

Matrix of \mathbb{Z} -module¹

Yuichi Futa Japan Advanced Institute of Science and Technology Ishikawa, Japan Hiroyuki Okazaki Shinshu University Nagano, Japan

Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this article, we formalize a matrix of \mathbb{Z} -module and its properties. Specially, we formalize a matrix of a linear transformation of \mathbb{Z} -module, a bilinear form and a matrix of the bilinear form (Gramian matrix). We formally prove that for a finite-rank free \mathbb{Z} -module V, determinant of its Gramian matrix is constant regardless of selection of its basis. \mathbb{Z} -module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic systems with lattices [22] and coding theory [14]. Some theorems in this article are described by translating theorems in [24], [26] and [19] into theorems of \mathbb{Z} -module.

MSC: 11E39 13C10 03B35

Keywords: matrix of Z-module; matrix of linear transformation; bilinear form

 $\mathrm{MML} \ \mathrm{identifier:} \ \mathtt{ZMATRLIN}, \ \mathrm{version:} \ \mathtt{8.1.04} \ \mathtt{5.31.1231}$

The notation and terminology used in this paper have been introduced in the following articles: [6], [1], [7], [5], [8], [13], [30], [9], [10], [2], [41], [34], [23], [31], [28], [27], [17], [42], [24], [25], [4], [11], [18], [39], [40], [35], [38], [21], [36], [37], [12], [15], and [16].

¹This work was supported by JSPS KAKENHI 21240001 and 22300285.

1. Preliminaries

From now on x, y, z denote objects, i, j, k, l, n, m denote natural numbers, D, E denote non empty sets, M denotes a matrix over D, and L denotes a matrix over E.

Now we state the proposition:

(1) Let us consider natural numbers i, j. Suppose M = L and $\langle i, j \rangle \in$ the indices of M. Then $M_{i,j} = L_{i,j}$.

Let us consider a natural number i. Now we state the propositions:

- (2) If M = L and $i \in \text{dom } M$, then Line(M, i) = Line(L, i). PROOF: For every j such that $j \in \text{dom Line}(M, i)$ holds Line(M, i)(j) = Line(L, i)(j) by [12, (87)], (1). \Box
- (3) If M = L and $i \in \text{Seg width } M$, then $M_{\Box,i} = L_{\Box,i}$. PROOF: For every j such that $j \in \text{dom } M_{\Box,i}$ holds $M_{\Box,i}(j) = L_{\Box,i}(j)$ by [12, (87)], (1). \Box

Now we state the propositions:

(4) Suppose len M = len L and width M = width L and for every natural numbers i, j such that $\langle i, j \rangle \in \text{the indices of } M$ holds $M_{i,j} = L_{i,j}$. Then M = L.

PROOF: M is a matrix over E by [12, (87)]. Reconsider $L_0 = M$ as a matrix over E. For every natural numbers i, j such that $\langle i, j \rangle \in$ the indices of L_0 holds $L_{0i,j} = L_{i,j}$. \Box

- (5) Let us consider a matrix M over D. Suppose for every natural numbers i, j such that $\langle i, j \rangle \in$ the indices of M holds $M_{i,j} \in E$. Then M is a matrix over E.
- (6) If M = L, then $M^{\mathrm{T}} = L^{\mathrm{T}}$. The theorem is a consequence of (1) and (5).
- (7) Every matrix over \mathbb{Z} is a matrix over \mathbb{R} .

Let M be a matrix over \mathbb{Z} . The functor $\mathbb{Z}2\mathbb{R}(M)$ yielding a matrix over \mathbb{R} is defined by the term

(Def. 1) M.

Let n, m be natural numbers and M be a matrix over \mathbb{Z} of dimension $n \times m$. Let us note that the functor $\mathbb{Z}2\mathbb{R}(M)$ yields a matrix over \mathbb{R} of dimension $n \times m$. Let n be a natural number and M be a square matrix over \mathbb{Z} of dimension n. Observe that the functor $\mathbb{Z}2\mathbb{R}(M)$ yields a square matrix over \mathbb{R} of dimension n. Let M be a matrix over \mathbb{R} . We say that M is integer if and only if

(Def. 2) M is a matrix over \mathbb{Z} .

One can verify that there exists a matrix over \mathbb{R} which is integer.

31

Let n, m be natural numbers. Observe that there exists a matrix over \mathbb{R} of dimension $n \times m$ which is integer.

Let M be an integer matrix over \mathbb{R} . The functor $\mathbb{R}2\mathbb{Z}(M)$ yielding a matrix over \mathbb{Z} is defined by the term

(Def. 3) M.

Let n, m be natural numbers and M be an integer matrix over \mathbb{R} of dimension $n \times m$. Let us note that the functor $\mathbb{R}2\mathbb{Z}(M)$ yields a matrix over \mathbb{Z} of dimension $n \times m$. Let n be a natural number and M be an integer square matrix over \mathbb{R} of dimension n. Observe that the functor $\mathbb{R}2\mathbb{Z}(M)$ yields a square matrix over \mathbb{Z} of dimension n. Let n, m be natural numbers. The functor $0^{m \times m}_n$ yielding a matrix over $\mathbb{Z}^{\mathbb{R}}$ of dimension $n \times m$ is defined by the term

(Def. 4) $n \mapsto (m \mapsto 0_{\mathbb{Z}^R}).$

2. Sequences and Matrices Concerning Linear Transformations

In the sequel k, t, i, j, m, n denote natural numbers, D denotes a non empty set, V denotes a free Z-module, a denotes an element of $\mathbb{Z}^{\mathbb{R}}$, W denotes an element of V, K_1 , K_2 , K_3 denote linear combinations of V, and X denotes a subset of V.

Now we state the propositions:

- (8) Suppose X is linearly independent and the support of $K_1 \subseteq X$ and the support of $K_2 \subseteq X$ and the support of $K_3 \subseteq X$ and $\sum K_1 = \sum K_2 + \sum K_3$. Then $K_1 = K_2 + K_3$.
- (9) Suppose X is linearly independent and the support of $K_1 \subseteq X$ and the support of $K_2 \subseteq X$ and $a \neq 0_{\mathbb{Z}^R}$ and $\sum K_1 = a \cdot \sum K_2$. Then $K_1 = a \cdot K_2$.

From now on V denotes a finite rank, free \mathbb{Z} -module, W denotes an element of V, K_1 , K_2 , K_3 denote linear combinations of V, and X denotes a subset of V.

Now we state the proposition:

- (10) Let us consider a basis b_2 of V. Then there exists a linear combination K of V such that
 - (i) $W = \sum K$, and
 - (ii) the support of $K \subseteq b_2$.

Let V be a finite rank, free \mathbb{Z} -module.

An ordered basis of V is a finite sequence of elements of V and is defined by

(Def. 5) it is one-to-one and rng it is a basis of V.

From now on s denotes a finite sequence, V_1 , V_2 , V_3 denote finite rank, free \mathbb{Z} -modules, f, f_1 , f_2 denote functions from V_1 into V_2 , g denotes a function from V_2 into V_3 , b_1 denotes an ordered basis of V_1 , b_2 denotes an ordered basis of V_2 , b_3 denotes an ordered basis of V_3 , v_1 , v_2 denote vectors of V_2 , v, w denote elements of V_1 , p_2 , F denote finite sequences of elements of V_1 , p_1 , d denote finite sequences of elements of V_1 .

Now we state the propositions:

- (11) Let us consider an element a of V_1 , a finite sequence F of elements of V_1 , and a finite sequence G of elements of \mathbb{Z}^R . Suppose len F = len G and for every k and for every element v of \mathbb{Z}^R such that $k \in \text{dom } F$ and v = G(k)holds $F(k) = v \cdot a$. Then $\sum F = \sum G \cdot a$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every finite sequence } H$ of elements of V_1 for every finite sequence I of elements of \mathbb{Z}^R such that len H =len I and len $H = \$_1$ and for every k and for every element v of \mathbb{Z}^R such that $k \in \text{dom } H$ and v = I(k) holds $H(k) = v \cdot a$ holds $\sum H = \sum I \cdot a$. For every n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [5, (18)], [3, (12)], [5, (17)], [32, (30)]. $\mathcal{P}[0]$ by [35, (43)], [21, (14)]. For every n, $\mathcal{P}[n]$ from [3, Sch. 2]. \Box
- (12) Let us consider an element a of V_1 , a finite sequence F of elements of $\mathbb{Z}^{\mathbb{R}}$, and a finite sequence G of elements of V_1 . Suppose len F = len G and for every k such that $k \in \text{dom } F$ holds $G(k) = F_k \cdot a$. Then $\sum G = \sum F \cdot a$. The theorem is a consequence of (11).

Let us consider V_1 , p_1 , and p_2 . The functor $lmlt(p_1, p_2)$ yielding a finite sequence of elements of V_1 is defined by the term

(Def. 6) (the left multiplication of V_1)° (p_1, p_2) .

Now we state the propositions:

- (13) If dom $p_1 = \operatorname{dom} p_2$, then dom $\operatorname{lmlt}(p_1, p_2) = \operatorname{dom} p_1$.
- (14) Let us consider a matrix M over the carrier of V_1 . If len M = 0, then $\sum \sum M = 0_{V_1}$.
- (15) Let us consider a matrix M over the carrier of V_1 of dimension $m+1\times 0$. Then $\sum \sum M = 0_{V_1}$. PROOF: For every k such that $k \in \text{dom} \sum M$ holds $(\sum M)_k = 0_{V_1}$ by [32, (29)], [20, (2)], [35, (43)]. \Box
- (16) Let us consider Z-modules V_1 , V_2 , a function f from V_1 into V_2 , and a finite sequence p of elements of V_1 . If f is additive and homogeneous, then $f(\sum p) = \sum (f \cdot p)$.

PROOF: Define $\mathcal{P}[\text{finite sequence of elements of } V_1] \equiv f(\sum \$_1) = \sum (f \cdot \$_1).$ For every finite sequence p of elements of V_1 and for every element w of V_1 such that $\mathcal{P}[p]$ holds $\mathcal{P}[p \cap \langle w \rangle]$ by [35, (41), (44)], [7, (8)]. For every finite sequence p of elements of V_1 , $\mathcal{P}[p]$ from [8, Sch. 2]. \Box

- (17) Let us consider a finite sequence a of elements of $\mathbb{Z}^{\mathbb{R}}$, and a finite sequence p of elements of V_1 . Suppose len p = len a. If f is additive and homogeneous, then $f \cdot \text{lmlt}(a, p) = \text{lmlt}(a, f \cdot p)$. The theorem is a consequence of (13).
- (18) Let us consider a finite sequence a of elements of $\mathbb{Z}^{\mathbb{R}}$. Suppose len a =len b_2 and g is additive and homogeneous. Then $g(\sum \text{lmlt}(a, b_2)) =$ $\sum \text{lmlt}(a, g \cdot b_2)$. The theorem is a consequence of (16) and (17).
- (19) Let us consider finite sequences F, F_1 of elements of V_1 , a linear combination K of V_1 , and a permutation p of dom F. If $F_1 = F \cdot p$, then $K \cdot F_1 = (K \cdot F) \cdot p$.
- (20) If F is one-to-one and the support of $K \subseteq \operatorname{rng} F$, then $\sum (K \cdot F) = \sum K$. PROOF: Reconsider A = the support of K as a subset of $\operatorname{rng} F$. Consider p_1 being a permutation of dom F such that $(F - A^c) \cap (F - A) = F \cdot p_1$. Reconsider $G_1 = F - A^c$, $G_2 = F - A$ as a finite sequence of elements of V_1 . For every k such that $k \in \operatorname{dom}(K \cdot G_2)$ holds $(K \cdot G_2)_k = 0_{V_1}$ by [32, (29), (65)], [15, (1)]. $K \cdot (G_1 \cap G_2) = (K \cdot F) \cdot p_1$. \Box
- (21) Let us consider a set A, and a finite sequence p of elements of V₁. Suppose rng p ⊆ A. Suppose f₁ is additive and homogeneous and f₂ is additive and homogeneous and for every v such that v ∈ A holds f₁(v) = f₂(v). Then f₁(∑ p) = f₂(∑ p).
 PROOF: Define P[finite sequence of elements of V₁] ≡ if rng \$₁ ⊆ A, then f₁(∑ \$₁) = f₂(∑ \$₁). For every finite sequence p of elements of V₁ and for every element x of V₁ such that P[p] holds P[p ∩ ⟨x⟩] by [5, (31), (39)], [35, (41), (44)]. P[ε_α], where α is the carrier of V₁ by [35, (43)], [15, (1)].
- For every finite sequence p of elements of V_1 , $\mathcal{P}[p]$ from [8, Sch. 2]. \Box (22) Suppose f_1 is additive and homogeneous and f_2 is additive and homogeneous. Let us consider an ordered basis b_1 of V_1 . Suppose len $b_1 > 0$. If $f_1 \cdot b_1 = f_2 \cdot b_1$, then $f_1 = f_2$. The theorem is a consequence of (20) and (21).
- (23) Let us consider a matrix M_1 over the carrier of V of dimension $n \times k$, and a matrix M_2 over the carrier of V of dimension $m \times k$. Then $\sum (M_1 \cap M_2) = \sum M_1 \cap \sum M_2$.
- (24) Let us consider matrices M_1 , M_2 over the carrier of V_1 . Then $\sum M_1 + \sum M_2 = \sum (M_1 \cap M_2)$.
- (25) Let us consider finite sequences P_1 , P_2 of elements of V_1 . Suppose len $P_1 =$ len P_2 . Then $\sum (P_1 + P_2) = \sum P_1 + \sum P_2$.
- (26) Let us consider matrices M_1, M_2 over the carrier of V_1 . Suppose len $M_1 =$ len M_2 . Then $\sum \sum M_1 + \sum \sum M_2 = \sum \sum (M_1 \cap M_2)$. The theorem is a consequence of (25) and (24).

- (27) Let us consider a matrix M over the carrier of V_1 . Then $\sum \sum M = \sum \sum M^{\mathrm{T}}$. PROOF: Define \mathcal{X} [natural number] \equiv for every matrix M over the carrier of V_1 such that len $M = \$_1$ holds $\sum \sum M = \sum \sum M^{\mathrm{T}}$. For every finite sequence P of elements of $V_1, \sum \sum \langle P \rangle = \sum \sum \langle P \rangle^{\mathrm{T}}$ by [5, (38), (6), (39)]. For every n such that $\mathcal{X}[n]$ holds $\mathcal{X}[n+1]$ by [5, (4), (40)], [24, (3), (2), (1)]. $\mathcal{X}[0]$. For every $n, \mathcal{X}[n]$ from [3, Sch. 2]. \square
- (28) Let us consider a matrix M over $\mathbb{Z}^{\mathbb{R}}$ of dimension $n \times m$. Suppose n > 0and m > 0. Let us consider finite sequences p, d of elements of $\mathbb{Z}^{\mathbb{R}}$. Suppose len p = n and len d = m and for every j such that $j \in \text{dom } d$ holds $d_j = \sum (p \bullet M_{\Box,j})$. Let us consider finite sequences b, c of elements of V_1 . Suppose len b = m and len c = n and for every i such that $i \in \text{dom } c$ holds $c_i = \sum \text{lmlt}(\text{Line}(M, i), b)$. Then $\sum \text{lmlt}(p, c) = \sum \text{lmlt}(d, b)$.

PROOF: Reconsider $n_1 = n$, $m_1 = m$ as an element of \mathbb{N} . Define \mathcal{V} (natural number, natural number) = $p_{\$_1} \cdot M_{\$_1,\$_2} \cdot b_{\$_2}$. Consider M_1 being a matrix over the carrier of V_1 of dimension $n_1 \times m_1$ such that for every i and j such that $\langle i, j \rangle \in$ the indices of M_1 holds $M_{1i,j} = \mathcal{V}(i,j)$. dom lmlt(d,b) = dom b. dom lmlt(p,c) = dom p. \Box

3. Decomposition of a Vector in Basis

Let V be a finite rank, free \mathbb{Z} -module, b_1 be an ordered basis of V, and W be an element of V. The functor $W \to b_1$ yielding a finite sequence of elements of $\mathbb{Z}^{\mathbb{R}}$ is defined by

(Def. 7) len $it = \text{len } b_1$ and there exists a linear combination K of V such that $W = \sum K$ and the support of $K \subseteq \text{rng } b_1$ and for every k such that $1 \leq k \leq \text{len } it$ holds $it_k = K(b_{1k})$.

- (29) If $v_1 \to b_2 = v_2 \to b_2$, then $v_1 = v_2$.
- (30) $v = \sum \text{lmlt}(v \to b_1, b_1)$. The theorem is a consequence of (13) and (20).
- (31) If len $d = \text{len } b_1$, then $d = \sum \text{lmlt}(d, b_1) \to b_1$. PROOF: Define $\mathcal{X}[\text{element of } V_1, \text{element of } \mathbb{Z}^{\mathbb{R}}] \equiv \text{if } \$_1 \in \text{rng } b_1$, then for every k such that $k \in \text{dom } b_1$ and $b_{1k} = \$_1$ holds $\$_2 = d_k$ and if $\$_1 \notin \text{rng } b_1$, then $\$_2 = 0_{\mathbb{Z}^{\mathbb{R}}}$. For every v, there exists an element u of $\mathbb{Z}^{\mathbb{R}}$ such that $\mathcal{X}[v, u]$ by [20, (2)]. Consider K being a function from V_1 into the carrier of $\mathbb{Z}^{\mathbb{R}}$ such that for every v, $\mathcal{X}[v, K(v)]$ from [10, Sch. 3]. \Box
- (32) Let us consider finite sequences a, d of elements of $\mathbb{Z}^{\mathbb{R}}$. Suppose len a =len b_1 . Let us consider a natural number j. Suppose $j \in$ dom b_2 and len d =

len b_1 and for every k such that $k \in \text{dom } b_1$ holds $d(k) = (f(b_{1k}) \to b_2)_j$. If len $b_1 > 0$, then $(\sum \text{lmlt}(a, f \cdot b_1) \to b_2)_j = \sum (a \bullet d)$.

PROOF: Reconsider $B_3 = f \cdot b_1$ as a finite sequence of elements of V_2 . Define $\mathcal{V}(\text{natural number}, \text{natural number}) = (B_{3\$_1} \to b_2)_{\$_2}$. Consider Mbeing a matrix over $\mathbb{Z}^{\mathbb{R}}$ of dimension $\text{len } b_1 \times \text{len } b_2$ such that for every iand j such that $\langle i, j \rangle \in$ the indices of M holds $M_{i,j} = \mathcal{V}(i,j)$. Define $\mathcal{W}(\text{natural number}) = \sum (a \bullet M_{\Box,\$_1})$. Consider d_1 being a finite sequence of elements of $\mathbb{Z}^{\mathbb{R}}$ such that $\text{len } d_1 = \text{len } b_2$ and for every natural number j such that $j \in \text{dom } d_1$ holds $d_{1j} = \mathcal{W}(j)$ from [33, Sch. 2]. \Box

4. MATRICES OF LINEAR TRANSFORMATIONS

Let V_1 , V_2 be finite rank, free \mathbb{Z} -modules, f be a function from V_1 into V_2 , b_1 be a finite sequence of elements of V_1 , and b_2 be an ordered basis of V_2 . The functor AutMt (f, b_1, b_2) yielding a matrix over $\mathbb{Z}^{\mathbb{R}}$ is defined by

(Def. 8) len $it = \text{len } b_1$ and for every k such that $k \in \text{dom } b_1$ holds $it_k = f(b_{1k}) \rightarrow b_2$.

- (33) If len $b_1 = 0$, then AutMt $(f, b_1, b_2) = \emptyset$.
- (34) If $\operatorname{len} b_1 > 0$, then width $\operatorname{AutMt}(f, b_1, b_2) = \operatorname{len} b_2$.
- (35) Suppose f_1 is additive and homogeneous and f_2 is additive and homogeneous and AutMt (f_1, b_1, b_2) = AutMt (f_2, b_1, b_2) and len $b_1 > 0$. Then $f_1 = f_2$. The theorem is a consequence of (29) and (22).
- (36) Let us consider a finite sequence F of elements of \mathbb{R}_{F} , and a finite sequence G of elements of \mathbb{Z}^{R} . If F = G, then $\sum F = \sum G$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every finite sequence } F$ of elements of \mathbb{R}_{F} for every finite sequence G of elements of \mathbb{Z}^{R} such that $\text{len } F = \$_1$ and F = G holds $\sum F = \sum G$. $\mathcal{P}[0]$ by [35, (43)]. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [5, (4)], [9, (3)], [5, (59)], [3, (11)]. For every natural number n, $\mathcal{P}[n]$ from [3, Sch. 2]. \Box
- (37) Let us consider finite sequences p, q of elements of $\mathbb{Z}^{\mathbb{R}}$, and finite sequences p_1, q_1 of elements of \mathbb{R}_{F} . If $p = p_1$ and $q = q_1$, then $p \cdot q = p_1 \cdot q_1$. The theorem is a consequence of (36).
- (38) Suppose g is additive and homogeneous and len $b_1 > 0$ and len $b_2 > 0$. Then AutMt $(g \cdot f, b_1, b_3) = \text{AutMt}(f, b_1, b_2) \cdot \text{AutMt}(g, b_2, b_3)$. PROOF: width AutMt $(f, b_1, b_2) = \text{len } b_2$. width AutMt $(g \cdot f, b_1, b_3) = \text{len } b_3$. For every i and j such that $\langle i, j \rangle \in \text{the indices of AutMt}(g \cdot f, b_1, b_3)$ holds $(\text{AutMt}(g \cdot f, b_1, b_3))_{i,j} = (\text{AutMt}(f, b_1, b_2) \cdot \text{AutMt}(g, b_2, b_3))_{i,j}$ by [12, (87)], [32, (29)], (34), [32, (25)]. \Box

- (39) AutMt $(f_1 + f_2, b_1, b_2) = AutMt(f_1, b_1, b_2) + AutMt(f_2, b_1, b_2).$ PROOF: width AutMt $(f_1, b_1, b_2) =$ width AutMt $(f_2, b_1, b_2).$ width AutMt $(f_1 + f_2, b_1, b_2) =$ width AutMt $(f_1, b_1, b_2).$ For every *i* and *j* such that $\langle i, j \rangle \in$ the indices of AutMt $(f_1 + f_2, b_1, b_2)$ holds $(AutMt(f_1 + f_2, b_1, b_2))_{i,j} =$ $(AutMt(f_1, b_1, b_2) + AutMt(f_2, b_1, b_2))_{i,j}$ by [32, (29)], [12, (87)], (8), [36, (22)]. \Box
- (40) If $a \neq 0_{\mathbb{Z}^{\mathbb{R}}}$, then AutMt $(a \cdot f, b_1, b_2) = a \cdot \text{AutMt}(f, b_1, b_2)$. PROOF: width AutMt $(a \cdot f, b_1, b_2)$ = width AutMt (f, b_1, b_2) . For every *i* and *j* such that $\langle i, j \rangle \in$ the indices of AutMt $(a \cdot f, b_1, b_2)$ holds (AutMt $(a \cdot f, b_1, b_2)$)_{*i*,*j*} = $(a \cdot \text{AutMt}(f, b_1, b_2))_{i,j}$ by [32, (29)], [12, (87)], (9), [5, (1)]. \Box
- (41) Let us consider non empty sets D, E, natural numbers n, m, i, j, and a matrix M over D of dimension $n \times m$. Suppose 0 < n and M is a matrix over E of dimension $n \times m$ and $\langle i, j \rangle \in$ the indices of M. Then $M_{i,j}$ is an element of E.
- (42) Let us consider a finite sequence F of elements of \mathbb{R}_F . Suppose for every natural number i such that $i \in \text{dom } F$ holds $F(i) \in \mathbb{Z}$. Then $\sum F \in \mathbb{Z}$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every finite sequence } F$ of elements of \mathbb{R}_F such that len $F = \$_1$ and for every natural number i such that $i \in \text{dom } F$ holds $F(i) \in \mathbb{Z}$ holds $\sum F \in \mathbb{Z}$. $\mathcal{P}[0]$ by [35, (43)]. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [5, (4)], [9, (3)], [5, (59)], [3, (11)]. For every natural number n, $\mathcal{P}[n]$ from [3, Sch. 2]. \Box
- (43) Let us consider a natural number i, and an element j of \mathbb{R}_{F} . Suppose $j \in \mathbb{Z}$. Then power_{\mathbb{R}_{F}} $(-\mathbf{1}_{\mathbb{R}_{\mathrm{F}}}, i) \cdot j \in \mathbb{Z}$. PROOF: Define $\mathcal{P}[$ natural number $] \equiv \text{power}_{\mathbb{R}_{\mathrm{F}}}(-\mathbf{1}_{\mathbb{R}_{\mathrm{F}}}, \$_1) \cdot j \in \mathbb{Z}$. $\mathcal{P}[0]$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number n, $\mathcal{P}[n]$ from [3, Sch. 2]. \Box
- (44) Let us consider natural numbers n, i, j, k, m, and a square matrix M over \mathbb{R}_{F} of dimension n+1. Suppose 0 < n and M is a square matrix over \mathbb{Z} of dimension n+1 and $\langle i, j \rangle \in$ the indices of M and $\langle k, m \rangle \in$ the indices of Delete(M, i, j). Then $(\text{Delete}(M, i, j))_{k,m}$ is an element of \mathbb{Z} . The theorem is a consequence of (41).
- (45) Let us consider natural numbers n, i, j, and a square matrix M over \mathbb{R}_{F} of dimension n + 1. Suppose 0 < n and M is a square matrix over \mathbb{Z} of dimension n + 1 and $\langle i, j \rangle \in$ the indices of M. Then $\mathrm{Delete}(M, i, j)$ is a square matrix over \mathbb{Z} of dimension n.

PROOF: Set M_0 = Delete(M, i, j). For every object x such that $x \in \operatorname{rng} M_0$ there exists a finite sequence p of elements of \mathbb{Z} such that x = p and len p = n by [12, (87)], (44). \Box

Let us consider a natural number n and a square matrix M over \mathbb{R}_{F} of dimension n. Now we state the propositions:

- (46) If M is a square matrix over \mathbb{Z} of dimension n, then $\operatorname{Det} M \in \mathbb{Z}$. PROOF: Define $\mathcal{P}[\operatorname{natural number}] \equiv \text{for every square matrix } M \text{ over } \mathbb{R}_{\mathrm{F}}$ of dimension $\$_1$ such that M is a square matrix over \mathbb{Z} of dimension $\$_1$ holds $\operatorname{Det} M \in \mathbb{Z}$. $\mathcal{P}[0]$ by [29, (41)]. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [3, (14)], [5, (1)], [27, (27)], [12, (87)]. For every natural number n, $\mathcal{P}[n]$ from [3, Sch. 2]. \Box
- (47) If M is a square matrix over $\mathbb{Z}^{\mathbb{R}}$ of dimension n, then $\text{Det } M \in \mathbb{Z}$. Now we state the proposition:
- (48) Let us consider a finite rank, free \mathbb{Z} -module V, and a basis I of V. Then there exists an ordered basis J of V such that rng J = I.

Let V be a \mathbb{Z} -module. One can check that id_V is additive and homogeneous. Now we state the propositions:

- (49) Let us consider a finite rank, free \mathbb{Z} -module V, and an ordered basis b of V. Then len $b = \operatorname{rank} V$.
- (50) Let us consider a finite rank, free \mathbb{Z} -module V, and ordered bases b_1 , b_2 of V. Then AutMt(id_V, b_1, b_2) is a square matrix over $\mathbb{Z}^{\mathbb{R}}$ of dimension rank V. The theorem is a consequence of (49) and (34).
- (51) Let us consider a finite rank, free \mathbb{Z} -module V, ordered bases b_1 , b_2 of V, and a square matrix M over \mathbb{R}_F of dimension rank V. Suppose $M = \text{AutMt}(\text{id}_V, b_1, b_2)$. Then $\text{Det } M \in \mathbb{Z}$. The theorem is a consequence of (46).
- (52) Let us consider a finite rank, free \mathbb{Z} -module V_1 , an ordered basis b_1 of V_1 , and natural numbers i, j. Suppose $i, j \in \text{dom } b_1$. Then
 - (i) if i = j, then $(b_{1i} \rightarrow b_1)(j) = 1$, and
 - (ii) if $i \neq j$, then $(b_{1i} \to b_1)(j) = 0$.
- (53) Let us consider a finite rank, free \mathbb{Z} -module V, and an ordered basis b_1 of V. Suppose rank V > 0. Then AutMt(id_V, b_1, b_1) = $I_{\mathbb{Z}^R}^{(\operatorname{rank} V) \times (\operatorname{rank} V)}$. The theorem is a consequence of (49), (34), (52), and (4).
- (54) Let us consider a finite rank, free Z-module V, and ordered bases b_1 , b_2 of V. Suppose rank V > 0. Then AutMt(id_V, b_1, b_2) · AutMt(id_V, b_2, b_1) = $I_{\mathbb{Z}^R}^{(\operatorname{rank} V) \times (\operatorname{rank} V)}$. The theorem is a consequence of (49), (38), and (53).
- (55) Let us consider a finite rank, free \mathbb{Z} -module V, ordered bases b_1 , b_2 of V, and a square matrix M over $\mathbb{Z}^{\mathbb{R}}$ of dimension rank V. Suppose $M = \text{AutMt}(\text{id}_V, b_1, b_2)$. Then |Det M| = 1. The theorem is a consequence of (49), (34), and (54).

5. Real-valued Function of \mathbb{Z} -Module

Let V be a non empty vector space structure over $\mathbb{Z}^{\mathbb{R}}$. Observe that there exists a functional in V which is additive, homogeneous, and 0-preserving.

A linear functional in V is an additive, homogeneous functional in V. Now we state the proposition:

- (56) Let us consider an element a of $\mathbb{Z}^{\mathbb{R}}$, an add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, scalar unital, non empty vector space structure V over $\mathbb{Z}^{\mathbb{R}}$, and a vector v of V. Then
 - (i) $0_{\mathbb{Z}^{R}} \cdot v = 0_{V}$, and
 - (ii) $a \cdot 0_V = 0_V$.

Let V be a non empty vector space structure over $\mathbb{Z}^{\mathbb{R}}$. Note that there exists a functional in V which is additive and 0-preserving.

Let V be a right zeroed, non empty vector space structure over $\mathbb{Z}^{\mathbb{R}}$. Let us note that every functional in V which is additive is also 0-preserving.

Let V be an add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, scalar unital, non empty vector space structure over $\mathbb{Z}^{\mathbb{R}}$. Note that every functional in V which is homogeneous is also 0-preserving.

Let V be a non empty vector space structure over $\mathbb{Z}^{\mathbb{R}}$. Let us observe that 0Functional V is constant and there exists a functional in V which is constant.

Let V be a right zeroed, non empty vector space structure over $\mathbb{Z}^{\mathbb{R}}$ and f be a 0-preserving functional in V. Let us note that f is constant if and only if the condition (Def. 9) is satisfied.

(Def. 9) f = 0Functional V.

Let us note that there exists a functional in V which is constant, additive, and 0-preserving.

Let V be a free \mathbb{Z} -module and A, B be subsets of V. Assume $A \subseteq B$ and B is a basis of V. The functor $\operatorname{Proj}(A, B)$ yielding a linear transformation from V to V is defined by

(Def. 10) for every vector v of V, there exist vectors v_6 , v_7 of V such that $v_6 \in \text{Lin}(A)$ and $v_7 \in \text{Lin}(B \setminus A)$ and $v = v_6 + v_7$ and $it(v) = v_6$ and for every vectors v, v_6 , v_7 of V such that $v_6 \in \text{Lin}(A)$ and $v_7 \in \text{Lin}(B \setminus A)$ and $v = v_6 + v_7$ holds $it(v) = v_6$.

Let B be a basis of V and u be a vector of V. The functor Coordinate(u, B) yielding a function from V into $\mathbb{Z}^{\mathbb{R}}$ is defined by

(Def. 11) for every vector v of V, there exists a linear combination L_2 of B such that $v = \sum L_2$ and $it(v) = L_2(u)$ and for every vector v of V and for every

linear combination L_3 of B such that $v = \sum L_3$ holds $it(v) = L_3(u)$ and for every vectors v_1 , v_2 of V, $it(v_1 + v_2) = it(v_1) + it(v_2)$ and for every vector v of V and for every element r of $\mathbb{Z}^{\mathbb{R}}$, $it(r \cdot v) = r \cdot it(v)$.

Now we state the propositions:

- (57) Let us consider a free \mathbb{Z} -module V, a basis B of V, and a vector u of V. Then (Coordinate(u, B)) $(0_V) = 0$.
- (58) Let us consider a free \mathbb{Z} -module V, a basis X of V, and a vector v of V. If $v \in X$ and $v \neq 0_V$, then (Coordinate(v, X))(v) = 1.

Let V be a non trivial, free \mathbb{Z} -module. One can verify that there exists a functional in V which is additive, homogeneous, non constant, and non trivial.

Now we state the proposition:

- (59) Let us consider a non trivial, free \mathbb{Z} -module V, and a non constant, 0-preserving functional f in V. Then there exists a vector v of V such that
 - (i) $v \neq 0_V$, and
 - (ii) $f(v) \neq 0_{\mathbb{Z}^{\mathrm{R}}}$.

6. Bilinear Form of \mathbb{Z} -Module

Let V, W be vector space structures over $\mathbb{Z}^{\mathbb{R}}$. The functor NulForm(V, W) yielding a form of V, W is defined by the term

(Def. 12) (the carrier of V) × (the carrier of W) $\mapsto 0_{\mathbb{Z}^R}$.

Let V, W be non empty vector space structures over $\mathbb{Z}^{\mathbb{R}}$ and f, g be forms of V, W. The functor f + g yielding a form of V, W is defined by

(Def. 13) for every vector v of V and for every vector w of W, it(v, w) = f(v, w) + g(v, w).

Let f be a form of V, W and a be an element of $\mathbb{Z}^{\mathbb{R}}$. The functor $a \cdot f$ yielding a form of V, W is defined by

- (Def. 14) for every vector v of V and for every vector w of W, $it(v, w) = a \cdot f(v, w)$. The functor -f yielding a form of V, W is defined by
- (Def. 15) for every vector v of V and for every vector w of W, it(v, w) = -f(v, w). Note that the functor -f is defined by the term
- (Def. 16) $(-1_{\mathbb{Z}^{R}}) \cdot f$.

Let f, g be forms of V, W. The functor f - g yielding a form of V, W is defined by the term

(Def. 17) f + -g.

One can verify that the functor f - g is defined by

(Def. 18) for every vector v of V and for every vector w of W, it(v, w) = f(v, w) - g(v, w).

Let us observe that the functor f + g is commutative. Now we state the propositions:

- (60) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, and a form f of V, W. Then $f + \operatorname{NulForm}(V, W) = f$.
- (61) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, and forms f, g, h of V, W. Then (f+g) + h = f + (g+h).
- (62) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, and a form f of V, W. Then $f f = \operatorname{NulForm}(V, W)$.
- (63) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, an element a of $\mathbb{Z}^{\mathbb{R}}$, and forms f, g of V, W. Then $a \cdot (f+g) = a \cdot f + a \cdot g$. Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, elements a, b of $\mathbb{Z}^{\mathbb{R}}$, and a form f of V, W. Now we state the propositions:
- $a, b \text{ of } \mathbb{Z}$, and a form f of v, w. Now we state the pro-

$$(64) \quad (a+b) \cdot f = a \cdot f + b \cdot f.$$

(65)
$$(a \cdot b) \cdot f = a \cdot (b \cdot f).$$

Now we state the proposition:

(66) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, and a form f of V, W. Then $1_{\mathbb{Z}^{\mathbb{R}}} \cdot f = f$.

Let V, W be non empty vector space structures over $\mathbb{Z}^{\mathbb{R}}$, f be a form of V, W, and v be a vector of V. The functor $f(v, \cdot)$ yielding a functional in W is defined by the term

(Def. 19) (curry f)(v).

Let w be a vector of W. The functor $f(\cdot, w)$ yielding a functional in V is defined by the term

(Def. 20) (curry' f)(w).

- (67) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, a form f of V, W, and a vector v of V. Then
 - (i) dom $f(v, \cdot)$ = the carrier of W, and
 - (ii) rng $f(v, \cdot) \subseteq$ the carrier of $\mathbb{Z}^{\mathbb{R}}$, and
 - (iii) for every vector w of W, $(f(v, \cdot))(w) = f(v, w)$.
- (68) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, a form f of V, W, and a vector w of W. Then
 - (i) dom $f(\cdot, w)$ = the carrier of V, and

- (ii) rng $f(\cdot, w) \subseteq$ the carrier of $\mathbb{Z}^{\mathbb{R}}$, and
- (iii) for every vector v of V, $(f(\cdot, w))(v) = f(v, w)$.
- (69) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, and a vector v of V. Then NulForm $(V, W)(v, \cdot) = 0$ Functional W. The theorem is a consequence of (67).
- (70) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, and a vector w of W. Then NulForm $(V, W)(\cdot, w) = 0$ Functional V. The theorem is a consequence of (68).
- (71) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, forms f, g of V, W, and a vector w of W. Then $(f+g)(\cdot, w) = f(\cdot, w) + g(\cdot, w)$. The theorem is a consequence of (68).
- (72) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, forms f, g of V, W, and a vector v of V. Then $(f + g)(v, \cdot) = f(v, \cdot) + g(v, \cdot)$. The theorem is a consequence of (67).
- (73) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, a form f of V, W, an element a of $\mathbb{Z}^{\mathbb{R}}$, and a vector w of W. Then $(a \cdot f)(\cdot, w) = a \cdot f(\cdot, w)$. The theorem is a consequence of (68).
- (74) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, a form f of V, W, an element a of $\mathbb{Z}^{\mathbb{R}}$, and a vector v of V. Then $(a \cdot f)(v, \cdot) = a \cdot f(v, \cdot)$. The theorem is a consequence of (67).
- (75) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, a form f of V, W, and a vector w of W. Then $(-f)(\cdot, w) = -f(\cdot, w)$. The theorem is a consequence of (68).
- (76) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, a form f of V, W, and a vector v of V. Then $(-f)(v, \cdot) = -f(v, \cdot)$. The theorem is a consequence of (67).
- (77) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, forms f, g of V, W, and a vector w of W. Then $(f g)(\cdot, w) = f(\cdot, w) g(\cdot, w)$. The theorem is a consequence of (68).
- (78) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, forms f, g of V, W, and a vector v of V. Then $(f g)(v, \cdot) = f(v, \cdot) g(v, \cdot)$. The theorem is a consequence of (67).

Let V, W be non empty vector space structures over $\mathbb{Z}^{\mathbb{R}}$, f be a functional in V, and g be a functional in W. The functor $f \otimes g$ yielding a form of V, W is defined by

(Def. 21) for every vector v of V and for every vector w of W, $it(v, w) = f(v) \cdot g(w)$. Now we state the propositions:

- (79) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, a functional f in V, a vector v of V, and a vector w of W. Then $f \otimes (0$ Functional W)(v, w) = 0.
- (80) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, a functional g in W, a vector v of V, and a vector w of W. Then (0Functional V) $\otimes g(v, w) = 0$.
- (81) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, and a functional f in V. Then $f \otimes (0$ Functional W) =NulForm(V, W). The theorem is a consequence of (79).
- (82) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, and a functional g in W. Then (0Functional V) $\otimes g = \operatorname{NulForm}(V, W)$. The theorem is a consequence of (80).
- (83) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, a functional f in V, a functional g in W, and a vector v of V. Then $f \otimes g(v, \cdot) = f(v) \cdot g$. The theorem is a consequence of (67).
- (84) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, a functional f in V, a functional g in W, and a vector w of W. Then $f \otimes g(\cdot, w) = g(w) \cdot f$. The theorem is a consequence of (68).

Let V, W be non empty vector space structures over $\mathbb{Z}^{\mathbb{R}}$ and f be a form of V, W. We say that f is additive w.r.t. second argument if and only if

(Def. 22) for every vector v of V, $f(v, \cdot)$ is additive.

We say that f is additive w.r.t. first argument if and only if

(Def. 23) for every vector w of W, $f(\cdot, w)$ is additive.

We say that f is homogeneous w.r.t. second argument if and only if

(Def. 24) for every vector v of V, $f(v, \cdot)$ is homogeneous.

We say that f is homogeneous w.r.t. first argument if and only if

(Def. 25) for every vector w of W, $f(\cdot, w)$ is homogeneous.

One can check that $\operatorname{NulForm}(V, W)$ is additive w.r.t. second argument and $\operatorname{NulForm}(V, W)$ is additive w.r.t. first argument and $\operatorname{NulForm}(V, W)$ is homogeneous w.r.t. second argument and $\operatorname{NulForm}(V, W)$ is homogeneous w.r.t. first argument and there exists a form of V, W which is additive w.r.t. second argument, homogeneous w.r.t. second argument, additive w.r.t. first argument, and homogeneous w.r.t. first argument.

A bilinear form of V, W is an additive w.r.t. first argument, homogeneous w.r.t. first argument, additive w.r.t. second argument, homogeneous w.r.t. second argument form of V, W. Let f be an additive w.r.t. second argument form of V, W and v be a vector of V. Note that $f(v, \cdot)$ is additive.

Let f be an additive w.r.t. first argument form of V, W and w be a vector of W. Let us observe that $f(\cdot, w)$ is additive.

Let f be a homogeneous w.r.t. second argument form of V, W and v be a vector of V. Note that $f(v, \cdot)$ is homogeneous.

Let f be a homogeneous w.r.t. first argument form of V, W and w be a vector of W. Let us observe that $f(\cdot, w)$ is homogeneous.

Let f be a functional in V and g be an additive functional in W. Let us observe that $f \otimes g$ is additive w.r.t. second argument.

Let f be an additive functional in V and g be a functional in W. Note that $f \otimes g$ is additive w.r.t. first argument.

Let f be a functional in V and g be a homogeneous functional in W. Let us observe that $f \otimes g$ is homogeneous w.r.t. second argument.

Let f be a homogeneous functional in V and g be a functional in W. Note that $f \otimes g$ is homogeneous w.r.t. first argument.

Let V be a non trivial vector space structure over $\mathbb{Z}^{\mathbb{R}}$, W be a \mathbb{Z} -module, and f be a functional in V. Note that $f \otimes g$ is non trivial.

Let W be a non trivial Z-module. One can verify that $f \otimes g$ is non trivial.

Let V, W be non trivial, free Z-modules, f be a non constant, 0-preserving functional in V, and g be a non constant, 0-preserving functional in W. Let us note that $f \otimes g$ is non constant and there exists a form of V, W which is non trivial, non constant, additive w.r.t. second argument, homogeneous w.r.t. second argument, additive w.r.t. first argument, and homogeneous w.r.t. first argument.

Let V, W be non empty vector space structures over $\mathbb{Z}^{\mathbb{R}}$ and f, g be additive w.r.t. first argument forms of V, W. One can check that f + g is additive w.r.t. first argument.

Let f, g be additive w.r.t. second argument forms of V, W. Let us note that f + g is additive w.r.t. second argument.

Let f be an additive w.r.t. first argument form of V, W and a be an element of $\mathbb{Z}^{\mathbb{R}}$. One can check that $a \cdot f$ is additive w.r.t. first argument.

Let f be an additive w.r.t. second argument form of V, W. Observe that $a \cdot f$ is additive w.r.t. second argument.

Let f be an additive w.r.t. first argument form of V, W. One can check that -f is additive w.r.t. first argument.

Let f be an additive w.r.t. second argument form of V, W. One can check that -f is additive w.r.t. second argument.

Let f, g be additive w.r.t. first argument forms of V, W. One can verify that f - g is additive w.r.t. first argument.

Let f, g be additive w.r.t. second argument forms of V, W. Let us note that f - g is additive w.r.t. second argument.

Let f, g be homogeneous w.r.t. first argument forms of V, W. One can verify that f + g is homogeneous w.r.t. first argument.

Let f, g be homogeneous w.r.t. second argument forms of V, W. Note that f + g is homogeneous w.r.t. second argument.

Let f be a homogeneous w.r.t. first argument form of V, W and a be an element of $\mathbb{Z}^{\mathbb{R}}$. One can verify that $a \cdot f$ is homogeneous w.r.t. first argument.

Let f be a homogeneous w.r.t. second argument form of V, W. Let us note that $a \cdot f$ is homogeneous w.r.t. second argument.

Let f be a homogeneous w.r.t. first argument form of V, W. One can verify that -f is homogeneous w.r.t. first argument.

Let f be a homogeneous w.r.t. second argument form of V, W. One can verify that -f is homogeneous w.r.t. second argument.

Let f, g be homogeneous w.r.t. first argument forms of V, W. Let us observe that f - g is homogeneous w.r.t. first argument.

Let f, g be homogeneous w.r.t. second argument forms of V, W. Note that f - g is homogeneous w.r.t. second argument.

Now we state the propositions:

- (85) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, vectors v, u of V, a vector w of W, and a form f of V, W. If f is additive w.r.t. first argument, then f(v + u, w) = f(v, w) + f(u, w). The theorem is a consequence of (68).
- (86) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, a vector v of V, vectors u, w of W, and a form f of V, W. If f is additive w.r.t. second argument, then f(v, u + w) = f(v, u) + f(v, w). The theorem is a consequence of (67).
- (87) Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, vectors v, u of V, vectors w, t of W, and an additive w.r.t. first argument, additive w.r.t. second argument form f of V, W. Then f(v+u, w+t) = f(v, w) + f(v, t) + (f(u, w) + f(u, t)). The theorem is a consequence of (85) and (86).
- (88) Let us consider right zeroed, non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, an additive w.r.t. second argument form f of V, W, and a vector v of V. Then $f(v, 0_W) = 0$. The theorem is a consequence of (86).
- (89) Let us consider right zeroed, non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, an additive w.r.t. first argument form f of V, W, and a vector w of W. Then $f(0_V, w) = 0$. The theorem is a consequence of (85).

Let us consider non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, a vector v of V, a vector w of W, an element a of $\mathbb{Z}^{\mathbb{R}}$, and a form f of V, W. Now we state the propositions:

- (90) If f is homogeneous w.r.t. first argument, then $f(a \cdot v, w) = a \cdot f(v, w)$. The theorem is a consequence of (68).
- (91) If f is homogeneous w.r.t. second argument, then $f(v, a \cdot w) = a \cdot f(v, w)$. The theorem is a consequence of (67).

- (92) Let us consider add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, scalar unital, non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, a homogeneous w.r.t. first argument form f of V, W, and a vector w of W. Then $f(0_V, w) = 0_{\mathbb{Z}^{\mathbb{R}}}$. The theorem is a consequence of (56) and (90).
- (93) Let us consider add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, scalar unital, non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, a homogeneous w.r.t. second argument form f of V, W, and a vector v of V. Then $f(v, 0_W) = 0_{\mathbb{Z}^{\mathbb{R}}}$. The theorem is a consequence of (56) and (91).
- (94) Let us consider Z-modules V, W, vectors v, u of V, a vector w of W, and an additive w.r.t. first argument, homogeneous w.r.t. first argument form f of V, W. Then f(v u, w) = f(v, w) f(u, w). The theorem is a consequence of (85) and (90).
- (95) Let us consider Z-modules V, W, a vector v of V, vectors w, t of W, and an additive w.r.t. second argument, homogeneous w.r.t. second argument form f of V, W. Then f(v, w - t) = f(v, w) - f(v, t). The theorem is a consequence of (86) and (91).
- (96) Let us consider Z-modules V, W, vectors v, u of V, vectors w, t of W, and a bilinear form f of V, W. Then f(v u, w t) = f(v, w) f(v, t) (f(u, w) f(u, t)). The theorem is a consequence of (94) and (95).
- (97) Let us consider add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, scalar unital, non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, vectors v, u of V, vectors w, t of W, elements a, b of $\mathbb{Z}^{\mathbb{R}}$, and a bilinear form f of V, W. Then $f(v+a \cdot u, w+b \cdot t) = f(v, w) + b \cdot f(v, t) + (a \cdot f(u, w) + a \cdot (b \cdot f(u, t)))$. The theorem is a consequence of (87), (91), and (90).
- (98) Let us consider Z-modules V, W, vectors v, u of V, vectors w, t of W, elements a, b of $\mathbb{Z}^{\mathbb{R}}$, and a bilinear form f of V, W. Then $f(v a \cdot u, w b \cdot t) = f(v, w) b \cdot f(v, t) (a \cdot f(u, w) a \cdot (b \cdot f(u, t)))$. The theorem is a consequence of (96), (91), and (90).
- (99) Let us consider right zeroed, non empty vector space structures V, W over $\mathbb{Z}^{\mathbb{R}}$, and a form f of V, W. Suppose f is additive w.r.t. second argument or additive w.r.t. first argument. Then f is constant if and only

if for every vector v of V and for every vector w of W, f(v, w) = 0. The theorem is a consequence of (88) and (89).

7. MATRIX OF BILINEAR FORM

Let V_1 , V_2 be finite rank, free \mathbb{Z} -modules, b_1 be an ordered basis of V_1 , b_2 be an ordered basis of V_2 , and f be a bilinear form of V_1 , V_2 . The functor $\text{Bilinear}(f, b_1, b_2)$ yielding a matrix over $\mathbb{Z}^{\mathbb{R}}$ of dimension len $b_1 \times \text{len } b_2$ is defined by

(Def. 26) for every natural numbers i, j such that $i \in \text{dom } b_1$ and $j \in \text{dom } b_2$ holds $it_{i,j} = f(b_{1i}, b_{2j})$.

Now we state the propositions:

- (100) Let us consider a finite rank, free \mathbb{Z} -module V, a natural number i, an element a_1 of $\mathbb{Z}^{\mathbb{R}}$, an element a_2 of V, a finite sequence p_1 of elements of $\mathbb{Z}^{\mathbb{R}}$, and a finite sequence p_2 of elements of V. Suppose $i \in \text{dom lmlt}(p_1, p_2)$ and $a_1 = p_1(i)$ and $a_2 = p_2(i)$. Then $(\text{lmlt}(p_1, p_2))(i) = a_1 \cdot a_2$.
- (101) Let us consider a finite rank, free \mathbb{Z} -module V, a linear functional F in V, a finite sequence y of elements of V, a finite sequence x of elements of $\mathbb{Z}^{\mathbb{R}}$, and finite sequences X, Y of elements of $\mathbb{Z}^{\mathbb{R}}$. Suppose X = x and len $y = \operatorname{len} x$ and len $X = \operatorname{len} Y$ and for every natural number k such that $k \in \operatorname{Seg} \operatorname{len} x$ holds $Y(k) = F(y_k)$. Then $X \cdot Y = F(\sum \operatorname{lmlt}(x, y))$.

PROOF: Define $\mathcal{P}[\text{finite sequence of elements of } V] \equiv \text{for every finite sequence } x \text{ of elements of } \mathbb{Z}^{\mathbb{R}} \text{ for every finite sequences } X, Y \text{ of elements of } \mathbb{Z}^{\mathbb{R}} \text{ such that } X = x \text{ and } \text{len } \$_1 = \text{len } x \text{ and } \text{len } X = \text{len } Y \text{ and for every natural number } k \text{ such that } k \in \text{Seg len } x \text{ holds } Y(k) = F(\$_{1k}) \text{ holds } X \cdot Y = F(\sum \text{lmlt}(x, \$_1)).$ For every finite sequence y of elements of V and for every element w of V such that $\mathcal{P}[y]$ holds $\mathcal{P}[y \cap \langle w \rangle]$ by [5, (22), (39), (59)], [3, (11)]. $\mathcal{P}[\varepsilon_{\alpha}]$, where α is the carrier of V by [35, (43)]. For every finite sequence p of elements of $V, \mathcal{P}[p]$ from [8, Sch. 2]. \Box

- (102) Let us consider finite rank, free Z-modules V_1 , V_2 , an ordered basis b_2 of V_2 , an ordered basis b_3 of V_2 , a bilinear form f of V_1 , V_2 , a vector v_1 of V_1 , a vector v_2 of V_2 , and finite sequences X, Y of elements of $\mathbb{Z}^{\mathbb{R}}$. Suppose len $X = \text{len } b_2$ and len $Y = \text{len } b_2$ and for every natural number ksuch that $k \in \text{Seg len } b_2$ holds $Y(k) = f(v_1, b_{2k})$ and $X = v_2 \to b_2$. Then $Y \cdot X = f(v_1, v_2)$. The theorem is a consequence of (67), (101), and (30).
- (103) Let us consider finite rank, free \mathbb{Z} -modules V_1 , V_2 , an ordered basis b_1 of V_1 , a bilinear form f of V_1 , V_2 , a vector v_1 of V_1 , a vector v_2 of V_2 , and finite sequences X, Y of elements of \mathbb{Z}^R . Suppose len $X = \text{len } b_1$ and len $Y = \text{len } b_1$ and for every natural number k such that $k \in \text{Seg len } b_1$

holds $Y(k) = f(b_{1k}, v_2)$ and $X = v_1 \rightarrow b_1$. Then $X \cdot Y = f(v_1, v_2)$. The theorem is a consequence of (68), (101), and (30).

(104) Let us consider finite rank, free Z-modules V_1 , V_2 , an ordered basis b_1 of V_1 , an ordered basis b_2 of V_2 , an ordered basis b_3 of V_2 , and a bilinear form f of V_1 , V_2 . Suppose $0 < \operatorname{rank} V_1$. Then $\operatorname{Bilinear}(f, b_1, b_3) = \operatorname{Bilinear}(f, b_1, b_2) \cdot (\operatorname{AutMt}(\operatorname{id}_{V_2}, b_3, b_2))^{\mathrm{T}}$.

PROOF: Set $n = \operatorname{len} b_2$. $\operatorname{len} b_2 = \operatorname{rank} V_2$. $\operatorname{len} b_3 = \operatorname{rank} V_2$. Reconsider $I_1 = \operatorname{AutMt}(\operatorname{id}_{V_2}, b_3, b_2)$ as a square matrix over $\mathbb{Z}^{\mathbb{R}}$ of dimension n. Reconsider $M_1 = I_1^{\mathrm{T}}$ as a square matrix over $\mathbb{Z}^{\mathbb{R}}$ of dimension n. Set $M_2 = \operatorname{Bilinear}(f, b_1, b_2) \cdot M_1$. $0 < \operatorname{len} b_1$. For every natural numbers i, j such that $\langle i, j \rangle \in \operatorname{the}$ indices of $\operatorname{Bilinear}(f, b_1, b_3)$ holds $(\operatorname{Bilinear}(f, b_1, b_3))_{i,j} = M_{2i,j}$ by [12, (87)], [5, (1)], (102). \Box

(105) Let us consider finite rank, free \mathbb{Z} -modules V_1 , V_2 , an ordered basis b_1 of V_1 , an ordered basis b_2 of V_2 , an ordered basis b_3 of V_1 , and a bilinear form f of V_1 , V_2 . Suppose $0 < \operatorname{rank} V_1$. Then $\operatorname{Bilinear}(f, b_3, b_2) = \operatorname{AutMt}(\operatorname{id}_{V_1}, b_3, b_1) \cdot \operatorname{Bilinear}(f, b_1, b_2)$.

PROOF: Set $n = \text{len } b_3$. $\text{len } b_1 = \text{rank } V_1$. $\text{len } b_3 = \text{rank } V_1$. Reconsider $I_1 = \text{AutMt}(\text{id}_{V_1}, b_3, b_1)$ as a square matrix over $\mathbb{Z}^{\mathbb{R}}$ of dimension n. Reconsider $M_1 = I_1$ as a square matrix over $\mathbb{Z}^{\mathbb{R}}$ of dimension n. Set $M_2 = M_1 \cdot \text{Bilinear}(f, b_1, b_2)$. $0 < \text{len } b_1$. For every natural numbers i, j such that $\langle i, j \rangle \in \text{the indices of Bilinear}(f, b_3, b_2)$ holds $(\text{Bilinear}(f, b_3, b_2))_{i,j} = M_{2i,j}$ by [12, (87)], [5, (1)], (103). \Box

Let us consider a finite rank, free \mathbb{Z} -module V, ordered bases b_1 , b_2 of V, and a bilinear form f of V, V. Now we state the propositions:

- (106) Suppose $0 < \operatorname{rank} V$. Then $\operatorname{Bilinear}(f, b_2, b_2) = \operatorname{AutMt}(\operatorname{id}_V, b_2, b_1)$ $\cdot \operatorname{Bilinear}(f, b_1, b_1) \cdot (\operatorname{AutMt}(\operatorname{id}_V, b_2, b_1))^{\mathrm{T}}$. The theorem is a consequence of (49), (50), (105), and (104).
- (107) $|\text{Det Bilinear}(f, b_2, b_2)| = |\text{Det Bilinear}(f, b_1, b_1)|$. The theorem is a consequence of (49), (106), (50), and (55).

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek. Curried and uncurried functions. *Formalized Mathematics*, 1(3): 537–541, 1990.
- [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [6] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.

- [7] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643–649, 1990.
- [8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Formalized Mathematics*, 1(3):529–536, 1990.
- [9] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1): 55–65, 1990.
- [10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [14] Wolfgang Ebeling. Lattices and Codes. Advanced Lectures in Mathematics. Springer Fachmedien Wiesbaden, 2013.
- [15] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Z-modules. Formalized Mathematics, 20(1):47–59, 2012. doi:10.2478/v10037-012-0007-z.
- [16] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Free Z-module. Formalized Mathematics, 20(4):275–280, 2012. doi:10.2478/v10037-012-0033-x.
- [17] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2 (4):475–480, 1991.
- [18] Andrzej Kondracki. Basic properties of rational numbers. *Formalized Mathematics*, 1(5): 841–845, 1990.
- [19] Jarosław Kotowicz. Bilinear functionals in vector spaces. Formalized Mathematics, 11(1): 69–86, 2003.
- [20] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697–702, 1990.
- [21] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [22] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a cryptographic perspective. The International Series in Engineering and Computer Science, 2002.
- [23] Anna Justyna Milewska. The Hahn Banach theorem in the vector space over the field of complex numbers. *Formalized Mathematics*, 9(2):363–371, 2001.
- [24] Robert Milewski. Associated matrix of linear map. *Formalized Mathematics*, 5(3):339–345, 1996.
- [25] Michał Muzalewski. Rings and modules part II. Formalized Mathematics, 2(4):579–585, 1991.
- [26] Bogdan Nowak and Andrzej Trybulec. Hahn-Banach theorem. Formalized Mathematics, 4(1):29–34, 1993.
- [27] Karol Pak and Andrzej Trybulec. Laplace expansion. Formalized Mathematics, 15(3): 143–150, 2007. doi:10.2478/v10037-007-0016-5.
- [28] Christoph Schwarzweller. The ring of integers, Euclidean rings and modulo integers. Formalized Mathematics, 8(1):29–34, 1999.
- [29] Nobuyuki Tamura and Yatsuka Nakamura. Determinant and inverse of matrices of real elements. Formalized Mathematics, 15(3):127–136, 2007. doi:10.2478/v10037-007-0014-7.
- [30] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1 (2):329–334, 1990.
- [31] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [32] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
- [33] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [34] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [35] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [36] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1

(5):877–882, 1990.

- [37] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883–885, 1990.
- [38] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [39] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.
- [40] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [41] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205–211, 1992.
- [42] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. *Formalized Mathematics*, 4(1):1–8, 1993.

Received February 18, 2015