Exponential Objects

Marco Riccardi
Via del Pero 102
54038 Montignoso
Italy

Summary. In the first part of this article we formalize the concepts of terminal and initial object, categorical product 4 and natural transformation within a free-object category 1. In particular, we show that this definition of natural transformation is equivalent to the standard definition [13]. Then we introduce the exponential object using its universal property and we show the isomorphism between the exponential object of categories and the functor category 12 .

MSC: 18A99 18A25 03B35
Keywords: exponential objects; functor category; natural transformation
MML identifier: CAT_8, version: 8.1.04 5.33.1254
The notation and terminology used in this paper have been introduced in the following articles: [2], [5], [15], [16], [17], [10], [6], [7], [11], [18], [19], [3], 8], [21], [22], [14], 20], and [9].

1. Preliminaries

Now we state the propositions:
(1) Let us consider a composable, associative category structure \mathscr{C}, and morphisms f_{1}, f_{2}, f_{3} of \mathscr{C}. Suppose $f_{1} \triangleright f_{2}$ and $f_{2} \triangleright f_{3}$. Then $\left(f_{1} \circ f_{2}\right) \circ f_{3}=$ $f_{1} \circ\left(f_{2} \circ f_{3}\right)$.
(2) Let us consider a composable, associative category structure \mathscr{C}, and morphisms $f_{1}, f_{2}, f_{3}, f_{4}$ of \mathscr{C}. Suppose $f_{1} \triangleright f_{2}$ and $f_{2} \triangleright f_{3}$ and $f_{3} \triangleright f_{4}$. Then
(i) $\left(\left(f_{1} \circ f_{2}\right) \circ f_{3}\right) \circ f_{4}=\left(f_{1} \circ f_{2}\right) \circ\left(f_{3} \circ f_{4}\right)$, and
(ii) $\left(\left(f_{1} \circ f_{2}\right) \circ f_{3}\right) \circ f_{4}=\left(f_{1} \circ\left(f_{2} \circ f_{3}\right)\right) \circ f_{4}$, and
(iii) $\left(\left(f_{1} \circ f_{2}\right) \circ f_{3}\right) \circ f_{4}=f_{1} \circ\left(\left(f_{2} \circ f_{3}\right) \circ f_{4}\right)$, and
(iv) $\left(\left(f_{1} \circ f_{2}\right) \circ f_{3}\right) \circ f_{4}=f_{1} \circ\left(f_{2} \circ\left(f_{3} \circ f_{4}\right)\right)$.

The theorem is a consequence of (1).
(3) Let us consider a composable category structure \mathscr{C}, and morphisms f, f_{1}, f_{2} of \mathscr{C}. Suppose $f_{1} \triangleright f_{2}$. Then
(i) $f_{1} \circ f_{2} \triangleright f$ iff $f_{2} \triangleright f$, and
(ii) $f \triangleright f_{1} \circ f_{2}$ iff $f \triangleright f_{1}$.
(4) Let us consider a composable category structure \mathscr{C} with identities, and morphisms f_{1}, f_{2} of \mathscr{C}. Suppose $f_{1} \triangleright f_{2}$. Then
(i) if f_{1} is identity, then $f_{1} \circ f_{2}=f_{2}$, and
(ii) if f_{2} is identity, then $f_{1} \circ f_{2}=f_{1}$.

Proof: If f_{1} is identity, then $f_{1} \circ f_{2}=f_{2}$ by [16, (6), (5), (9)].
(5) Let us consider a non empty category structure \mathscr{C} with identities, and a morphism f of \mathscr{C}. Then there exist morphisms f_{1}, f_{2} of \mathscr{C} such that
(i) f_{1} is identity, and
(ii) f_{2} is identity, and
(iii) $f_{1} \triangleright f$, and
(iv) $f \triangleright f_{2}$.
(6) Let us consider a category structure \mathscr{C}, objects a, b of \mathscr{C}, and a morphism f from a to b. Suppose $\operatorname{hom}(a, b)=\{f\}$. Let us consider a morphism g from a to b. Then $f=g$.
(7) Let us consider a category structure \mathscr{C}, objects a, b of \mathscr{C}, and a morphism f from a to b. Suppose $\operatorname{hom}(a, b) \neq \emptyset$ and for every morphism g from a to $b, f=g$. Then $\operatorname{hom}(a, b)=\{f\}$.
(8) Let us consider an object x, and a category structure \mathscr{C}. Suppose the carrier of $\mathscr{C}=\{x\}$ and the composition of $\mathscr{C}=\{\langle\langle x, x\rangle, x\rangle\}$. Then \mathscr{C} is a non empty category.
Proof: For every object $y, y \in$ the composition of the discrete category of $\{x\}$ iff $y \in\{\langle\langle x, x\rangle, x\rangle\}$ by [22, (2)], [9, (29)], [15, (24)], (4).
(9) Let us consider categories $\mathscr{C}_{1}, \mathscr{C}_{2}$, and a functor \mathcal{F} from \mathscr{C}_{1} to \mathscr{C}_{2}. If \mathcal{F} is isomorphism, then \mathcal{F} is bijective.
(10) Let us consider composable category structures $\mathscr{C}_{1}, \mathscr{C}_{2}, \mathscr{C}_{3}$ with identities. Suppose $\mathscr{C}_{1} \cong \mathscr{C}_{2}$ and $\mathscr{C}_{2} \cong \mathscr{C}_{3}$. Then $\mathscr{C}_{1} \cong \mathscr{C}_{3}$.
(11) Let us consider categories $\mathscr{C}_{1}, \mathscr{C}_{2}$. Suppose $\mathscr{C}_{1} \cong \mathscr{C}_{2}$. Then \mathscr{C}_{1} is empty if and only if \mathscr{C}_{2} is empty.

Let \mathscr{C}_{1} be an empty category structure with identities and \mathscr{C}_{2} be category structure with identities. Note that every functor from \mathscr{C}_{1} to \mathscr{C}_{2} is covariant.

Now we state the propositions:
(12) Let us consider category structures $\mathscr{C}_{1}, \mathscr{C}_{2}$ with identities, a morphism f of \mathscr{C}_{1}, and a functor \mathcal{F} from \mathscr{C}_{1} to \mathscr{C}_{2}. Suppose \mathcal{F} is covariant and f is identity. Then $\mathcal{F}(f)$ is identity.
(13) Let us consider category structures $\mathscr{C}_{1}, \mathscr{C}_{2}$ with identities, morphisms f_{1}, f_{2} of \mathscr{C}_{1}, and a functor \mathcal{F} from \mathscr{C}_{1} to \mathscr{C}_{2}. Suppose \mathcal{F} is covariant and $f_{1} \triangleright f_{2}$. Then
(i) $\mathcal{F}\left(f_{1}\right) \triangleright \mathcal{F}\left(f_{2}\right)$, and
(ii) $\mathcal{F}\left(f_{1} \circ f_{2}\right)=\mathcal{F}\left(f_{1}\right) \circ \mathcal{F}\left(f_{2}\right)$.
(14) Let us consider an object-category \mathscr{C}, a morphism f of \mathscr{C}, and a morphism g of alter \mathscr{C}. Suppose $f=g$. Then
(i) $\operatorname{dom} g=\operatorname{id}_{\operatorname{dom} f}$, and
(ii) $\operatorname{cod} g=\operatorname{id}_{\operatorname{cod} f}$.

Proof: Consider d_{1} being a morphism of alter \mathscr{C} such that $\operatorname{dom} g=d_{1}$ and $g \triangleright d_{1}$ and d_{1} is identity. Reconsider $d_{2}=\operatorname{id}_{\operatorname{dom} f}$ as a morphism of alter \mathscr{C}. For every morphism f_{1} of alter \mathscr{C} such that $f_{1} \triangleright d_{2}$ holds $f_{1} \circ d_{2}=$ f_{1} by [15, (40)], [5, (22)]. Consider c_{1} being a morphism of alter \mathscr{C} such that $\operatorname{cod} g=c_{1}$ and $c_{1} \triangleright g$ and c_{1} is identity. Reconsider $c_{2}=\operatorname{id}_{\operatorname{cod} f}$ as a morphism of alter \mathscr{C}. For every morphism f_{1} of alter \mathscr{C} such that $f_{1} \triangleright c_{2}$ holds $f_{1} \circ c_{2}=f_{1}$ by [15, (40)], [5, (22)].
(15) There exists a morphism f of $\mathbf{1}$ such that
(i) f is identity, and
(ii) $\mathrm{Ob} 1=\{f\}$, and
(iii) $\operatorname{Mor} \mathbf{1}=\{f\}$.

Proof: Consider \mathscr{C} being a strict, a preorder category such that $\mathrm{Ob} \mathscr{C}=1$ and for every objects o_{1}, o_{2} of \mathscr{C} such that $o_{1} \in o_{2}$ holds hom $\left(o_{1}, o_{2}\right)=$ $\left\{\left\langle o_{1}, o_{2}\right\rangle\right\}$ and $\operatorname{RelOb} \mathscr{C}=\subseteq_{1}$ and $\operatorname{Mor} \mathscr{C}=1 \cup\left\{\left\langle o_{1}, o_{2}\right\rangle\right.$, where o_{1}, o_{2} are elements of $\left.1: o_{1} \in o_{2}\right\}$. Consider \mathcal{F} being a functor from \mathscr{C} to $1, \mathcal{G}$ being a functor from 1 to \mathscr{C} such that \mathcal{F} is covariant and \mathcal{G} is covariant and $\mathcal{G} \circ \mathcal{F}=\mathrm{id}_{\mathscr{C}}$ and $\mathcal{F} \circ \mathcal{G}=\mathrm{id}_{\mathbf{1}}$. Reconsider $g=0$ as a morphism of \mathscr{C}. Set $f=\mathcal{F}(g)$. Consider x being an object such that Ob $\mathbf{1}=\{x\}$. For every object $x, x \in \operatorname{Mor} 1$ iff $x \in\{f\}$ by [15, (22)], [6, (18)], [15, (34)], [2, (49)].
(16) Let us consider a non empty category \mathscr{C}, and morphisms f_{1}, f_{2} of \mathscr{C}. If $\mathcal{M}_{\mathrm{f}_{1}}=\mathcal{M}_{\mathrm{f}_{2}}$, then $f_{1}=f_{2}$.
(17) Let us consider a non empty category \mathscr{C}, covariant functors $\mathcal{F}_{1}, \mathcal{F}_{2}$ from $\mathbf{2}$ to \mathscr{C}, and a morphism f of $\mathbf{2}$. Suppose f is not identity and $\mathcal{F}_{1}(f)=\mathcal{F}_{2}(f)$. Then $\mathcal{F}_{1}=\mathcal{F}_{2}$.
Proof: Consider f_{1} being a morphism of 2 such that f_{1} is not identity and $\operatorname{Ob} \mathbf{2}=\left\{\operatorname{dom} f_{1}, \operatorname{cod} f_{1}\right\}$ and $\operatorname{Mor} \mathbf{2}=\left\{\operatorname{dom} f_{1}, \operatorname{cod} f_{1}, f_{1}\right\}$ and $\operatorname{dom} f_{1}$, $\operatorname{cod} f_{1}, f_{1}$ are mutually different. For every object x such that $x \in \operatorname{dom} \mathcal{F}_{1}$ holds $\mathcal{F}_{1}(x)=\mathcal{F}_{2}(x)$ by [15, (22), (32)].
(18) There exist morphisms f_{1}, f_{2} of $\mathbf{3}$ such that
(i) f_{1} is not identity, and
(ii) f_{2} is not identity, and
(iii) $\operatorname{cod} f_{1}=\operatorname{dom} f_{2}$, and
(iv) $\operatorname{Ob} \mathbf{3}=\left\{\operatorname{dom} f_{1}, \operatorname{cod} f_{1}, \operatorname{cod} f_{2}\right\}$, and
(v) $\operatorname{Mor} \mathbf{3}=\left\{\operatorname{dom} f_{1}, \operatorname{cod} f_{1}, \operatorname{cod} f_{2}, f_{1}, f_{2}, f_{2} \circ f_{1}\right\}$, and
(vi) $\operatorname{dom} f_{1}, \operatorname{cod} f_{1}, \operatorname{cod} f_{2}, f_{1}, f_{2}, f_{2} \circ f_{1}$ are mutually different.

Proof: Consider \mathscr{C} being a strict, a preorder category such that $\mathrm{Ob} \mathscr{C}=3$ and for every objects o_{1}, o_{2} of \mathscr{C} such that $o_{1} \in o_{2} \operatorname{holds} \operatorname{hom}\left(o_{1}, o_{2}\right)=$ $\left\{\left\langle o_{1}, o_{2}\right\rangle\right\}$ and $\operatorname{RelOb} \mathscr{C}=\subseteq_{3}$ and $\operatorname{Mor} \mathscr{C}=3 \cup\left\{\left\langle o_{1}, o_{2}\right\rangle\right.$, where o_{1}, o_{2} are elements of $\left.3: o_{1} \in o_{2}\right\}$. Consider \mathcal{F} being a functor from \mathscr{C} to $\mathbf{3}, \mathcal{G}$ being a functor from $\mathbf{3}$ to \mathscr{C} such that \mathcal{F} is covariant and \mathcal{G} is covariant and $\mathcal{G} \circ \mathcal{F}=\mathrm{id}_{\mathscr{C}}$ and $\mathcal{F} \circ \mathcal{G}=\mathrm{id}_{\mathbf{3}}$. Reconsider $g_{1}=\langle 0,1\rangle$ as a morphism of $\mathscr{C} . g_{1}$ is not identity by [15, (22)]. Set $f_{1}=\mathcal{F}\left(g_{1}\right)$. Reconsider $g_{2}=\langle 1$, 2) as a morphism of $\mathscr{C} \cdot g_{2}$ is not identity by [15, (22)]. Set $f_{2}=\mathcal{F}\left(g_{2}\right)$. f_{1} is not identity by [6, (18)], [15, (34)]. f_{2} is not identity by [6, (18)], [15, (34)]. For every object $x, x \in \operatorname{Ob} \mathbf{3}$ iff $x \in\left\{\operatorname{dom} f_{1}, \operatorname{cod} f_{1}, \operatorname{cod} f_{2}\right\}$ by [15, (34)], [6, (18)], [15, (22)], [2, (51)]. For every object $x, x \in \operatorname{Mor} 3$ iff $x \in\left\{\operatorname{dom} f_{1}, \operatorname{cod} f_{1}, \operatorname{cod} f_{2}, f_{1}, f_{2}, f_{2} \circ f_{1}\right\}$ by [15, (22)], [6, (18)], [15, (34)], [2, (51), (49), (50)]. $g_{2} \circ g_{1}$ is not identity by [15, (22)]. $f_{2} \circ f_{1}$ is not identity by [6, (18)], [15, (34)]. \mathcal{F} is bijective.
Let \mathscr{C} be a non empty category and f_{1}, f_{2} be morphisms of \mathscr{C}. Assume $f_{1} \triangleright f_{2}$. The functor $\mathcal{C}_{f_{1}, f_{2}}$ yielding a covariant functor from $\mathbf{3}$ to \mathscr{C} is defined by (Def. 1) for every morphisms g_{1}, g_{2} of $\mathbf{3}$ such that $g_{1} \triangleright g_{2}$ and g_{1} is not identity and g_{2} is not identity holds $i t\left(g_{1}\right)=f_{1}$ and $i t\left(g_{2}\right)=f_{2}$.

2. Terminal Objects

Let \mathscr{C} be a category structure and a be an object of \mathscr{C}. We say that a is terminal if and only if
(Def. 2) for every object b of $\mathscr{C}, \operatorname{hom}(b, a) \neq \emptyset$ and there exists a morphism f from b to a such that for every morphism g from b to $a, f=g$.
Now we state the propositions:
(19) Let us consider a category structure \mathscr{C}, and an object b of \mathscr{C}. Then b is terminal if and only if for every object a of \mathscr{C}, there exists a morphism f from a to b such that $\operatorname{hom}(a, b)=\{f\}$. The theorem is a consequence of (7) and (6).
(20) Let us consider category structure \mathscr{C} with identities, and an object a of \mathscr{C}. Suppose a is terminal. Let us consider a morphism h from a to a. Then id- $a=h$.
(21) Let us consider a composable category structure \mathscr{C} with identities, and objects a, b of \mathscr{C}. If a is terminal and b is terminal, then a and b are isomorphic. The theorem is a consequence of (20).
(22) Let us consider a category \mathscr{C}, and objects a, b of \mathscr{C}. If b is terminal and a and b are isomorphic, then a is terminal.
(23) Let us consider a composable category structure \mathscr{C} with identities, objects a, b of \mathscr{C}, and a morphism f from a to b. Suppose $\operatorname{hom}(a, b) \neq \emptyset$ and a is terminal. Then f is monomorphic.
Let \mathscr{C} be a category. We say that \mathscr{C} has terminal objects if and only if
(Def. 3) there exists an object a of \mathscr{C} such that a is terminal.
Now we state the proposition:
(24) $\mathbf{1}$ has terminal objects.

Proof: Consider f being a morphism of 1 such that f is identity and Ob $\mathbf{1}=\{f\}$ and Mor $\mathbf{1}=\{f\}$. For every objects a, b of $\mathbf{1}$, every morphism of 1 is a morphism from a to b by [16, (20)].
One can verify that there exists a category which has terminal objects.
Let \mathscr{C} be a category. We say that \mathscr{C} is terminal if and only if
(Def. 4) for every category \mathscr{B}, there exists a functor \mathcal{F} from \mathscr{B} to \mathscr{C} such that \mathcal{F} is covariant and for every functor \mathcal{G} from \mathscr{B} to \mathscr{C} such that \mathcal{G} is covariant holds $\mathcal{F}=\mathcal{G}$.
Let us note that $\mathbf{1}$ is non empty and terminal and there exists a category which is strict, non empty, and terminal and there exists a category which is strict and non terminal.

Now we state the propositions:
(25) Let us consider terminal categories \mathscr{C}, \mathscr{D}. Then $\mathscr{C} \cong \mathscr{D}$.

Proof: There exists a functor \mathcal{F} from \mathscr{C} to \mathscr{D} and there exists a functor \mathcal{G} from \mathscr{D} to \mathscr{C} such that \mathcal{F} is covariant and \mathcal{G} is covariant and $\mathcal{G} \circ \mathcal{F}=\mathrm{id}_{\mathscr{C}}$ and $\mathcal{F} \circ \mathcal{G}=\mathrm{id}_{\mathscr{D}}$ by [15, (35)].
(26) Let us consider categories \mathscr{C}, \mathscr{D}. Suppose \mathscr{C} is terminal and $\mathscr{C} \cong \mathscr{D}$. Then \mathscr{D} is terminal.
Proof: Consider \mathcal{F} being a functor from \mathscr{C} to \mathscr{D}, \mathcal{G} being a functor from \mathscr{D} to \mathscr{C} such that \mathcal{F} is covariant and \mathcal{G} is covariant and $\mathcal{G} \circ \mathcal{F}=\mathrm{id}_{\mathscr{C}}$ and $\mathcal{F} \circ \mathcal{G}=\mathrm{id}_{\mathscr{D}}$. Consider \mathcal{F}_{1} being a functor from \mathscr{B} to \mathscr{C} such that \mathcal{F}_{1} is covariant and for every functor \mathcal{G} from \mathscr{B} to \mathscr{C} such that \mathcal{G} is covariant holds $\mathcal{F}_{1}=\mathcal{G}$. Set $\mathcal{F}_{2}=\mathcal{F} \circ \mathcal{F}_{1}$. For every functor \mathcal{G}_{1} from \mathscr{B} to \mathscr{D} such that \mathcal{G}_{1} is covariant holds $\mathcal{F}_{2}=\mathcal{G}_{1}$ by [15, (35)], [16, (10), (11)].
(27) Let us consider a category \mathscr{C}. Then \mathscr{C} is non empty and trivial if and only if $\mathscr{C} \cong 1$. The theorem is a consequence of (15), (4), and (26).
(28) Let us consider non empty categories \mathscr{C}, \mathscr{D}. Suppose \mathscr{C} is trivial and \mathscr{D} is trivial. Then $\mathscr{C} \cong \mathscr{D}$. The theorem is a consequence of (27) and (10).
Note that every category which is non empty and trivial is also terminal and every category which is terminal is also non empty and trivial.

Let \mathscr{C} be a category. The functor $\mathscr{C} \rightarrow \mathbf{1}$ yielding a covariant functor from \mathscr{C} to 1 is defined by
(Def. 5) not contradiction.
Now we state the proposition:
(29) Let us consider categories $\mathscr{C}, \mathscr{C}_{1}, \mathscr{C}_{2}$, a functor \mathcal{F}_{1} from \mathscr{C} to \mathscr{C}_{1}, and a functor \mathcal{F}_{2} from \mathscr{C} to \mathscr{C}_{2}. Suppose \mathcal{F}_{1} is covariant and \mathcal{F}_{2} is covariant. Then $\mathscr{C}_{1} \rightarrow \mathbf{1} \circ \mathcal{F}_{1}=\mathscr{C}_{2} \rightarrow \mathbf{1} \circ \mathcal{F}_{2}$.

3. Initial Objects

Let \mathscr{C} be a category structure and a be an object of \mathscr{C}. We say that a is initial if and only if
(Def. 6) for every object b of $\mathscr{C}, \operatorname{hom}(a, b) \neq \emptyset$ and there exists a morphism f from a to b such that for every morphism g from a to $b, f=g$.
Now we state the propositions:
(30) Let us consider a category structure \mathscr{C}, and an object b of \mathscr{C}. Then b is initial if and only if for every object a of \mathscr{C}, there exists a morphism f from b to a such that $\operatorname{hom}(b, a)=\{f\}$. The theorem is a consequence of (7) and (6).
(31) Let us consider category structure \mathscr{C} with identities, and an object a of \mathscr{C}. Suppose a is initial. Let us consider a morphism h from a to a. Then id- $a=h$.
(32) Let us consider a composable category structure \mathscr{C} with identities, and objects a, b of \mathscr{C}. If a is initial and b is initial, then a and b are isomorphic. The theorem is a consequence of (31).
(33) Let us consider a category \mathscr{C}, and objects a, b of \mathscr{C}. If b is initial and b and a are isomorphic, then a is initial.
(34) Let us consider a composable category structure \mathscr{C} with identities, objects a, b of \mathscr{C}, and a morphism f from a to b. Suppose $\operatorname{hom}(a, b) \neq \emptyset$ and b is initial. Then f is epimorphic.
Let \mathscr{C} be a category. We say that \mathscr{C} has initial objects if and only if
(Def. 7) there exists an object a of \mathscr{C} such that a is initial.
Now we state the proposition:
(35) $\mathbf{1}$ has initial objects.

Proof: Consider f being a morphism of 1 such that f is identity and Ob $\mathbf{1}=\{f\}$ and Mor $\mathbf{1}=\{f\}$. For every objects a, b of $\mathbf{1}$, every morphism of 1 is a morphism from a to b by [16, (20)].
Let us note that there exists a category which has initial objects.
Let \mathscr{C} be a category. We say that \mathscr{C} is initial if and only if
(Def. 8) for every category \mathscr{C}_{1}, there exists a functor \mathcal{F} from \mathscr{C} to \mathscr{C}_{1} such that \mathcal{F} is covariant and for every functor \mathcal{F}_{1} from \mathscr{C} to \mathscr{C}_{1} such that \mathcal{F}_{1} is covariant holds $\mathcal{F}=\mathcal{F}_{1}$.
One can verify that $\mathbf{0}$ is empty and initial and there exists a category which is strict, empty, and initial and there exists a category which is strict and non initial.

Now we state the propositions:
(36) Let us consider initial categories \mathscr{C}, \mathscr{D}. Then $\mathscr{C} \cong \mathscr{D}$.

Proof: There exists a functor \mathcal{F} from \mathscr{C} to \mathscr{D} and there exists a functor \mathcal{G} from \mathscr{D} to \mathscr{C} such that \mathcal{F} is covariant and \mathcal{G} is covariant and $\mathcal{G} \circ \mathcal{F}=\mathrm{id}_{\mathscr{C}}$ and $\mathcal{F} \circ \mathcal{G}=\mathrm{id}_{\mathscr{D}}$ by [15, (35)].
(37) Let us consider categories \mathscr{C}, \mathscr{D}. Suppose \mathscr{C} is initial and $\mathscr{C} \cong \mathscr{D}$. Then \mathscr{D} is initial.
Proof: Consider \mathcal{F} being a functor from \mathscr{C} to \mathscr{D}, \mathcal{G} being a functor from \mathscr{D} to \mathscr{C} such that \mathcal{F} is covariant and \mathcal{G} is covariant and $\mathcal{G} \circ \mathcal{F}=\mathrm{id}_{\mathscr{C}}$ and $\mathcal{F} \circ \mathcal{G}=\mathrm{id}_{\mathscr{D}}$. Consider \mathcal{F}_{1} being a functor from \mathscr{C} to \mathscr{B} such that \mathcal{F}_{1} is covariant and for every functor \mathcal{G} from \mathscr{C} to \mathscr{B} such that \mathcal{G} is covariant
holds $\mathcal{F}_{1}=\mathcal{G}$. Set $\mathcal{F}_{2}=\mathcal{F}_{1} \circ \mathcal{G}$. For every functor \mathcal{G}_{1} from \mathscr{D} to \mathscr{B} such that \mathcal{G}_{1} is covariant holds $\mathcal{F}_{2}=\mathcal{G}_{1}$ by [15, (35)], [16, (10), (11)].
Let us note that every category which is empty is also initial.
Let \mathscr{C} be a category. The functor $\mathbf{0} \rightarrow \mathscr{C}$ yielding a covariant functor from 0 to \mathscr{C} is defined by
(Def. 9) not contradiction.
Now we state the proposition:
(38) Let us consider categories $\mathscr{C}, \mathscr{C}_{1}, \mathscr{C}_{2}$, a functor \mathcal{F}_{1} from \mathscr{C}_{1} to \mathscr{C}, and a functor \mathcal{F}_{2} from \mathscr{C}_{2} to \mathscr{C}. Suppose \mathcal{F}_{1} is covariant and \mathcal{F}_{2} is covariant. Then $\mathcal{F}_{1} \circ \mathbf{0} \rightarrow \mathscr{C}_{1}=\mathcal{F}_{2} \circ \mathbf{0} \rightarrow \mathscr{C}_{2}$.

4. Categorical Products

Let \mathscr{C} be a category, a, b, c be objects of \mathscr{C}, and p_{1} be a morphism from c to a. Assume hom $(c, a) \neq \emptyset$. Let p_{2} be a morphism from c to b. Assume $\operatorname{hom}(c, b) \neq \emptyset$. We say that $\left\langle c, p_{1}, p_{2}\right\rangle$ is a product of a and b if and only if
(Def. 10) for every object c_{1} of \mathscr{C} and for every morphism q_{1} from c_{1} to a and for every morphism q_{2} from c_{1} to b such that $\operatorname{hom}\left(c_{1}, a\right) \neq \emptyset$ and $\operatorname{hom}\left(c_{1}, b\right) \neq$ \emptyset holds $\operatorname{hom}\left(c_{1}, c\right) \neq \emptyset$ and there exists a morphism h from c_{1} to c such that $p_{1} \cdot h=q_{1}$ and $p_{2} \cdot h=q_{2}$ and for every morphism h_{1} from c_{1} to c such that $p_{1} \cdot h_{1}=q_{1}$ and $p_{2} \cdot h_{1}=q_{2}$ holds $h=h_{1}$.
Now we state the propositions:
(39) Let us consider a category \mathscr{C}, objects c_{1}, c_{2}, a, b of \mathscr{C}, a morphism p_{1} from a to c_{1}, a morphism p_{2} from a to c_{2}, a morphism q_{1} from b to c_{1}, and a morphism q_{2} from b to c_{2}. Suppose $\operatorname{hom}\left(a, c_{1}\right) \neq \emptyset$ and $\operatorname{hom}\left(a, c_{2}\right) \neq \emptyset$ and $\operatorname{hom}\left(b, c_{1}\right) \neq \emptyset$ and $\operatorname{hom}\left(b, c_{2}\right) \neq \emptyset$ and $\left\langle a, p_{1}, p_{2}\right\rangle$ is a product of c_{1} and c_{2} and $\left\langle b, q_{1}, q_{2}\right\rangle$ is a product of c_{1} and c_{2}. Then a and b are isomorphic.
Proof: There exists a morphism f from a to b and there exists a morphism g from b to a such that $\operatorname{hom}(a, b) \neq \emptyset$ and $\operatorname{hom}(b, a) \neq \emptyset$ and $g \cdot f=\mathrm{id}-a$ and $f \cdot g=\mathrm{id}-b$ by [16, (23), (18)].
(40) Let us consider a category \mathscr{C}, objects c_{1}, c_{2}, d of \mathscr{C}, a morphism p_{1} from d to c_{1}, and a morphism p_{2} from d to c_{2}. Suppose $\operatorname{hom}\left(d, c_{1}\right) \neq \emptyset$ and $\operatorname{hom}\left(d, c_{2}\right) \neq \emptyset$ and $\left\langle d, p_{1}, p_{2}\right\rangle$ is a product of c_{1} and c_{2}. Then $\left\langle d, p_{2}, p_{1}\right\rangle$ is a product of c_{2} and c_{1}.
Let \mathscr{C} be a category. We say that \mathscr{C} has binary products if and only if
(Def. 11) for every objects a, b of \mathscr{C}, there exists an object d of \mathscr{C} and there exists a morphism p_{1} from d to a and there exists a morphism p_{2} from d to b
such that $\operatorname{hom}(d, a) \neq \emptyset$ and $\operatorname{hom}(d, b) \neq \emptyset$ and $\left\langle d, p_{1}, p_{2}\right\rangle$ is a product of a and b.
Now we state the proposition:
(41) $\mathbf{1}$ has binary products.

Proof: Set $\mathscr{C}=\mathbf{1}$. Consider f being a morphism of $\mathbf{1}$ such that f is identity and $\operatorname{Ob} \mathbf{1}=\{f\}$ and $\operatorname{Mor} \mathbf{1}=\{f\}$. For every objects o_{1}, o_{2} of \mathscr{C}, every morphism of \mathscr{C} is a morphism from o_{1} to o_{2} by [16, (20)]. Reconsider $p_{1}=f$ as a morphism from a to a. Reconsider $p_{2}=f$ as a morphism from a to b. For every object c_{1} of \mathscr{C} and for every morphism q_{1} from c_{1} to a and for every morphism q_{2} from c_{1} to b such that $\operatorname{hom}\left(c_{1}, a\right) \neq \emptyset$ and $\operatorname{hom}\left(c_{1}, b\right) \neq \emptyset$ holds $\operatorname{hom}\left(c_{1}, a\right) \neq \emptyset$ and there exists a morphism h from c_{1} to a such that $p_{1} \cdot h=q_{1}$ and $p_{2} \cdot h=q_{2}$ and for every morphism h_{1} from c_{1} to a such that $p_{1} \cdot h_{1}=q_{1}$ and $p_{2} \cdot h_{1}=q_{2}$ holds $h=h_{1}$.
Observe that there exists a category which has binary products.
Let \mathscr{C} be a category with binary products and c_{1}, c_{2} be objects of \mathscr{C}.
A categorical product of c_{1} and c_{2} is a triple object and is defined by
(Def. 12) there exists an object d of \mathscr{C} and there exists a morphism p_{1} from d to c_{1} and there exists a morphism p_{2} from d to c_{2} such that it $=\left\langle d, p_{1}, p_{2}\right\rangle$ and $\operatorname{hom}\left(d, c_{1}\right) \neq \emptyset$ and $\operatorname{hom}\left(d, c_{2}\right) \neq \emptyset$ and $\left\langle d, p_{1}, p_{2}\right\rangle$ is a product of c_{1} and c_{2}.
The functor $c_{1} \times c_{2}$ yielding an object of \mathscr{C} is defined by the term
(Def. 13) (the categorical product of c_{1} and $\left.c_{2}\right)_{\mathbf{1 , 3}}$.
The functor $\pi_{1}\left(c_{1} \boxtimes c_{2}\right)$ yielding a morphism from $c_{1} \times c_{2}$ to c_{1} is defined by the term
(Def. 14) (the categorical product of c_{1} and $\left.c_{2}\right)_{\mathbf{2}, 3}$.
The functor $\pi_{2}\left(c_{1} \boxtimes c_{2}\right)$ yielding a morphism from $c_{1} \times c_{2}$ to c_{2} is defined by the term
(Def. 15) (the categorical product of c_{1} and $\left.c_{2}\right)_{\mathbf{3}, 3}$.
Now we state the propositions:
(42) Let us consider a category \mathscr{C} with binary products, and objects a, b of \mathscr{C}. Then
(i) $\left\langle a \times b, \pi_{1}(a \boxtimes b), \pi_{2}(a \boxtimes b)\right\rangle$ is a product of a and b, and
(ii) $\operatorname{hom}(a \times b, a) \neq \emptyset$, and
(iii) $\operatorname{hom}(a \times b, b) \neq \emptyset$.
(43) Let us consider a category \mathscr{C} with binary products, and objects a, b, c of \mathscr{C}. Suppose $\operatorname{hom}(c, a) \neq \emptyset$ and $\operatorname{hom}(c, b) \neq \emptyset$. Then $\operatorname{hom}(c, a \times b) \neq \emptyset$. The theorem is a consequence of (42).
(44) Let us consider a category \mathscr{C} with binary products, and objects a, b, c, d of \mathscr{C}. Suppose $\operatorname{hom}(a, b) \neq \emptyset$ and $\operatorname{hom}(c, d) \neq \emptyset$. Then $\operatorname{hom}(a \times c, b \times d) \neq \emptyset$. The theorem is a consequence of (42).
Let \mathscr{C} be a category with binary products, a, b, c, d be objects of \mathscr{C}, and f be a morphism from a to b. Assume $\operatorname{hom}(a, b) \neq \emptyset$. Let g be a morphism from c to d. Assume hom $(c, d) \neq \emptyset$. The functor $f \times g$ yielding a morphism from $a \times c$ to $b \times d$ is defined by
(Def. 16) $\quad f \cdot \pi_{1}(a \boxtimes c)=\pi_{1}(b \boxtimes d) \cdot i t$ and $g \cdot \pi_{2}(a \boxtimes c)=\pi_{2}(b \boxtimes d) \cdot i t$.
Let $\mathscr{C}_{1}, \mathscr{C}_{2}, \mathscr{D}$ be categories and \mathcal{P}_{1} be a functor from \mathscr{D} to \mathscr{C}_{1}. Assume \mathcal{P}_{1} is covariant. Let \mathcal{P}_{2} be a functor from \mathscr{D} to \mathscr{C}_{2}. Assume \mathcal{P}_{2} is covariant. We say that $\left\langle\mathscr{D}, \mathcal{P}_{1}, \mathcal{P}_{2}\right\rangle$ is a product of \mathscr{C}_{1} and \mathscr{C}_{2} if and only if
(Def. 17) for every category \mathscr{D}_{1} and for every functor \mathcal{G}_{1} from \mathscr{D}_{1} to \mathscr{C}_{1} and for every functor \mathcal{G}_{2} from \mathscr{D}_{1} to \mathscr{C}_{2} such that \mathcal{G}_{1} is covariant and \mathcal{G}_{2} is covariant there exists a functor \mathcal{H} from \mathscr{D}_{1} to \mathscr{D} such that \mathcal{H} is covariant and $\mathcal{P}_{1} \circ \mathcal{H}=$ \mathcal{G}_{1} and $\mathcal{P}_{2} \circ \mathcal{H}=\mathcal{G}_{2}$ and for every functor \mathcal{H}_{1} from \mathscr{D}_{1} to \mathscr{D} such that \mathcal{H}_{1} is covariant and $\mathcal{P}_{1} \circ \mathcal{H}_{1}=\mathcal{G}_{1}$ and $\mathcal{P}_{2} \circ \mathcal{H}_{1}=\mathcal{G}_{2}$ holds $\mathcal{H}=\mathcal{H}_{1}$.
Now we state the propositions:
(45) Let us consider categories $\mathscr{C}_{1}, \mathscr{C}_{2}, \mathscr{A}, \mathscr{B}$, a functor \mathcal{P}_{1} from \mathscr{A} to \mathscr{C}_{1}, a functor \mathcal{P}_{2} from \mathscr{A} to \mathscr{C}_{2}, a functor \mathcal{Q}_{1} from \mathscr{B} to \mathscr{C}_{1}, and a functor \mathcal{Q}_{2} from \mathscr{B} to \mathscr{C}_{2}. Suppose \mathcal{P}_{1} is covariant and \mathcal{P}_{2} is covariant and \mathcal{Q}_{1} is covariant and \mathcal{Q}_{2} is covariant and $\left\langle\mathscr{A}, \mathcal{P}_{1}, \mathcal{P}_{2}\right\rangle$ is a product of \mathscr{C}_{1} and \mathscr{C}_{2} and $\left\langle\mathscr{B}, \mathcal{Q}_{1}, \mathcal{Q}_{2}\right\rangle$ is a product of \mathscr{C}_{1} and \mathscr{C}_{2}. Then $\mathscr{A} \cong \mathscr{B}$.
Proof: There exists a functor \mathcal{F}_{4} from \mathscr{A} to \mathscr{B} and there exists a functor \mathcal{G}_{3} from \mathscr{B} to \mathscr{A} such that \mathcal{F}_{4} is covariant and \mathcal{G}_{3} is covariant and $\mathcal{G}_{3} \circ \mathcal{F}_{4}=$ $\mathrm{id}_{\mathscr{A}}$ and $\mathcal{F}_{4} \circ \mathcal{G}_{3}=\mathrm{id}_{\mathscr{B}}$ by [16, (10), (11)], [15, (35)].
(46) Let us consider categories $\mathscr{C}_{1}, \mathscr{C}_{2}, \mathscr{D}$, a functor \mathcal{P}_{1} from \mathscr{D} to \mathscr{C}_{1}, and a functor \mathcal{P}_{2} from \mathscr{D} to \mathscr{C}_{2}. Suppose \mathcal{P}_{1} is covariant and \mathcal{P}_{2} is covariant and $\left\langle\mathscr{D}, \mathcal{P}_{1}, \mathcal{P}_{2}\right\rangle$ is a product of \mathscr{C}_{1} and \mathscr{C}_{2}. Then $\left\langle\mathscr{D}, \mathcal{P}_{2}, \mathcal{P}_{1}\right\rangle$ is a product of \mathscr{C}_{2} and \mathscr{C}_{1}.
Let $\mathscr{C}, \mathscr{C}_{1}, \mathscr{C}_{2}$ be categories, \mathcal{F}_{1} be a functor from \mathscr{C}_{1} to \mathscr{C}, and \mathcal{F}_{2} be a functor from \mathscr{C}_{2} to \mathscr{C}. We introduce the notation $\mathcal{F}_{1} \boxtimes \mathcal{F}_{2}$ as a synonym of $\llbracket \mathcal{F}_{1}, \mathcal{F}_{2} \rrbracket$.

Now we state the proposition:
(47) Let us consider categories $\mathscr{C}_{1}, \mathscr{C}_{2}$. Then $\left\langle\mathscr{C}_{1} \rightarrow \mathbf{1} \boxtimes \mathscr{C}_{2} \rightarrow \mathbf{1}, \pi_{1}\left(\left(\mathscr{C}_{1} \rightarrow \mathbf{1}\right) \boxtimes\right.\right.$ $\left.\left.\left(\mathscr{C}_{2} \rightarrow \mathbf{1}\right)\right), \pi_{2}\left(\left(\mathscr{C}_{1} \rightarrow \mathbf{1}\right) \boxtimes\left(\mathscr{C}_{2} \rightarrow \mathbf{1}\right)\right)\right\rangle$ is a product of \mathscr{C}_{1} and \mathscr{C}_{2}.
PROOF: Set $\mathcal{F}_{1}=\mathscr{C}_{1} \rightarrow \mathbf{1}$. Set $\mathcal{F}_{2}=\mathscr{C}_{2} \rightarrow \mathbf{1}$. For every category \mathscr{D}_{1} and for every functor \mathcal{G}_{1} from \mathscr{D}_{1} to \mathscr{C}_{1} and for every functor \mathcal{G}_{2} from \mathscr{D}_{1} to \mathscr{C}_{2} such that \mathcal{G}_{1} is covariant and \mathcal{G}_{2} is covariant there exists a functor \mathcal{H} from \mathscr{D}_{1} to $\mathcal{F}_{1} \boxtimes \mathcal{F}_{2}$ such that \mathcal{H} is covariant and $\pi_{1}\left(\mathcal{F}_{1} \boxtimes \mathcal{F}_{2}\right) \circ \mathcal{H}=\mathcal{G}_{1}$ and
$\pi_{2}\left(\mathcal{F}_{1} \boxtimes \mathcal{F}_{2}\right) \circ \mathcal{H}=\mathcal{G}_{2}$ and for every functor \mathcal{H}_{1} from \mathscr{D}_{1} to $\mathcal{F}_{1} \boxtimes \mathcal{F}_{2}$ such that \mathcal{H}_{1} is covariant and $\pi_{1}\left(\mathcal{F}_{1} \boxtimes \mathcal{F}_{2}\right) \circ \mathcal{H}_{1}=\mathcal{G}_{1}$ and $\pi_{2}\left(\mathcal{F}_{1} \boxtimes \mathcal{F}_{2}\right) \circ \mathcal{H}_{1}=\mathcal{G}_{2}$ holds $\mathcal{H}=\mathcal{H}_{1}$ by [16, (52)], (29).
Let $\mathscr{C}_{1}, \mathscr{C}_{2}$ be categories.
A categorical product of \mathscr{C}_{1} and \mathscr{C}_{2} is a triple object and is defined by
(Def. 18) there exists a strict category \mathscr{D} and there exists a functor \mathcal{P}_{1} from \mathscr{D} to \mathscr{C}_{1} and there exists a functor \mathcal{P}_{2} from \mathscr{D} to \mathscr{C}_{2} such that it $=\left\langle\mathscr{D}, \mathcal{P}_{1}, \mathcal{P}_{2}\right\rangle$ and \mathcal{P}_{1} is covariant and \mathcal{P}_{2} is covariant and $\left\langle\mathscr{D}, \mathcal{P}_{1}, \mathcal{P}_{2}\right\rangle$ is a product of \mathscr{C}_{1} and \mathscr{C}_{2}.
The functor $\mathscr{C}_{1} \times \mathscr{C}_{2}$ yielding a strict category is defined by the term
(Def. 19) (the categorical product of \mathscr{C}_{1} and $\left.\mathscr{C}_{2}\right)_{\mathbf{1 , 3}}$.
The functor $\pi_{1}\left(\mathscr{C}_{1} \boxtimes \mathscr{C}_{2}\right)$ yielding a functor from $\mathscr{C}_{1} \times \mathscr{C}_{2}$ to \mathscr{C}_{1} is defined by the term
(Def. 20) (the categorical product of \mathscr{C}_{1} and $\left.\mathscr{C}_{2}\right)_{\mathbf{2 , 3}}$.
The functor $\pi_{2}\left(\mathscr{C}_{1} \boxtimes \mathscr{C}_{2}\right)$ yielding a functor from $\mathscr{C}_{1} \times \mathscr{C}_{2}$ to \mathscr{C}_{2} is defined by the term
(Def. 21) (the categorical product of \mathscr{C}_{1} and $\left.\mathscr{C}_{2}\right)_{\mathbf{3}, 3}$.
Now we state the proposition:
(48) Let us consider categories $\mathscr{C}_{1}, \mathscr{C}_{2}$. Then $\left\langle\mathscr{C}_{1} \times \mathscr{C}_{2}, \pi_{1}\left(\mathscr{C}_{1} \boxtimes \mathscr{C}_{2}\right), \pi_{2}\left(\mathscr{C}_{1} \boxtimes \mathscr{C}_{2}\right)\right\rangle$ is a product of \mathscr{C}_{1} and \mathscr{C}_{2}.
Let $\mathscr{C}_{1}, \mathscr{C}_{2}$ be categories. Note that $\pi_{1}\left(\mathscr{C}_{1} \boxtimes \mathscr{C}_{2}\right)$ is covariant and $\pi_{2}\left(\mathscr{C}_{1} \boxtimes \mathscr{C}_{2}\right)$ is covariant.

Now we state the proposition:
(49) Let us consider categories $\mathscr{C}_{1}, \mathscr{C}_{2}$. Then $\mathscr{C}_{1} \times \mathscr{C}_{2}$ is not empty if and only if \mathscr{C}_{1} is not empty and \mathscr{C}_{2} is not empty. The theorem is a consequence of (48).

Let \mathscr{C}_{1} be an empty category and \mathscr{C}_{2} be a category. One can verify that $\mathscr{C}_{1} \times \mathscr{C}_{2}$ is empty.

Let \mathscr{C}_{1} be a category and \mathscr{C}_{2} be an empty category. Observe that $\mathscr{C}_{1} \times \mathscr{C}_{2}$ is empty.

Let \mathscr{C}_{1} be a non empty category and \mathscr{C}_{2} be a non empty category. One can verify that $\mathscr{C}_{1} \times \mathscr{C}_{2}$ is non empty.

Let $\mathscr{C}_{1}, \mathscr{C}_{2}, \mathscr{D}_{1}, \mathscr{D}_{2}$ be categories, \mathcal{F}_{1} be a functor from \mathscr{C}_{1} to \mathscr{D}_{1}, and \mathcal{F}_{2} be a functor from \mathscr{C}_{2} to \mathscr{D}_{2}. Assume \mathcal{F}_{1} is covariant and \mathcal{F}_{2} is covariant. The functor $\mathcal{F}_{1} \times \mathcal{F}_{2}$ yielding a functor from $\mathscr{C}_{1} \times \mathscr{C}_{2}$ to $\mathscr{D}_{1} \times \mathscr{D}_{2}$ is defined by
(Def. 22) it is covariant and $\mathcal{F}_{1} \circ \pi_{1}\left(\mathscr{C}_{1} \boxtimes \mathscr{C}_{2}\right)=\pi_{1}\left(\mathscr{D}_{1} \boxtimes \mathscr{D}_{2}\right) \circ$ it and $\mathcal{F}_{2} \circ \pi_{2}\left(\mathscr{C}_{1} \boxtimes \mathscr{C}_{2}\right)=$ $\pi_{2}\left(\mathscr{D}_{1} \boxtimes \mathscr{D}_{2}\right) \circ$ it.
Now we state the propositions:
(50) Let us consider categories $\mathscr{A}_{1}, \mathscr{A}_{2}, \mathscr{B}_{1}, \mathscr{B}_{2}, \mathscr{C}_{1}, \mathscr{C}_{2}$, a functor \mathcal{F}_{1} from \mathscr{A}_{1} to \mathscr{B}_{1}, a functor \mathcal{F}_{2} from \mathscr{A}_{2} to \mathscr{B}_{2}, a functor \mathcal{G}_{1} from \mathscr{B}_{1} to \mathscr{C}_{1}, and a functor \mathcal{G}_{2} from \mathscr{B}_{2} to \mathscr{C}_{2}. Suppose \mathcal{F}_{1} is covariant and \mathcal{G}_{1} is covariant and \mathcal{F}_{2} is covariant and \mathcal{G}_{2} is covariant. Then $\left(\mathcal{G}_{1} \times \mathcal{G}_{2}\right) \circ\left(\mathcal{F}_{1} \times \mathcal{F}_{2}\right)=$ $\left(\mathcal{G}_{1} \circ \mathcal{F}_{1}\right) \times\left(\mathcal{G}_{2} \circ \mathcal{F}_{2}\right)$.
(51) Let us consider categories $\mathscr{C}_{1}, \mathscr{C}_{2}$. Then $\operatorname{id}_{\mathscr{C}_{1}} \times \mathrm{id}_{\mathscr{C}_{2}}=\mathrm{id}_{\mathscr{C}_{1} \times \mathscr{C}_{2}}$.

Let x, y be objects. We introduce the notation KuratowskiPair (x, y) as a synonym of $\langle x, y\rangle$.

Let $\mathscr{C}_{1}, \mathscr{C}_{2}$ be categories, f_{1} be a morphism of \mathscr{C}_{1}, and f_{2} be a morphism of \mathscr{C}_{2}. The functor $\left\langle f_{1}, f_{2}\right\rangle$ yielding a morphism of $\mathscr{C}_{1} \times \mathscr{C}_{2}$ is defined by
(Def. 23) (i) $\pi_{1}\left(\mathscr{C}_{1} \boxtimes \mathscr{C}_{2}\right)(i t)=f_{1}$ and $\pi_{2}\left(\mathscr{C}_{1} \boxtimes \mathscr{C}_{2}\right)(i t)=f_{2}$, if \mathscr{C}_{1} is not empty and \mathscr{C}_{2} is not empty,
(ii) it $=$ the morphism of $\mathscr{C}_{1} \times \mathscr{C}_{2}$, otherwise.

Now we state the propositions:
(52) Let us consider categories $\mathscr{C}_{1}, \mathscr{C}_{2}$, and a morphism f of $\mathscr{C}_{1} \times \mathscr{C}_{2}$. Then there exists a morphism f_{1} of \mathscr{C}_{1} and there exists a morphism f_{2} of \mathscr{C}_{2} such that $f=\left\langle f_{1}, f_{2}\right\rangle$.
(53) Let us consider non empty categories $\mathscr{C}_{1}, \mathscr{C}_{2}$, morphisms f_{1}, g_{1} of \mathscr{C}_{1}, and morphisms f_{2}, g_{2} of \mathscr{C}_{2}. Suppose $\left\langle f_{1}, f_{2}\right\rangle=\left\langle g_{1}, g_{2}\right\rangle$. Then
(i) $f_{1}=g_{1}$, and
(ii) $f_{2}=g_{2}$.

Let us consider categories $\mathscr{C}_{1}, \mathscr{C}_{2}$, morphisms f_{1}, g_{1} of \mathscr{C}_{1}, and morphisms f_{2}, g_{2} of \mathscr{C}_{2}. Now we state the propositions:
(54) $\left\langle f_{1}, f_{2}\right\rangle \triangleright\left\langle g_{1}, g_{2}\right\rangle$ if and only if $f_{1} \triangleright g_{1}$ and $f_{2} \triangleright g_{2}$.
(55) Suppose $f_{1} \triangleright g_{1}$ and $f_{2} \triangleright g_{2}$. Then $\left\langle f_{1}, f_{2}\right\rangle \circ\left\langle g_{1}, g_{2}\right\rangle=\left\langle f_{1} \circ g_{1}, f_{2} \circ g_{2}\right\rangle$. The theorem is a consequence of (54) and (13).
Now we state the propositions:
(56) Let us consider categories $\mathscr{C}_{1}, \mathscr{C}_{2}$, a morphism f_{1} of \mathscr{C}_{1}, a morphism f_{2} of \mathscr{C}_{2}, and a morphism f of $\mathscr{C}_{1} \times \mathscr{C}_{2}$. Suppose $f=\left\langle f_{1}, f_{2}\right\rangle$ and \mathscr{C}_{1} is not empty and \mathscr{C}_{2} is not empty. Then f is identity if and only if f_{1} is identity and f_{2} is identity. The theorem is a consequence of $(52),(54),(55)$, and (4).
(57) Let us consider non empty categories $\mathscr{C}_{1}, \mathscr{C}_{2}$, categories $\mathscr{D}_{1}, \mathscr{D}_{2}$, a functor \mathcal{F}_{1} from \mathscr{C}_{1} to \mathscr{D}_{1}, a functor \mathcal{F}_{2} from \mathscr{C}_{2} to \mathscr{D}_{2}, a morphism c_{1} of \mathscr{C}_{1}, and a morphism c_{2} of \mathscr{C}_{2}. Suppose \mathcal{F}_{1} is covariant and \mathcal{F}_{2} is covariant. Then $\left(\mathcal{F}_{1} \times \mathcal{F}_{2}\right)\left(\left\langle c_{1}, c_{2}\right\rangle\right)=\left\langle\mathcal{F}_{1}\left(c_{1}\right), \mathcal{F}_{2}\left(c_{2}\right)\right\rangle$.

5. Natural Transformations

Let $\mathscr{C}_{1}, \mathscr{C}_{2}$ be categories, $\mathcal{F}_{1}, \mathcal{F}_{2}$ be functors from \mathscr{C}_{1} to \mathscr{C}_{2}, and τ be a functor from \mathscr{C}_{1} to \mathscr{C}_{2}. We say that τ is a natural transformation of \mathcal{F}_{1} and \mathcal{F}_{2} if and only if
(Def. 24) for every morphisms f_{1}, f_{2} of \mathscr{C}_{1} such that $f_{1} \triangleright f_{2}$ holds $\tau\left(f_{1}\right) \triangleright \mathcal{F}_{1}\left(f_{2}\right)$ and $\mathcal{F}_{2}\left(f_{1}\right) \triangleright \tau\left(f_{2}\right)$ and $\tau\left(f_{1} \circ f_{2}\right)=\tau\left(f_{1}\right) \circ \mathcal{F}_{1}\left(f_{2}\right)$ and $\tau\left(f_{1} \circ f_{2}\right)=\mathcal{F}_{2}\left(f_{1}\right) \circ \tau\left(f_{2}\right)$.
Now we state the propositions:
(58) Let us consider categories $\mathscr{C}_{1}, \mathscr{C}_{2}$, functors $\mathcal{F}_{1}, \mathcal{F}_{2}$ from \mathscr{C}_{1} to \mathscr{C}_{2}, and a functor τ from \mathscr{C}_{1} to \mathscr{C}_{2}. Suppose \mathcal{F}_{1} is covariant and \mathcal{F}_{2} is covariant. Then τ is a natural transformation of \mathcal{F}_{1} and \mathcal{F}_{2} if and only if for every morphisms f, f_{1}, f_{2} of \mathscr{C}_{1} such that f_{1} is identity and f_{2} is identity and $f_{1} \triangleright f$ and $f \triangleright f_{2}$ holds $\tau\left(f_{1}\right) \triangleright \mathcal{F}_{1}(f)$ and $\mathcal{F}_{2}(f) \triangleright \tau\left(f_{2}\right)$ and $\tau(f)=\tau\left(f_{1}\right) \circ$ $\mathcal{F}_{1}(f)$ and $\tau(f)=\mathcal{F}_{2}(f) \circ \tau\left(f_{2}\right)$.
Proof: For every morphisms g_{1}, g_{2} of \mathscr{C}_{1} such that $g_{1} \triangleright g_{2}$ holds $\tau\left(g_{1}\right) \triangleright$ $\mathcal{F}_{1}\left(g_{2}\right)$ and $\mathcal{F}_{2}\left(g_{1}\right) \triangleright \tau\left(g_{2}\right)$ and $\tau\left(g_{1} \circ g_{2}\right)=\tau\left(g_{1}\right) \circ \mathcal{F}_{1}\left(g_{2}\right)$ and $\tau\left(g_{1} \circ g_{2}\right)=$ $\mathcal{F}_{2}\left(g_{1}\right) \circ \tau\left(g_{2}\right)$ by [15, (1)], (5), (3), (13).
(59) Let us consider non empty categories $\mathscr{C}_{1}, \mathscr{C}_{2}$, covariant functors $\mathcal{F}_{1}, \mathcal{F}_{2}$ from \mathscr{C}_{1} to \mathscr{C}_{2}, and a function τ from $\operatorname{Ob} \mathscr{C}_{1}$ into Mor \mathscr{C}_{2}. Then there exists a functor τ_{1} from \mathscr{C}_{1} to \mathscr{C}_{2} such that $\tau=\tau_{1} \upharpoonright \mathrm{Ob} \mathscr{C}_{1}$ and τ_{1} is a natural transformation of \mathcal{F}_{1} and \mathcal{F}_{2} if and only if for every object a of $\mathscr{C}_{1}, \tau(a) \in \operatorname{hom}\left(\mathcal{F}_{1}(a), \mathcal{F}_{2}(a)\right)$ and for every objects a_{1}, a_{2} of \mathscr{C}_{1} and for every morphism f from a_{1} to a_{2} such that $\operatorname{hom}\left(a_{1}, a_{2}\right) \neq \emptyset$ holds $\tau\left(a_{2}\right) \circ \mathcal{F}_{1}(f)=\mathcal{F}_{2}(f) \circ \tau\left(a_{1}\right)$.
Proof: Define \mathcal{P} [object, object] \equiv for every morphism f of \mathscr{C}_{1} such that $\$_{1}=f$ holds $\$_{2}=\tau(\operatorname{cod} f) \circ \mathcal{F}_{1}(f)$. For every object x such that $x \in$ the carrier of \mathscr{C}_{1} there exists an object y such that $y \in$ the carrier of \mathscr{C}_{2} and $\mathcal{P}[x, y]$. Consider τ_{1} being a function from the carrier of \mathscr{C}_{1} into the carrier of \mathscr{C}_{2} such that for every object x such that $x \in$ the carrier of \mathscr{C}_{1} holds $\mathcal{P}\left[x, \tau_{1}(x)\right]$ from [7, Sch. 1]. For every object x such that $x \in \operatorname{dom} \tau$ holds $\tau(x)=\left(\tau_{1} \upharpoonright \mathrm{Ob} \mathscr{C}_{1}\right)(x)$ by [15, (22)], [16, (20)], [15, (32)], [16, (5), (6)]. For every morphisms f, f_{1}, f_{2} of \mathscr{C}_{1} such that f_{1} is identity and f_{2} is identity and $f_{1} \triangleright f$ and $f \triangleright f_{2}$ holds $\tau_{1}\left(f_{1}\right) \triangleright \mathcal{F}_{1}(f)$ and $\mathcal{F}_{2}(f) \triangleright \tau_{1}\left(f_{2}\right)$ and $\tau_{1}(f)=\tau_{1}\left(f_{1}\right) \circ \mathcal{F}_{1}(f)$ and $\tau_{1}(f)=\mathcal{F}_{2}(f) \circ \tau_{1}\left(f_{2}\right)$ by [15, (22)], [16, (20), (6)], [15, (32)].
(60) Let us consider object-categories \mathscr{C}, \mathscr{D}, functors $\mathcal{F}_{1}, \mathcal{F}_{2}$ from \mathscr{C} to \mathscr{D}, and functors $\mathcal{G}_{1}, \mathcal{G}_{2}, \tau$ from alter \mathscr{C} to alter \mathscr{D}. Suppose $\mathcal{F}_{1}=\mathcal{G}_{1}$ and $\mathcal{F}_{2}=\mathcal{G}_{2}$ and τ is a natural transformation of \mathcal{G}_{1} and \mathcal{G}_{2}. Then (IdMap $\left.\mathscr{C}\right) \cdot \tau$ is a natural transformation from \mathcal{F}_{1} to \mathcal{F}_{2}.

Proof: For every object a of $\mathscr{C}, \tau\left(\mathrm{id}_{a}\right) \in \operatorname{hom}\left(\mathcal{F}_{1}(a), \mathcal{F}_{2}(a)\right)$ by [15, (41), (24), (42)]. Reconsider $\tau_{1}=\tau$ as a function from the carrier' of \mathscr{C} into the carrier' of \mathscr{D}. There exists a transformation t from \mathcal{F}_{1} to \mathcal{F}_{2} such that $t=(\operatorname{IdMap} \mathscr{C}) \cdot \tau_{1}$ and for every objects a, b of $\mathscr{C} \operatorname{such}$ that $\operatorname{hom}(a, b) \neq \emptyset$ for every morphism f from a to $b, t(b) \cdot \mathcal{F}_{1 f}=\mathcal{F}_{2 f} \cdot t(a)$ by [6, (13)], [5, (1), (15), (21)]. Consider t being a transformation from \mathcal{F}_{1} to \mathcal{F}_{2} such that $t=(\operatorname{IdMap} \mathscr{C}) \cdot \tau_{1}$ and for every objects a, b of $\mathscr{C} \operatorname{such}$ that $\operatorname{hom}(a, b) \neq \emptyset$ for every morphism f from a to $b, t(b) \cdot \mathcal{F}_{1 f}=\mathcal{F}_{2 f} \cdot t(a)$.
Let \mathscr{C}, \mathscr{D} be categories and $\mathcal{F}_{1}, \mathcal{F}_{2}$ be functors from \mathscr{C} to \mathscr{D}. We say that \mathcal{F}_{1} is naturally transformable to \mathcal{F}_{2} if and only if
(Def. 25) there exists a functor τ from \mathscr{C} to \mathscr{D} such that τ is a natural transformation of \mathcal{F}_{1} and \mathcal{F}_{2}.
Assume \mathcal{F}_{1} is naturally transformable to \mathcal{F}_{2}.
A natural transformation from \mathcal{F}_{1} to \mathcal{F}_{2} is a functor from \mathscr{C} to \mathscr{D} and is defined by
(Def. 26) it is a natural transformation of \mathcal{F}_{1} and \mathcal{F}_{2}.
Now we state the proposition:
(61) Let us consider categories \mathscr{C}, \mathscr{D}, and a functor \mathcal{F} from \mathscr{C} to \mathscr{D}. Suppose \mathcal{F} is covariant. Then \mathcal{F} is a natural transformation of \mathcal{F} and \mathcal{F}. The theorem is a consequence of (58).
Let \mathscr{C}, \mathscr{D} be categories and $\mathcal{F}, \mathcal{F}_{1}, \mathcal{F}_{2}$ be functors from \mathscr{C} to \mathscr{D}. Assume \mathcal{F}_{1} is naturally transformable to \mathcal{F} and \mathcal{F} is naturally transformable to \mathcal{F}_{2} and \mathcal{F} is covariant and \mathcal{F}_{1} is covariant and \mathcal{F}_{2} is covariant. Let τ_{1} be a natural transformation from \mathcal{F}_{1} to \mathcal{F} and τ_{2} be a natural transformation from \mathcal{F} to \mathcal{F}_{2}. The functor $\tau_{2}{ }^{\circ} \tau_{1}$ yielding a natural transformation from \mathcal{F}_{1} to \mathcal{F}_{2} is defined by
(Def. 27) for every morphisms f, f_{1}, f_{2} of \mathscr{C} such that f_{1} is identity and f_{2} is identity and $f \triangleright f_{1}$ and $f_{2} \triangleright f$ holds $i t(f)=\left(\tau_{2}\left(f_{2}\right) \circ \mathcal{F}(f)\right) \circ \tau_{1}\left(f_{1}\right)$.
Now we state the proposition:
(62) Let us consider categories \mathscr{C}, \mathscr{D}, and functors $\mathcal{F}, \mathcal{F}_{1}, \mathcal{F}_{2}$ from \mathscr{C} to \mathscr{D}. Suppose \mathcal{F}_{1} is naturally transformable to \mathcal{F} and \mathcal{F} is naturally transformable to \mathcal{F}_{2} and covariant and \mathcal{F}_{1} is covariant and \mathcal{F}_{2} is covariant. Then \mathcal{F}_{1} is naturally transformable to \mathcal{F}_{2}.
Let $\mathscr{C}_{1}, \mathscr{C}_{2}$ be categories. The functor Functors $\left(\mathscr{C}_{2}, \mathscr{C}_{1}\right)$ yielding a strict category is defined by
(Def. 28) the carrier of it $=\left\{\left\langle\left\langle\mathcal{F}_{1}, \mathcal{F}_{2}\right\rangle, \tau\right\rangle\right.$, where $\mathcal{F}_{1}, \mathcal{F}_{2}$ are functors from \mathscr{C}_{1} to \mathscr{C}_{2}, τ is a natural transformation from \mathcal{F}_{1} to $\mathcal{F}_{2}: \mathcal{F}_{1}$ is covariant and \mathcal{F}_{2} is covariant and \mathcal{F}_{1} is naturally transformable to $\left.\mathcal{F}_{2}\right\}$ and the composi-
tion of it $=\left\{\left\langle\left\langle x_{2}, x_{1}\right\rangle, x_{3}\right\rangle\right.$, where x_{1}, x_{2}, x_{3} are elements of the carrier of it : there exist functors $\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}$ from \mathscr{C}_{1} to \mathscr{C}_{2} and there exists a natural transformation τ_{1} from \mathcal{F}_{1} to \mathcal{F}_{2} and there exists a natural transformati-on τ_{2} from \mathcal{F}_{2} to \mathcal{F}_{3} such that $x_{1}=\left\langle\left\langle\mathcal{F}_{1}, \mathcal{F}_{2}\right\rangle, \tau_{1}\right\rangle$ and $x_{2}=$ $\left\langle\left\langle\mathcal{F}_{2}, \mathcal{F}_{3}\right\rangle, \tau_{2}\right\rangle$ and $\left.x_{3}=\left\langle\left\langle\mathcal{F}_{1}, \mathcal{F}_{3}\right\rangle, \tau_{2}{ }^{\circ} \tau_{1}\right\rangle\right\}$.
Let \mathscr{C}_{1} be a non empty category and \mathscr{C}_{2} be an empty category. One can verify that Functors $\left(\mathscr{C}_{2}, \mathscr{C}_{1}\right)$ is empty.

Let \mathscr{C}_{1} be an empty category and \mathscr{C}_{2} be a category. Let us observe that Functors $\left(\mathscr{C}_{2}, \mathscr{C}_{1}\right)$ is non empty and trivial.

Let \mathscr{C}_{1} be a non empty category and \mathscr{C}_{2} be a non empty category. Let us note that Functors $\left(\mathscr{C}_{2}, \mathscr{C}_{1}\right)$ is non empty.

Now we state the proposition:
(63) Let us consider non empty categories $\mathscr{C}_{1}, \mathscr{C}_{2}$, and morphisms f_{1}, f_{2} of Functors $\left(\mathscr{C}_{2}, \mathscr{C}_{1}\right)$. Then $f_{1} \triangleright f_{2}$ if and only if there exist covariant functors $\mathcal{F}, \mathcal{F}_{1}, \mathcal{F}_{2}$ from \mathscr{C}_{1} to \mathscr{C}_{2} and there exists a natural transformation τ_{1} from \mathcal{F}_{1} to \mathcal{F} and there exists a natural transformation τ_{2} from \mathcal{F} to \mathcal{F}_{2} such that $f_{1}=\left\langle\left\langle\mathcal{F}, \mathcal{F}_{2}\right\rangle, \tau_{2}\right\rangle$ and $f_{2}=\left\langle\left\langle\mathcal{F}_{1}, \mathcal{F}\right\rangle, \tau_{1}\right\rangle$ and $f_{1} \circ f_{2}=\left\langle\left\langle\mathcal{F}_{1}\right.\right.$, $\left.\left.\mathcal{F}_{2}\right\rangle, \tau_{2}{ }^{\circ} \tau_{1}\right\rangle$ and for every morphisms g_{1}, g_{2} of \mathscr{C}_{1} such that $g_{2} \triangleright g_{1}$ holds $\tau_{2}\left(g_{2}\right) \triangleright \tau_{1}\left(g_{1}\right)$ and $\left(\tau_{2} \circ \tau_{1}\right)\left(g_{2} \circ g_{1}\right)=\tau_{2}\left(g_{2}\right) \circ \tau_{1}\left(g_{1}\right)$.
Proof: If $f_{1} \triangleright f_{2}$, then there exist covariant functors $\mathcal{F}, \mathcal{F}_{1}, \mathcal{F}_{2}$ from \mathscr{C}_{1} to \mathscr{C}_{2} and there exists a natural transformation τ_{1} from \mathcal{F}_{1} to \mathcal{F} and there exists a natural transformation τ_{2} from \mathcal{F} to \mathcal{F}_{2} such that $f_{1}=\langle\langle\mathcal{F}$, $\left.\left.\mathcal{F}_{2}\right\rangle, \tau_{2}\right\rangle$ and $f_{2}=\left\langle\left\langle\mathcal{F}_{1}, \mathcal{F}\right\rangle, \tau_{1}\right\rangle$ and $f_{1} \circ f_{2}=\left\langle\left\langle\mathcal{F}_{1}, \mathcal{F}_{2}\right\rangle, \tau_{2} \circ \tau_{1}\right\rangle$ and for every morphisms g_{1}, g_{2} of \mathscr{C}_{1} such that $g_{2} \triangleright g_{1}$ holds $\tau_{2}\left(g_{2}\right) \triangleright \tau_{1}\left(g_{1}\right)$ and $\left(\tau_{2} \circ \tau_{1}\right)\left(g_{2} \circ g_{1}\right)=\tau_{2}\left(g_{2}\right) \circ \tau_{1}\left(g_{1}\right)$ by [6, (1)], (5), (58), [16, (5)].
Let us consider non empty categories $\mathscr{C}_{1}, \mathscr{C}_{2}$ and a morphism f of Functors $\left(\mathscr{C}_{2}\right.$, $\left.\mathscr{C}_{1}\right)$. Now we state the propositions:
(64) f is identity if and only if there exists a covariant functor \mathcal{F} from \mathscr{C}_{1} to \mathscr{C}_{2} such that $f=\langle\langle\mathcal{F}, \mathcal{F}\rangle, \mathcal{F}\rangle$.
Proof: Set $\mathscr{C}=$ Functors $\left(\mathscr{C}_{2}, \mathscr{C}_{1}\right)$. If f is identity, then there exists a covariant functor \mathcal{F} from \mathscr{C}_{1} to \mathscr{C}_{2} such that $f=\langle\langle\mathcal{F}, \mathcal{F}\rangle, \mathcal{F}\rangle$ by [15, (24)], (63), (61), (5). Consider \mathcal{F} being a covariant functor from \mathscr{C}_{1} to \mathscr{C}_{2} such that $f=\langle\langle\mathcal{F}, \mathcal{F}\rangle, \mathcal{F}\rangle$. For every morphism f_{1} of \mathscr{C} such that $f \triangleright f_{1}$ holds $f \circ f_{1}=f_{1}$ by (63), (5), (4), [7, (12)].
(65) There exist covariant functors $\mathcal{F}_{1}, \mathcal{F}_{2}$ from \mathscr{C}_{1} to \mathscr{C}_{2} and there exists a natural transformation τ from \mathcal{F}_{1} to \mathcal{F}_{2} such that $f=\left\langle\left\langle\mathcal{F}_{1}, \mathcal{F}_{2}\right\rangle, \tau\right\rangle$ and $\operatorname{dom} f=\left\langle\left\langle\mathcal{F}_{1}, \mathcal{F}_{1}\right\rangle, \mathcal{F}_{1}\right\rangle$ and $\operatorname{cod} f=\left\langle\left\langle\mathcal{F}_{2}, \mathcal{F}_{2}\right\rangle, \mathcal{F}_{2}\right\rangle$. The theorem is a consequence of (63) and (64).

6. Exponential Objects

Let \mathscr{C} be a category with binary products, a, b, c be objects of \mathscr{C}, and e be a morphism from $c \times a$ to b. Assume $\operatorname{hom}(c \times a, b) \neq \emptyset$. We say that $\langle c, e\rangle$ is an exponent of a and b if and only if
(Def. 29) for every object d of \mathscr{C} and for every morphism f from $d \times a$ to b such that $\operatorname{hom}(d \times a, b) \neq \emptyset$ holds $\operatorname{hom}(d, c) \neq \emptyset$ and there exists a morphism h from d to c such that $f=e \cdot(h \times \mathrm{id}-a)$ and for every morphism h_{1} from d to c such that $f=e \cdot\left(h_{1} \times\right.$ id- $\left.a\right)$ holds $h=h_{1}$.
Now we state the propositions:
(66) Let us consider a category \mathscr{C} with binary products, objects a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} of \mathscr{C}, a morphism f_{1} from a_{1} to b_{1}, a morphism f_{2} from a_{2} to b_{2}, a morphism g_{1} from b_{1} to c_{1}, and a morphism g_{2} from b_{2} to c_{2}. Suppose $\operatorname{hom}\left(a_{1}, b_{1}\right) \neq \emptyset$ and $\operatorname{hom}\left(b_{1}, c_{1}\right) \neq \emptyset$ and $\operatorname{hom}\left(a_{2}, b_{2}\right) \neq \emptyset$ and $\operatorname{hom}\left(b_{2}, c_{2}\right) \neq \emptyset$. Then $\left(g_{1} \times g_{2}\right) \cdot\left(f_{1} \times f_{2}\right)=g_{1} \cdot f_{1} \times\left(g_{2} \cdot f_{2}\right)$. The theorem is a consequence of (42) and (44).
(67) Let us consider a category \mathscr{C} with binary products, and objects a, b of \mathscr{C}. Then id $-a \times \mathrm{id}-b=\operatorname{id}-(a \times b)$. The theorem is a consequence of (42).
(68) Let us consider a category \mathscr{C} with binary products, objects a, b, c_{1}, c_{2} of \mathscr{C}, a morphism e_{1} from $c_{1} \times a$ to b, and a morphism e_{2} from $c_{2} \times a$ to b. Suppose $\operatorname{hom}\left(c_{1} \times a, b\right) \neq \emptyset$ and $\operatorname{hom}\left(c_{2} \times a, b\right) \neq \emptyset$ and $\left\langle c_{1}, e_{1}\right\rangle$ is an exponent of a and b and $\left\langle c_{2}, e_{2}\right\rangle$ is an exponent of a and b. Then c_{1} and c_{2} are isomorphic.
Proof: There exists a morphism f from c_{1} to c_{2} such that f is isomorphism by (44), [16, (23)], (66), [16, (18)].
Let \mathscr{C} be a category with binary products. We say that \mathscr{C} has exponential objects if and only if
(Def. 30) for every objects a, b of \mathscr{C}, there exists an object c of \mathscr{C} and there exists a morphism e from $c \times a$ to b such that $\operatorname{hom}(c \times a, b) \neq \emptyset$ and $\langle c, e\rangle$ is an exponent of a and b.
One can check that $\mathbf{1}$ has binary products.
Now we state the proposition:
(69) $\mathbf{1}$ has exponential objects.

Proof: Set $\mathscr{C}=\mathbf{1}$. Consider f being a morphism of $\mathbf{1}$ such that f is identity and $\operatorname{Ob} \mathbf{1}=\{f\}$ and $\operatorname{Mor} \mathbf{1}=\{f\}$. For every objects o_{1}, o_{2} of \mathscr{C}, every morphism of \mathscr{C} is a morphism from o_{1} to o_{2} by [16, (20)]. For every objects a, b of \mathscr{C}, there exists an object c of \mathscr{C} and there exists a morphism e from $c \times a$ to b such that $\operatorname{hom}(c \times a, b) \neq \emptyset$ and $\langle c, e\rangle$ is an exponent of a and b.

Let us observe that there exists a category with binary products which has exponential objects.

Let \mathscr{C} be a category with exponential objects binary products and a, b be objects of \mathscr{C}.

A categorical exponent of a and b is a pair object and is defined by
(Def. 31) there exists an object c of \mathscr{C} and there exists a morphism e from $c \times a$ to b such that it $=\langle c, e\rangle$ and $\operatorname{hom}(c \times a, b) \neq \emptyset$ and $\langle c, e\rangle$ is an exponent of a and b.

The functor b^{a} yielding an object of \mathscr{C} is defined by the term
(Def. 32) (the categorical exponent of a and $b)_{\mathbf{1}}$.
The functor $\operatorname{eval}(a, b)$ yielding a morphism from $b^{a} \times a$ to b is defined by the term
(Def. 33) (the categorical exponent of a and $b)_{\mathbf{2}}$.
Now we state the propositions:
(70) Let us consider a category \mathscr{C} with exponential objects binary products, and objects a, b of \mathscr{C}. Then
(i) $\operatorname{hom}\left(b^{a} \times a, b\right) \neq \emptyset$, and
(ii) $\left\langle b^{a}, \operatorname{eval}(a, b)\right\rangle$ is an exponent of a and b.
(71) Let us consider a category \mathscr{C} with exponential objects binary products, and objects a, b, c of \mathscr{C}. Suppose $\operatorname{hom}(c \times a, b) \neq \emptyset$. Then there exists a function L from $\operatorname{hom}(c \times a, b)$ into $\operatorname{hom}\left(c, b^{a}\right)$ such that
(i) for every morphism f from $c \times a$ to b and for every morphism h from c to b^{a} such that $h=L(f)$ holds $\operatorname{eval}(a, b) \cdot(h \times \mathrm{id}-a)=f$, and
(ii) L is bijective.

Proof: $\operatorname{hom}\left(b^{a} \times a, b\right) \neq \emptyset$ and $\left\langle b^{a}, \operatorname{eval}(a, b)\right\rangle$ is an exponent of a and b. Define \mathcal{P} [object, object] \equiv for every morphism f from $c \times a$ to b such that $f=\$_{1}$ there exists a morphism h from c to b^{a} such that $h=\$_{2}$ and $f=\operatorname{eval}(a, b) \cdot(h \times \mathrm{id}-a)$ and for every morphism h_{1} from c to b^{a} such that $f=\operatorname{eval}(a, b) \cdot\left(h_{1} \times \operatorname{id}-a\right)$ holds $h=h_{1}$. For every object x such that $x \in \operatorname{hom}(c \times a, b)$ there exists an object y such that $y \in \operatorname{hom}\left(c, b^{a}\right)$ and $\mathcal{P}[x, y]$. Consider L being a function from $\operatorname{hom}(c \times a, b)$ into $\operatorname{hom}\left(c, b^{a}\right)$ such that for every object x such that $x \in \operatorname{hom}(c \times a, b)$ holds $\mathcal{P}[x, L(x)]$ from [7, Sch. 1]. There exists an object y such that $y \in \operatorname{hom}\left(c, b^{a}\right)$. For every morphism f from $c \times a$ to b and for every morphism h from c to b^{a} such that $h=L(f)$ holds $\operatorname{eval}(a, b) \cdot(h \times \operatorname{id}-a)=f$. For every objects x_{1}, x_{2} such that $x_{1}, x_{2} \in \operatorname{hom}(c \times a, b)$ and $L\left(x_{1}\right)=L\left(x_{2}\right)$ holds $x_{1}=x_{2}$. For every object y such that $y \in \operatorname{hom}\left(c, b^{a}\right)$ holds $y \in \operatorname{rng} L$ by [6, (3)].

Let $\mathscr{A}, \mathscr{B}, \mathscr{C}$ be categories and \mathcal{E} be a functor from $\mathscr{C} \times \mathscr{A}$ to \mathscr{B}. Assume \mathcal{E} is covariant. We say that $\langle\mathscr{C}, \mathcal{E}\rangle$ is an exponent of \mathscr{A} and \mathscr{B} if and only if
(Def. 34) for every category \mathscr{D} and for every functor \mathcal{F} from $\mathscr{D} \times \mathscr{A}$ to \mathscr{B} such that \mathcal{F} is covariant there exists a functor \mathcal{H} from \mathscr{D} to \mathscr{C} such that \mathcal{H} is covariant and $\mathcal{F}=\mathcal{E} \circ\left(\mathcal{H} \times \operatorname{id}_{\mathscr{A}}\right)$ and for every functor \mathcal{H}_{1} from \mathscr{D} to \mathscr{C} such that \mathcal{H}_{1} is covariant and $\mathcal{F}=\mathcal{E} \circ\left(\mathcal{H}_{1} \times \operatorname{id}_{\mathscr{A}}\right)$ holds $\mathcal{H}=\mathcal{H}_{1}$.
Let $\mathscr{C}_{1}, \mathscr{C}_{2}$ be categories.
A categorical exponent of \mathscr{C}_{1} and \mathscr{C}_{2} is a pair object and is defined by
(Def. 35) there exists a category \mathscr{C} and there exists a functor \mathcal{E} from $\mathscr{C} \times \mathscr{C}_{1}$ to \mathscr{C}_{2} such that $i t=\langle\mathscr{C}, \mathcal{E}\rangle$ and \mathcal{E} is covariant and $\langle\mathscr{C}, \mathcal{E}\rangle$ is an exponent of \mathscr{C}_{1} and \mathscr{C}_{2}.
The functor $\mathscr{C}_{2}^{\mathscr{C}_{1}}$ yielding a category is defined by the term
(Def. 36) (the categorical exponent of \mathscr{C}_{1} and $\left.\mathscr{C}_{2}\right)_{\mathbf{1}}$.
The functor eval $\left(\mathscr{C}_{1}, \mathscr{C}_{2}\right)$ yielding a functor from $\mathscr{C}_{2} \mathscr{C}_{1} \times \mathscr{C}_{1}$ to \mathscr{C}_{2} is defined by the term
(Def. 37) (the categorical exponent of \mathscr{C}_{1} and $\left.\mathscr{C}_{2}\right)_{\mathbf{2}}$.
Now we state the propositions:
(72) Let us consider categories $\mathscr{C}_{1}, \mathscr{C}_{2}$. Then $\left\langle\mathscr{C}_{2}^{\mathscr{C}_{1}}, \operatorname{eval}\left(\mathscr{C}_{1}, \mathscr{C}_{2}\right)\right\rangle$ is an exponent of \mathscr{C}_{1} and \mathscr{C}_{2}.
(73) Let us consider categories $\mathscr{A}, \mathscr{B}, \mathscr{C}_{1}, \mathscr{C}_{2}$, a functor \mathcal{E}_{1} from $\mathscr{C}_{1} \times \mathscr{A}$ to \mathscr{B}, and a functor \mathcal{E}_{2} from $\mathscr{C}_{2} \times \mathscr{A}$ to \mathscr{B}. Suppose \mathcal{E}_{1} is covariant and \mathcal{E}_{2} is covariant and $\left\langle\mathscr{C}_{1}, \mathcal{E}_{1}\right\rangle$ is an exponent of \mathscr{A} and \mathscr{B} and $\left\langle\mathscr{C}_{2}, \mathcal{E}_{2}\right\rangle$ is an exponent of \mathscr{A} and \mathscr{B}. Then $\mathscr{C}_{1} \cong \mathscr{C}_{2}$.
Proof: There exists a functor \mathcal{F} from \mathscr{C}_{1} to \mathscr{C}_{2} and there exists a functor \mathcal{G} from \mathscr{C}_{2} to \mathscr{C}_{1} such that \mathcal{F} is covariant and \mathcal{G} is covariant and $\mathcal{G} \circ \mathcal{F}=\mathrm{id}_{\mathscr{C}_{1}}$ and $\mathcal{F} \circ \mathcal{G}=\mathrm{id}_{\mathscr{C}_{2}}$ by [16, (10)], (50), [16, (11)], [15, (35)].
Let $\mathscr{C}_{1}, \mathscr{C}_{2}$ be categories. Observe that $\operatorname{eval}\left(\mathscr{C}_{1}, \mathscr{C}_{2}\right)$ is covariant.
Let \mathscr{C}_{1} be a non empty category and \mathscr{C}_{2} be an empty category. Let us note that $\mathscr{C}_{2} \mathscr{C}_{1}$ is empty.

Let \mathscr{C}_{1} be an empty category and \mathscr{C}_{2} be a category. Let us observe that $\mathscr{C}_{2}^{\mathscr{C}_{1}}$ is non empty and trivial.

Let \mathscr{C}_{1} be a non empty category and \mathscr{C}_{2} be a non empty category. One can verify that $\mathscr{C}_{2}^{\mathscr{C}_{1}}$ is non empty.

Now we state the proposition:
(74) Let us consider categories $\mathscr{C}_{1}, \mathscr{C}_{2}$. Then Functors $\left(\mathscr{C}_{2}, \mathscr{C}_{1}\right) \cong \mathscr{C}_{2}^{\mathscr{C}_{1}}$. The theorem is a consequence of (28), (72), and (73).

References

[1] Jiri Adamek, Horst Herrlich, and George E. Strecker. Abstract and Concrete Categories: The Joy of Cats. Dover Publication, New York, 2009.
[2] Grzegorz Bancerek. Cardinal numbers Formalized Mathematics, 1(2):377-382, 1990.
[3] Grzegorz Bancerek. The ordinal numbers Formalized Mathematics, 1(1):91-96, 1990.
[4] Francis Borceaux. Handbook of Categorical Algebra I. Basic Category Theory, volume 50 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1994.
[5] Czesław Byliński. Introduction to categories and functors Formalized Mathematics, 1 (2):409-420, 1990.
[6] Czesław Byliński. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[7] Czesław Byliński. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Czesław Byliński. Some basic properties of sets Formalized Mathematics, 1(1):47-53, 1990.
[10] Agata Darmochwał. Finite sets Formalized Mathematics, 1(1):165-167, 1990.
[11] Krzysztof Hryniewiecki. Graphs. Formalized Mathematics, 2(3):365-370, 1991.
[12] F. William Lawvere. Functorial semantics of algebraic theories and some algebraic problems in the context of functorial semantics of algebraic theories. Reprints in Theory and Applications of Categories, 5:1-121, 2004.
[13] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics. Springer Verlag, New York, Heidelberg, Berlin, 1971.
[14] Beata Padlewska. Families of sets Formalized Mathematics, 1(1):147-152, 1990.
[15] Marco Riccardi. Object-free definition of categories. Formalized Mathematics, 21(3): 193-205, 2013. doi 10.2478/forma-2013-0021.
[16] Marco Riccardi. Categorical pullbacks. Formalized Mathematics, 23(1):1-14, 2015. doi 10.2478/forma-2015-0001.
[17] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[18] Andrzej Trybulec. Isomorphisms of categories Formalized Mathematics, 2(5):629-634, 1991.
[19] Andrzej Trybulec. Natural transformations. Discrete categories. Formalized Mathematics, 2(4):467-474, 1991.
[20] Zinaida Trybulec. Properties of subsets Formalized Mathematics, 1(1):67-71, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
[22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received August 15, 2015

