, a semi-diff-closed, \cap -closed family S of subsets of X with the empty element, a finite sequence F of elements of S, and an element G of S. Then there exists a disjoint valued finite sequence H of elements of S such that $G \setminus \bigcup F = \bigcup H$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every finite sequence } f \text{ of elements of } S \text{ such that len } f = \$_1 \text{ there exists a disjoint valued finite sequence } H \text{ of elements of } S \text{ such that } G \setminus \bigcup f = \bigcup H. \text{ For every finite sequence } f \text{ of elements of } S \text{ such that len } f = 0 \text{ there exists a disjoint valued finite sequence } H \text{ of elements of } S \text{ such that } G \setminus \bigcup f = \bigcup H \text{ by } [16, (2)], [5, (38)], [16, (25)]. \text{ For every natural number } i \text{ such that } \mathcal{P}[i] \text{ holds } \mathcal{P}[i+1] \text{ by } [3, (11)], [5, (59)], [33, (55)], [5, (36), (38)]. \text{ For every natural number } i, \mathcal{P}[i] \text{ from } [3, \text{Sch. 2}]. \square$

Let X be a set and P be a semi-diff-closed, \cap -closed family of subsets of X with the empty element. Let us note that there exists a sequence of P which is disjoint valued.

Let P be a non-empty family of subsets of X. Note that there exists a function from P into $\overline{\mathbb{R}}$ which is non-negative, additive, and zeroed.

Let P be a family of subsets of X with the empty element. One can check that there exists a function from \mathbb{N} into P which is disjoint valued.

A pre-measure of P is a non-negative, zeroed function from P into $\overline{\mathbb{R}}$ and is defined by

(Def. 7) for every disjoint valued finite sequence F of elements of P such that $\bigcup F \in P$ holds $it(\bigcup F) = \sum (it \cdot F)$ and for every disjoint valued function K from $\mathbb N$ into P such that $\bigcup K \in P$ holds $it(\bigcup K) \leq \overline{\sum}(it \cdot K)$.

Now we state the propositions:

- (32) Let us consider a set X with the empty element, and a finite sequence F of elements of X. Then there exists a function G from \mathbb{N} into X such that
 - (i) for every natural number i, F(i) = G(i), and
 - (ii) $\bigcup F = \bigcup G$.

PROOF: Define $\mathcal{P}[\text{element of } \mathbb{N}, \text{set}] \equiv \text{if } \$_1 \in \text{dom } F$, then $F(\$_1) = \$_2$ and if $\$_1 \notin \text{dom } F$, then $\$_2 = \emptyset$. For every element i of \mathbb{N} , there exists an element y of X such that $\mathcal{P}[i,y]$ by [13,(3)]. Consider G being a function from \mathbb{N} into X such that for every element i of \mathbb{N} , $\mathcal{P}[i,G(i)]$ from [14,Sch. 3]. \square

- (33) Let us consider a non empty set X, a finite sequence F of elements of X, and a function G from \mathbb{N} into X. Suppose for every natural number i, F(i) = G(i). Then F is disjoint valued if and only if G is disjoint valued.
- (34) Let us consider a finite sequence F of elements of $\overline{\mathbb{R}}$, and a sequence G of extended reals. Suppose for every natural number i, F(i) = G(i). Then F is non-negative if and only if G is non-negative.

Let us observe that there exists a finite sequence of elements of $\overline{\mathbb{R}}$ which is non-negative and there exists a finite sequence of elements of $\overline{\mathbb{R}}$ which is without $-\infty$ and there exists a finite sequence of elements of $\overline{\mathbb{R}}$ which is non-positive and there exists a finite sequence of elements of $\overline{\mathbb{R}}$ which is without $+\infty$ and every finite sequence of elements of $\overline{\mathbb{R}}$ which is non-negative is also without $-\infty$ and every finite sequence of elements of $\overline{\mathbb{R}}$ which is non-positive is also without $+\infty$.

Let X, Y be non empty sets, F be a without $-\infty$ function from Y into $\overline{\mathbb{R}}$, and G be a function from X into Y. One can check that $F \cdot G$ is without $-\infty$ as a function from X into $\overline{\mathbb{R}}$.

Let F be a non-negative function from Y into $\overline{\mathbb{R}}$. One can check that $F \cdot G$ is non-negative as a function from X into $\overline{\mathbb{R}}$.

Now we state the propositions:

- (35) Let us consider an extended real number a. Then $\sum \langle a \rangle = a$.
- (36) Let us consider a finite sequence F of elements of $\overline{\mathbb{R}}$, and a natural number k. Then
 - (i) if F is without $-\infty$, then $F \upharpoonright k$ is without $-\infty$, and
 - (ii) if F is without $+\infty$, then $F \upharpoonright k$ is without $+\infty$.

- (37) Let us consider a without $-\infty$ finite sequence F of elements of $\overline{\mathbb{R}}$, and a sequence G of extended reals. Suppose for every natural number i, F(i) = G(i). Let us consider a natural number i. Then $\sum (F \upharpoonright i) = (\sum_{\alpha=0}^{\kappa} G(\alpha))_{\kappa \in \mathbb{N}}(i)$. The theorem is a consequence of (36) and (35).
- (38) Let us consider a without $-\infty$ finite sequence F of elements of $\overline{\mathbb{R}}$, and a sequence G of extended reals. Suppose for every natural number i, F(i) = G(i). Then
 - (i) G is summable, and
 - (ii) $\sum F = \sum G$.

PROOF: $\sum (F \upharpoonright \text{len } F) = (\sum_{\alpha=0}^{\kappa} G(\alpha))_{\kappa \in \mathbb{N}} (\text{len } F)$. Define $\mathcal{P}[\text{natural number}]$ $\equiv \sum F = (\sum_{\alpha=0}^{\kappa} G(\alpha))_{\kappa \in \mathbb{N}} (\text{len } F + \$_1)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [3, (11), (19)], [33, (25)]. For every natural number k, $\mathcal{P}[k]$ from [3, Sch. 2]. \square

- (39) Let us consider a set X, a semi-diff-closed, \cap -closed family S of subsets of X with the empty element, a disjoint valued finite sequence F of elements of S, and a non empty, preboolean family R of subsets of X. Suppose $S \subseteq R$ and $\bigcup F \in R$. Let us consider a natural number i. Then $\bigcup (F \upharpoonright i) \in R$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \bigcup (F \upharpoonright \$_1) \in R$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$ by [3, (12)], [5, (58)], [3, (13)], [5, (82), (17)]. For every natural number i, $\mathcal{P}[i]$ from [3, Sch. 2]. \square
- (40) Let us consider a set X, a semi-diff-closed, \cap -closed family S of subsets of X with the empty element, a pre-measure P of S, and disjoint valued finite sequences F_1 , F_2 of elements of S. Suppose $\bigcup F_1 \in S$ and $\bigcup F_1 = \bigcup F_2$. Then $P(\bigcup F_1) = P(\bigcup F_2)$.
- (41) Let us consider a non empty, \cap -closed set S, and finite sequences F_1 , F_2 of elements of S. Then there exists a matrix M over S of dimension len $F_1 \times \text{len } F_2$ such that for every natural numbers i, j such that $\langle i, j \rangle \in$ the indices of M holds $M_{i,j} = F_1(i) \cap F_2(j)$.

PROOF: Define $\mathcal{P}[\text{natural number, natural number, set}] \equiv \$_3 = F_1(\$_1) \cap F_2(\$_2)$. For every natural numbers i, j such that $\langle i, j \rangle \in \text{Seg len } F_1 \times \text{Seg len } F_2$ there exists an element K of S such that $\mathcal{P}[i, j, K]$ by [16, (87)], [13, (3)]. Consider M being a matrix over S of dimension len $F_1 \times \text{len } F_2$ such that for every natural numbers i, j such that $\langle i, j \rangle \in \text{the indices of } M$ holds $\mathcal{P}[i, j, M_{i,j}]$. \square

Let us consider a set X, a \cap -closed family S of subsets of X with the empty element, non empty, disjoint valued finite sequences F_1 , F_2 of elements of S, a non-negative, zeroed function P from S into $\overline{\mathbb{R}}$, and a matrix M over $\overline{\mathbb{R}}$ of dimension len $F_1 \times \text{len } F_2$.

Let us assume that $\bigcup F_1 = \bigcup F_2$ and for every natural numbers i, j such that $\langle i, j \rangle \in \text{the indices of } M \text{ holds } M_{i,j} = P(F_1(i) \cap F_2(j))$ and for every disjoint valued finite sequence F of elements of S such that $\bigcup F \in S$ holds $P(\bigcup F) = \sum (P \cdot F)$. Now we state the propositions:

- (42) (i) for every natural number i such that $i \leq \text{len}(P \cdot F_1)$ holds $(P \cdot F_1)(i) = (\sum M)(i)$, and
 - (ii) $\sum (P \cdot F_1) = \text{SumAll } M$.

PROOF: Consider K being a matrix over S of dimension $\operatorname{len} F_1 \times \operatorname{len} F_2$ such that for every natural numbers i, j such that $\langle i, j \rangle \in \operatorname{the}$ indices of K holds $K_{i,j} = F_1(i) \cap F_2(j)$. For every natural number i such that $i \leq \operatorname{len}(P \cdot F_1)$ holds $(P \cdot F_1)(i) = (\sum M)(i)$ by [33, (24)], [3, (14)], [33, (25)], [13, (11), (3)]. Consider Q being a function from $\mathbb N$ into $\overline{\mathbb R}$ such that $\sum (P \cdot F_1) = Q(\operatorname{len}(P \cdot F_1))$ and Q(0) = 0 and for every natural number i such that $i < \operatorname{len}(P \cdot F_1)$ holds $Q(i+1) = Q(i) + (P \cdot F_1)(i+1)$. Consider L being a function from $\mathbb N$ into $\overline{\mathbb R}$ such that SumAll $M = L(\operatorname{len} \sum M)$ and $L(0) = 0_{\overline{\mathbb R}}$ and for every natural number i such that $i < \operatorname{len} \sum M$ holds $L(i+1) = L(i) + (\sum M)(i+1)$. Define $\mathcal R[\operatorname{natural number}] \equiv \operatorname{if} \$_1 \leq \operatorname{len}(P \cdot F_1)$, then $Q(\$_1) = L(\$_1)$. For every natural number i such that $\mathcal R[i]$ holds $\mathcal R[i+1]$ by [3, (13)]. For every natural number i, $\mathcal R[i]$ from $[3, \operatorname{Sch}. 2]$. \square

- (43) (i) for every natural number i such that $i \leq \text{len}(P \cdot F_2)$ holds $(P \cdot F_2)(i) = (\sum M^{T})(i)$, and
 - (ii) $\sum (P \cdot F_2) = \text{SumAll } M^{\text{T}}.$

PROOF: Consider K being a matrix over S of dimension len $F_1 \times \text{len } F_2$ such that for every natural numbers i, j such that $\langle i, j \rangle \in \text{the indices}$ of K holds $K_{i,j} = F_1(i) \cap F_2(j)$. For every natural number i such that $i \leq \text{len}(P \cdot F_2)$ holds $(P \cdot F_2)(i) = (\sum M^T)(i)$ by [33, (24)], [3, (14)], [33, (25)], [13, (11), (3)]. Consider Q being a function from $\mathbb N$ into $\overline{\mathbb R}$ such that $\sum (P \cdot F_2) = Q(\text{len}(P \cdot F_2))$ and Q(0) = 0 and for every natural number i such that $i < \text{len}(P \cdot F_2)$ holds $Q(i+1) = Q(i) + (P \cdot F_2)(i+1)$. Consider L being a function from $\mathbb N$ into $\overline{\mathbb R}$ such that SumAll $M^T = L(\text{len} \sum M^T)$ and $L(0) = 0_{\overline{\mathbb R}}$ and for every natural number i such that $i < \text{len} \sum M^T$ holds $L(i+1) = L(i) + (\sum M^T)(i+1)$. Define $\mathcal R[\text{natural number } i \text{ such that } \mathcal R[i]$ holds $\mathcal R[i+1]$ by [3, (13)]. For every natural number i, $\mathcal R[i]$ from [3, Sch. 2]. \square

(44) Let us consider a set X, a semi-diff-closed, \cap -closed family S of subsets of X with the empty element, a pre-measure P of S, and a set A. Suppose $A \in$ the ring generated by S. Let us consider disjoint valued finite sequences F_1 ,

- F_2 of elements of S. If $A = \bigcup F_1$ and $A = \bigcup F_2$, then $\sum (P \cdot F_1) = \sum (P \cdot F_2)$. The theorem is a consequence of (42), (43), and (30).
- (45) Let us consider finite sequences f_1 , f_2 . Suppose f_1 is disjoint valued and f_2 is disjoint valued and $\bigcup \operatorname{rng} f_1$ misses $\bigcup \operatorname{rng} f_2$. Then $f_1 \cap f_2$ is disjoint valued.
- (46) Let us consider a set X, a semi-diff-closed family P of subsets of X with the empty element, a pre-measure M of P, and sets A, B. If A, B, $A \setminus B \in P$ and $B \subseteq A$, then $M(A) \geqslant M(B)$. The theorem is a consequence of (45).
- (47) Let us consider non empty sets Y, S, a partial function F from Y to S, and a function M from S into $\overline{\mathbb{R}}$. If M is non-negative, then $M \cdot F$ is non-negative.
- (48) Let us consider a set X, a semi-diff-closed, \cap -closed family S of subsets of X with the empty element, and a pre-measure P of S. Then there exists a non-negative, additive, zeroed function M from the ring generated by S into $\overline{\mathbb{R}}$ such that for every set A such that $A \in$ the ring generated by S for every disjoint valued finite sequence F of elements of S such that $A = \bigcup F$ holds $M(A) = \sum (P \cdot F)$.

PROOF: Define $\mathcal{P}[\text{object}, \text{object}] \equiv \text{for every disjoint valued finite sequence } F \text{ of elements of } S \text{ such that } \$_1 = \bigcup F \text{ holds } \$_2 = \sum (P \cdot F).$ For every object A such that $A \in \text{the ring generated by } S$ there exists an object p such that $p \in \mathbb{R}$ and $\mathcal{P}[A,p]$ by [23, (18)], (44). Consider M being a function from the ring generated by S into \mathbb{R} such that for every object A such that $A \in \text{the ring generated by } S \text{ holds } \mathcal{P}[A,M(A)]$ from [14, Sch. 1]. For every element A of the ring generated by S, $0 \leq M(A)$ by [23, (18)], [3, (11)], [33, (25)], [13, (12)]. For every elements A, B of the ring generated by S such that A misses B and $A \cup B \in \text{the ring generated by } S \text{ holds } M(A \cup B) = M(A) + M(B)$ by [23, (18)], (45), [5, (31)], [16, (78)]. \square

- (49) Let us consider sets X, Y, and functions F, G from \mathbb{N} into 2^X . Suppose for every natural number $i, G(i) = F(i) \cap Y$ and $\bigcup F = Y$. Then $\bigcup G = \bigcup F$.
- (50) Let us consider a set X, a semi-diff-closed, \cap -closed family S of subsets of X with the empty element, and a pre-measure P of S. Then there exists a function M from the ring generated by S into $\overline{\mathbb{R}}$ such that
 - (i) $M(\emptyset) = 0$, and
 - (ii) for every disjoint valued finite sequence K of elements of S such that $\bigcup K \in \text{the ring generated by } S \text{ holds } M(\bigcup K) = \sum (P \cdot K).$

The theorem is a consequence of (48).

- (51) Let us consider sets X, Z, a semi-diff-closed, \cap -closed family P of subsets of X with the empty element, and a disjoint valued function K from \mathbb{N} into the ring generated by P. Suppose $Z = \{\langle n, F \rangle$, where n is a natural number, F is a disjoint valued finite sequence of elements of $P : \bigcup F = K(n)$ and if $K(n) = \emptyset$, then $F = \langle \emptyset \rangle \}$. Then
 - (i) $\pi_2(Z)$ is a set of finite sequences of P, and
 - (ii) for every object $x, x \in \operatorname{rng} K$ iff there exists a finite sequence F of elements of P such that $F \in \pi_2(Z)$ and $\bigcup F = x$, and
 - (iii) $\pi_2(Z)$ has non empty elements.
- (52) Let us consider a set X, a semi-diff-closed, \cap -closed family P of subsets of X with the empty element, and a disjoint valued function K from \mathbb{N} into the ring generated by P. Suppose rng K has a non-empty element. Then there exists a non empty set Y of finite sequences of P such that
 - (i) $Y = \{F, \text{ where } F \text{ is a disjoint valued finite sequence of elements of } P : \bigcup F \in \operatorname{rng} K \text{ and } F \neq \emptyset\}, \text{ and }$
 - (ii) Y has non empty elements.

4. Pre-Measure on Semialgebra and Construction of Measure

Now we state the propositions:

- (53) Let us consider sets X, Z, a semialgebra P of sets of X, and a disjoint valued function K from \mathbb{N} into the field generated by P. Suppose $Z = \{\langle n, F \rangle$, where n is a natural number, F is a disjoint valued finite sequence of elements of $P : \bigcup F = K(n)$ and if $K(n) = \emptyset$, then $F = \langle \emptyset \rangle$. Then
 - (i) $\pi_2(Z)$ is a set of finite sequences of P, and
 - (ii) for every object $x, x \in \operatorname{rng} K$ iff there exists a finite sequence F of elements of P such that $F \in \pi_2(Z)$ and $\bigcup F = x$, and
 - (iii) $\pi_2(Z)$ has non empty elements.
- (54) Let us consider a set X, a semialgebra S of sets of X, a pre-measure P of S, a set A, and disjoint valued finite sequences F_1 , F_2 of elements of S. If $A = \bigcup F_1$ and $A = \bigcup F_2$, then $\sum (P \cdot F_1) = \sum (P \cdot F_2)$. The theorem is a consequence of (42), (43), and (30).
- (55) Let us consider a set X, a semialgebra S of sets of X, and a pre-measure P of S. Then there exists a measure M on the field generated by S such that for every set A such that $A \in$ the field generated by S for every disjoint valued finite sequence F of elements of S such that $A = \bigcup F$ holds $M(A) = \sum (P \cdot F)$.

PROOF: Define $\mathcal{P}[\text{object}, \text{object}] \equiv \text{for every disjoint valued finite sequence} F$ of elements of S such that $\$_1 = \bigcup F$ holds $\$_2 = \sum (P \cdot F)$. For every object A such that $A \in \text{the field generated by } S$ there exists an object p such that $p \in \mathbb{R}$ and $\mathcal{P}[A,p]$ by [23, (22)], (54). Consider M being a function from the field generated by S into \mathbb{R} such that for every object A such that $A \in \text{the field generated by } S$ holds $\mathcal{P}[A,M(A)]$ from [14, Sch. 1]. For every element A of the field generated by S, $0 \leq M(A)$ by [23, (22)], [3, (11)], [33, (25)], [13, (12)]. For every elements A, B of the field generated by S such that A misses B holds $M(A \cup B) = M(A) + M(B)$ by [23, (22)], (45), [5, (31)], [16, (78)]. \square

- (56) Let us consider a sequence F of extended reals, a natural number n, and an extended real number a. Suppose for every natural number k, F(k) = a. Then $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(n) = a \cdot (n+1)$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv (\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(\$_1) = a \cdot (\$_1 + 1)$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$. For every natural number i, $\mathcal{P}[i]$ from [3, Sch. 2]. \square
- (57) Let us consider a non empty set X, a sequence F of X, and a natural number n. Then $\operatorname{rng}(F \upharpoonright \mathbb{Z}_{n+1}) = \operatorname{rng}(F \upharpoonright \mathbb{Z}_n) \cup \{F(n)\}.$
- (58) Let us consider a set X, a field S of subsets of X, a measure M on S, a sequence F of separated subsets of S, and a natural number n. Then
 - (i) $\bigcup \operatorname{rng}(F \upharpoonright \mathbb{Z}_{n+1}) \in S$, and
 - (ii) $(\sum_{\alpha=0}^{\kappa} (M \cdot F)(\alpha))_{\kappa \in \mathbb{N}}(n) = M(\bigcup \operatorname{rng}(F \upharpoonright \mathbb{Z}_{n+1})).$

PROOF: $\operatorname{rng}(F \upharpoonright \mathbb{Z}_{0+1}) = \operatorname{rng}(F \upharpoonright \mathbb{Z}_0) \cup \{F(0)\}$. Define $\mathcal{R}[\operatorname{natural number}] \equiv \bigcup \operatorname{rng}(F \upharpoonright \mathbb{Z}_{\$_1+1}) \in S$. For every natural number k such that $\mathcal{R}[k]$ holds $\mathcal{R}[k+1]$ by (57), [16, (78), (25)], [27, (3)]. For every natural number k, $\mathcal{R}[k]$ from [3, Sch. 2]. Define $\mathcal{P}[\operatorname{natural number}] \equiv (\sum_{\alpha=0}^{k} (M \cdot F)(\alpha))_{\kappa \in \mathbb{N}}(\$_1) = M(\bigcup \operatorname{rng}(F \upharpoonright \mathbb{Z}_{\$_1+1}))$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [14, (15)], [35, (57)], [3, (44)], [13, (47)]. For every natural number n, $\mathcal{P}[n]$ from [3, Sch. 2]. \square

(59) Let us consider a set X, a semialgebra S of sets of X, a pre-measure P of S, and a measure M on the field generated by S. Suppose for every set A such that $A \in$ the field generated by S for every disjoint valued finite sequence F of elements of S such that $A = \bigcup F$ holds $M(A) = \sum (P \cdot F)$. Then M is completely-additive. The theorem is a consequence of (53), (15), (13), (58), and (1).

Let X be a set, S be a semialgebra of sets of X, and P be a pre-measure of S. An induced measure of S and P is a measure on the field generated by S and is defined by (Def. 8) for every set A such that $A \in$ the field generated by S for every disjoint valued finite sequence F of elements of S such that $A = \bigcup F$ holds $it(A) = \sum (P \cdot F)$.

Now we state the propositions:

- (60) Let us consider a set X, a semialgebra S of sets of X, and a pre-measure P of S. Then every induced measure of S and P is completely-additive. The theorem is a consequence of (59).
- (61) Let us consider a non empty set X, a semialgebra S of sets of X, a pre-measure P of S, and an induced measure M of S and P. Then σ -Meas(the Caratheodory measure determined by M) $\upharpoonright \sigma$ (the field generated by S) is a σ -measure on σ (the field generated by S). The theorem is a consequence of (60).

Let X be a non empty set, S be a semialgebra of sets of X, P be a premeasure of S, and M be an induced measure of S and P.

An induced σ -measure of S and M is a σ -measure on σ (the field generated by S) and is defined by

(Def. 9) $it = \sigma$ -Meas(the Caratheodory measure determined by M) $\upharpoonright \sigma$ (the field generated by S).

Now we state the proposition:

(62) Let us consider a non empty set X, a semialgebra S of sets of X, a premeasure P of S, and an induced measure m of S and P. Then every induced σ -measure of S and m is an extension of m. The theorem is a consequence of (60).

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [6] Józef Białas. The σ -additive measure theory. Formalized Mathematics, 2(2):263–270, 1991.
- [7] Józef Białas. Properties of Caratheodor's measure. Formalized Mathematics, 3(1):67–70, 1992.
- [8] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163–171, 1991.
- [9] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173–183, 1991.
- [10] V.I. Bogachev. Measure Theory, volume 1. Springer, 2006.
- [11] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643–649, 1990.

- [12] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [13] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
- [14] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [15] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [16] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [17] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [18] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53–70, 2006. doi:10.2478/v10037-006-0008-x.
- [19] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491–494, 2001.
- [20] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. *Formalized Mathematics*, 9(3):495–500, 2001.
- [21] Noboru Endou, Keiko Narita, and Yasunari Shidama. The Lebesgue monotone convergence theorem. Formalized Mathematics, 16(2):167–175, 2008. doi:10.2478/v10037-008-0023-1.
- [22] Noboru Endou, Hiroyuki Okazaki, and Yasunari Shidama. Hopf extension theorem of measure. Formalized Mathematics, 17(2):157–162, 2009. doi:10.2478/v10037-009-0018-6.
- [23] Noboru Endou, Kazuhisa Nakasho, and Yasunari Shidama. σ -ring and σ -algebra of sets. Formalized Mathematics, 23(1):51–57, 2015. doi:10.2478/forma-2015-0004.
- [24] P. R. Halmos. Measure Theory. Springer-Verlag, 1974.
- [25] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4): 573–577, 1997.
- [26] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339–345, 1996.
- [27] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [28] Andrzej Nedzusiak. Probability. Formalized Mathematics, 1(4):745–749, 1990.
- [29] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [30] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449–452, 1991.
- [31] M.M. Rao. Measure Theory and Integration. CRC Press, 2nd edition, 2004.
- [32] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1 (1):187–190, 1990.
- [33] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
- [34] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [35] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.
- [36] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received August 14, 2015