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Summary. In this article, we formalize a matrix of Z-module and its pro-
perties. Specially, we formalize a matrix of a linear transformation of Z-module,
a bilinear form and a matrix of the bilinear form (Gramian matrix). We formally
prove that for a finite-rank free Z-module V , determinant of its Gramian matrix
is constant regardless of selection of its basis. Z-module is necessary for latti-
ce problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm and
cryptographic systems with lattices [22] and coding theory [14]. Some theorems
in this article are described by translating theorems in [24], [26] and [19] into
theorems of Z-module.
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1. Preliminaries

From now on x, y, z denote objects, i, j, k, l, n, m denote natural numbers,
D, E denote non empty sets, M denotes a matrix over D, and L denotes a
matrix over E.

Now we state the proposition:

(1) Let us consider natural numbers i, j. Suppose M = L and 〈〈i, j〉〉 ∈
the indices of M . Then Mi,j = Li,j .

Let us consider a natural number i. Now we state the propositions:

(2) If M = L and i ∈ domM , then Line(M, i) = Line(L, i).
Proof: For every j such that j ∈ dom Line(M, i) holds Line(M, i)(j) =
Line(L, i)(j) by [12, (87)], (1). �

(3) If M = L and i ∈ Seg widthM , then M�,i = L�,i.
Proof: For every j such that j ∈ domM�,i holds M�,i(j) = L�,i(j) by
[12, (87)], (1). �

Now we state the propositions:

(4) Suppose lenM = lenL and widthM = widthL and for every natural
numbers i, j such that 〈〈i, j〉〉 ∈ the indices of M holds Mi,j = Li,j . Then
M = L.
Proof: M is a matrix over E by [12, (87)]. Reconsider L0 = M as a matrix
over E. For every natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of
L0 holds L0i,j = Li,j . �

(5) Let us consider a matrix M over D. Suppose for every natural numbers
i, j such that 〈〈i, j〉〉 ∈ the indices of M holds Mi,j ∈ E. Then M is a
matrix over E.

(6) If M = L, then MT = LT. The theorem is a consequence of (1) and (5).

(7) Every matrix over Z is a matrix over R.

Let M be a matrix over Z. The functor Z2R(M) yielding a matrix over R is
defined by the term

(Def. 1) M .

Let n, m be natural numbers and M be a matrix over Z of dimension n×m.
Let us note that the functor Z2R(M) yields a matrix over R of dimension n×m.
Let n be a natural number and M be a square matrix over Z of dimension n.
Observe that the functor Z2R(M) yields a square matrix over R of dimension
n. Let M be a matrix over R. We say that M is integer if and only if

(Def. 2) M is a matrix over Z.

One can verify that there exists a matrix over R which is integer.
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Let n, m be natural numbers. Observe that there exists a matrix over R of
dimension n×m which is integer.

Let M be an integer matrix over R. The functor R2Z(M) yielding a matrix
over Z is defined by the term

(Def. 3) M .

Let n,m be natural numbers andM be an integer matrix over R of dimension
n×m. Let us note that the functor R2Z(M) yields a matrix over Z of dimension
n×m. Let n be a natural number and M be an integer square matrix over R
of dimension n. Observe that the functor R2Z(M) yields a square matrix over
Z of dimension n. Let n, m be natural numbers. The functor 0m×mn yielding a
matrix over ZR of dimension n×m is defined by the term

(Def. 4) n 7→ (m 7→ 0ZR).

2. Sequences and Matrices Concerning Linear Transformations

In the sequel k, t, i, j, m, n denote natural numbers, D denotes a non
empty set, V denotes a free Z-module, a denotes an element of ZR, W denotes
an element of V , K1, K2, K3 denote linear combinations of V , and X denotes
a subset of V .

Now we state the propositions:

(8) Suppose X is linearly independent and the support of K1 ⊆ X and
the support of K2 ⊆ X and the support of K3 ⊆ X and

∑
K1 =

∑
K2 +∑

K3. Then K1 = K2 +K3.

(9) Suppose X is linearly independent and the support of K1 ⊆ X and
the support of K2 ⊆ X and a 6= 0ZR and

∑
K1 = a ·

∑
K2. Then K1 =

a ·K2.
From now on V denotes a finite rank, free Z-module, W denotes an element

of V , K1, K2, K3 denote linear combinations of V , and X denotes a subset of
V .

Now we state the proposition:

(10) Let us consider a basis b2 of V . Then there exists a linear combination
K of V such that

(i) W =
∑
K, and

(ii) the support of K ⊆ b2.

Let V be a finite rank, free Z-module.
An ordered basis of V is a finite sequence of elements of V and is defined by

(Def. 5) it is one-to-one and rng it is a basis of V .
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From now on s denotes a finite sequence, V1, V2, V3 denote finite rank, free
Z-modules, f , f1, f2 denote functions from V1 into V2, g denotes a function
from V2 into V3, b1 denotes an ordered basis of V1, b2 denotes an ordered basis
of V2, b3 denotes an ordered basis of V3, v1, v2 denote vectors of V2, v, w denote
elements of V1, p2, F denote finite sequences of elements of V1, p1, d denote
finite sequences of elements of ZR, and K denotes a linear combination of V1.

Now we state the propositions:

(11) Let us consider an element a of V1, a finite sequence F of elements of V1,
and a finite sequence G of elements of ZR. Suppose lenF = lenG and for
every k and for every element v of ZR such that k ∈ domF and v = G(k)
holds F (k) = v · a. Then

∑
F =

∑
G · a.

Proof: Define P[natural number] ≡ for every finite sequence H of ele-
ments of V1 for every finite sequence I of elements of ZR such that lenH =
len I and lenH = $1 and for every k and for every element v of ZR such
that k ∈ domH and v = I(k) holds H(k) = v · a holds

∑
H =

∑
I · a. For

every n such that P[n] holds P[n+ 1] by [5, (18)], [3, (12)], [5, (17)], [32,
(30)]. P[0] by [35, (43)], [21, (14)]. For every n, P[n] from [3, Sch. 2]. �

(12) Let us consider an element a of V1, a finite sequence F of elements of
ZR, and a finite sequence G of elements of V1. Suppose lenF = lenG and
for every k such that k ∈ domF holds G(k) = Fk ·a. Then

∑
G =

∑
F ·a.

The theorem is a consequence of (11).

Let us consider V1, p1, and p2. The functor lmlt(p1, p2) yielding a finite
sequence of elements of V1 is defined by the term

(Def. 6) (the left multiplication of V1)◦(p1, p2).

Now we state the propositions:

(13) If dom p1 = dom p2, then dom lmlt(p1, p2) = dom p1.

(14) Let us consider a matrix M over the carrier of V1. If lenM = 0, then∑∑
M = 0V1 .

(15) Let us consider a matrix M over the carrier of V1 of dimension m+1×0.
Then

∑∑
M = 0V1 .

Proof: For every k such that k ∈ dom
∑
M holds (

∑
M)k = 0V1 by [32,

(29)], [20, (2)], [35, (43)]. �

(16) Let us consider Z-modules V1, V2, a function f from V1 into V2, and a
finite sequence p of elements of V1. If f is additive and homogeneous, then
f(
∑
p) =

∑
(f · p).

Proof: Define P[finite sequence of elements of V1] ≡ f(
∑

$1) =
∑

(f ·$1).
For every finite sequence p of elements of V1 and for every element w of
V1 such that P[p] holds P[p a 〈w〉] by [35, (41), (44)], [7, (8)]. For every
finite sequence p of elements of V1, P[p] from [8, Sch. 2]. �
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(17) Let us consider a finite sequence a of elements of ZR, and a finite se-
quence p of elements of V1. Suppose len p = len a. If f is additive and
homogeneous, then f · lmlt(a, p) = lmlt(a, f · p). The theorem is a conse-
quence of (13).

(18) Let us consider a finite sequence a of elements of ZR. Suppose len a =
len b2 and g is additive and homogeneous. Then g(

∑
lmlt(a, b2)) =∑

lmlt(a, g · b2). The theorem is a consequence of (16) and (17).

(19) Let us consider finite sequences F , F1 of elements of V1, a linear com-
bination K of V1, and a permutation p of domF . If F1 = F · p, then
K · F1 = (K · F ) · p.

(20) If F is one-to-one and the support of K ⊆ rngF , then
∑

(K ·F ) =
∑
K.

Proof: Reconsider A = the support of K as a subset of rngF . Consider
p1 being a permutation of domF such that (F − Ac) a (F − A) = F · p1.
Reconsider G1 = F − Ac, G2 = F − A as a finite sequence of elements of
V1. For every k such that k ∈ dom(K ·G2) holds (K ·G2)k = 0V1 by [32,
(29), (65)], [15, (1)]. K · (G1 a G2) = (K · F ) · p1. �

(21) Let us consider a set A, and a finite sequence p of elements of V1. Suppose
rng p ⊆ A. Suppose f1 is additive and homogeneous and f2 is additive and
homogeneous and for every v such that v ∈ A holds f1(v) = f2(v). Then
f1(
∑
p) = f2(

∑
p).

Proof: Define P[finite sequence of elements of V1] ≡ if rng $1 ⊆ A, then
f1(
∑

$1) = f2(
∑

$1). For every finite sequence p of elements of V1 and for
every element x of V1 such that P[p] holds P[p a 〈x〉] by [5, (31), (39)],
[35, (41), (44)]. P[εα], where α is the carrier of V1 by [35, (43)], [15, (1)].
For every finite sequence p of elements of V1, P[p] from [8, Sch. 2]. �

(22) Suppose f1 is additive and homogeneous and f2 is additive and homo-
geneous. Let us consider an ordered basis b1 of V1. Suppose len b1 > 0. If
f1 · b1 = f2 · b1, then f1 = f2. The theorem is a consequence of (20) and
(21).

(23) Let us consider a matrix M1 over the carrier of V of dimension n×k, and
a matrix M2 over the carrier of V of dimension m×k. Then

∑
(M1aM2) =∑

M1
a∑M2.

(24) Let us consider matrices M1, M2 over the carrier of V1. Then
∑
M1 +∑

M2 =
∑

(M1 _M2).

(25) Let us consider finite sequences P1, P2 of elements of V1. Suppose lenP1 =
lenP2. Then

∑
(P1 + P2) =

∑
P1 +

∑
P2.

(26) Let us consider matrices M1, M2 over the carrier of V1. Suppose lenM1 =
lenM2. Then

∑∑
M1 +

∑∑
M2 =

∑∑
(M1 _ M2). The theorem is a

consequence of (25) and (24).
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(27) Let us consider a matrix M over the carrier of V1. Then
∑∑

M =∑∑
MT.

Proof: Define X [natural number] ≡ for every matrix M over the carrier
of V1 such that lenM = $1 holds

∑∑
M =

∑∑
MT. For every finite

sequence P of elements of V1,
∑∑

〈P 〉 =
∑∑

〈P 〉T by [5, (38), (6), (39)].
For every n such that X [n] holds X [n + 1] by [5, (4), (40)], [24, (3), (2),
(1)]. X [0]. For every n, X [n] from [3, Sch. 2]. �

(28) Let us consider a matrix M over ZR of dimension n×m. Suppose n > 0
and m > 0. Let us consider finite sequences p, d of elements of ZR. Suppose
len p = n and len d = m and for every j such that j ∈ dom d holds
dj =

∑
(p •M�,j). Let us consider finite sequences b, c of elements of V1.

Suppose len b = m and len c = n and for every i such that i ∈ dom c holds
ci =

∑
lmlt(Line(M, i), b). Then

∑
lmlt(p, c) =

∑
lmlt(d, b).

Proof: Reconsider n1 = n, m1 = m as an element of N. Define V(natural
number, natural number) = p$1 ·M$1,$2 · b$2 . Consider M1 being a matrix
over the carrier of V1 of dimension n1×m1 such that for every i and j such
that 〈〈i, j〉〉 ∈ the indices of M1 holds M1i,j = V(i, j). dom lmlt(d, b) =
dom b. dom lmlt(p, c) = dom p. �

3. Decomposition of a Vector in Basis

Let V be a finite rank, free Z-module, b1 be an ordered basis of V , and W

be an element of V . The functor W → b1 yielding a finite sequence of elements
of ZR is defined by

(Def. 7) len it = len b1 and there exists a linear combination K of V such that
W =

∑
K and the support of K ⊆ rng b1 and for every k such that

1 ¬ k ¬ len it holds itk = K(b1k).

Now we state the propositions:

(29) If v1 → b2 = v2 → b2, then v1 = v2.

(30) v =
∑

lmlt(v → b1, b1). The theorem is a consequence of (13) and (20).

(31) If len d = len b1, then d =
∑

lmlt(d, b1)→ b1.
Proof: Define X [element of V1, element of ZR] ≡ if $1 ∈ rng b1, then
for every k such that k ∈ dom b1 and b1k = $1 holds $2 = dk and if
$1 /∈ rng b1, then $2 = 0ZR . For every v, there exists an element u of ZR
such that X [v, u] by [20, (2)]. Consider K being a function from V1 into
the carrier of ZR such that for every v, X [v,K(v)] from [10, Sch. 3]. �

(32) Let us consider finite sequences a, d of elements of ZR. Suppose len a =
len b1. Let us consider a natural number j. Suppose j ∈ dom b2 and len d =
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len b1 and for every k such that k ∈ dom b1 holds d(k) = (f(b1k) → b2)j .
If len b1 > 0, then (

∑
lmlt(a, f · b1)→ b2)j =

∑
(a • d).

Proof: Reconsider B3 = f · b1 as a finite sequence of elements of V2.
Define V(natural number,natural number) = (B3$1 → b2)$2 . Consider M
being a matrix over ZR of dimension len b1×len b2 such that for every i

and j such that 〈〈i, j〉〉 ∈ the indices of M holds Mi,j = V(i, j). Define
W(natural number) =

∑
(a •M�,$1). Consider d1 being a finite sequence

of elements of ZR such that len d1 = len b2 and for every natural number
j such that j ∈ dom d1 holds d1j =W(j) from [33, Sch. 2]. �

4. Matrices of Linear Transformations

Let V1, V2 be finite rank, free Z-modules, f be a function from V1 into V2,
b1 be a finite sequence of elements of V1, and b2 be an ordered basis of V2. The
functor AutMt(f, b1, b2) yielding a matrix over ZR is defined by

(Def. 8) len it = len b1 and for every k such that k ∈ dom b1 holds itk = f(b1k)→
b2.

Now we state the propositions:

(33) If len b1 = 0, then AutMt(f, b1, b2) = ∅.
(34) If len b1 > 0, then width AutMt(f, b1, b2) = len b2.

(35) Suppose f1 is additive and homogeneous and f2 is additive and homo-
geneous and AutMt(f1, b1, b2) = AutMt(f2, b1, b2) and len b1 > 0. Then
f1 = f2. The theorem is a consequence of (29) and (22).

(36) Let us consider a finite sequence F of elements of RF, and a finite sequ-
ence G of elements of ZR. If F = G, then

∑
F =

∑
G.

Proof: Define P[natural number] ≡ for every finite sequence F of ele-
ments of RF for every finite sequence G of elements of ZR such that
lenF = $1 and F = G holds

∑
F =

∑
G. P[0] by [35, (43)]. For eve-

ry natural number n such that P[n] holds P[n+ 1] by [5, (4)], [9, (3)], [5,
(59)], [3, (11)]. For every natural number n, P[n] from [3, Sch. 2]. �

(37) Let us consider finite sequences p, q of elements of ZR, and finite sequ-
ences p1, q1 of elements of RF. If p = p1 and q = q1, then p · q = p1 · q1.
The theorem is a consequence of (36).

(38) Suppose g is additive and homogeneous and len b1 > 0 and len b2 > 0.
Then AutMt(g · f, b1, b3) = AutMt(f, b1, b2) ·AutMt(g, b2, b3).
Proof: width AutMt(f, b1, b2) = len b2. width AutMt(g ·f, b1, b3) = len b3.
For every i and j such that 〈〈i, j〉〉 ∈ the indices of AutMt(g · f, b1, b3)
holds (AutMt(g · f, b1, b3))i,j = (AutMt(f, b1, b2) · AutMt(g, b2, b3))i,j by
[12, (87)], [32, (29)], (34), [32, (25)]. �
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(39) AutMt(f1 + f2, b1, b2) = AutMt(f1, b1, b2) + AutMt(f2, b1, b2).
Proof: width AutMt(f1, b1, b2) = width AutMt(f2, b1, b2). width AutMt
(f1 + f2, b1, b2) = width AutMt(f1, b1, b2). For every i and j such that 〈〈i,
j〉〉 ∈ the indices of AutMt(f1+f2, b1, b2) holds (AutMt(f1+f2, b1, b2))i,j =
(AutMt(f1, b1, b2) + AutMt(f2, b1, b2))i,j by [32, (29)], [12, (87)], (8), [36,
(22)]. �

(40) If a 6= 0ZR , then AutMt(a · f, b1, b2) = a ·AutMt(f, b1, b2).
Proof: width AutMt(a·f, b1, b2) = width AutMt(f, b1, b2). For every i and
j such that 〈〈i, j〉〉 ∈ the indices of AutMt(a · f, b1, b2) holds (AutMt(a ·
f, b1, b2))i,j = (a · AutMt(f, b1, b2))i,j by [32, (29)], [12, (87)], (9), [5, (1)].
�

(41) Let us consider non empty sets D, E, natural numbers n, m, i, j, and a
matrix M over D of dimension n×m. Suppose 0 < n and M is a matrix
over E of dimension n×m and 〈〈i, j〉〉 ∈ the indices of M . Then Mi,j is an
element of E.

(42) Let us consider a finite sequence F of elements of RF. Suppose for every
natural number i such that i ∈ domF holds F (i) ∈ Z. Then

∑
F ∈ Z.

Proof: Define P[natural number] ≡ for every finite sequence F of ele-
ments of RF such that lenF = $1 and for every natural number i such
that i ∈ domF holds F (i) ∈ Z holds

∑
F ∈ Z. P[0] by [35, (43)]. For

every natural number n such that P[n] holds P[n+ 1] by [5, (4)], [9, (3)],
[5, (59)], [3, (11)]. For every natural number n, P[n] from [3, Sch. 2]. �

(43) Let us consider a natural number i, and an element j of RF. Suppose
j ∈ Z. Then powerRF(−1RF , i) · j ∈ Z.
Proof: Define P[natural number] ≡ powerRF(−1RF , $1) · j ∈ Z. P[0]. For
every natural number n such that P[n] holds P[n+ 1]. For every natural
number n, P[n] from [3, Sch. 2]. �

(44) Let us consider natural numbers n, i, j, k,m, and a square matrixM over
RF of dimension n+ 1. Suppose 0 < n and M is a square matrix over Z of
dimension n+1 and 〈〈i, j〉〉 ∈ the indices of M and 〈〈k, m〉〉 ∈ the indices of
Delete(M, i, j). Then (Delete(M, i, j))k,m is an element of Z. The theorem
is a consequence of (41).

(45) Let us consider natural numbers n, i, j, and a square matrix M over RF
of dimension n + 1. Suppose 0 < n and M is a square matrix over Z of
dimension n + 1 and 〈〈i, j〉〉 ∈ the indices of M . Then Delete(M, i, j) is a
square matrix over Z of dimension n.
Proof: Set M0 = Delete(M, i, j). For every object x such that x ∈ rngM0
there exists a finite sequence p of elements of Z such that x = p and
len p = n by [12, (87)], (44). �
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Let us consider a natural number n and a square matrix M over RF of
dimension n. Now we state the propositions:

(46) If M is a square matrix over Z of dimension n, then DetM ∈ Z.
Proof: Define P[natural number] ≡ for every square matrix M over RF
of dimension $1 such that M is a square matrix over Z of dimension $1
holds DetM ∈ Z. P[0] by [29, (41)]. For every natural number n such that
P[n] holds P[n + 1] by [3, (14)], [5, (1)], [27, (27)], [12, (87)]. For every
natural number n, P[n] from [3, Sch. 2]. �

(47) If M is a square matrix over ZR of dimension n, then DetM ∈ Z.

Now we state the proposition:

(48) Let us consider a finite rank, free Z-module V , and a basis I of V . Then
there exists an ordered basis J of V such that rng J = I.

Let V be a Z-module. One can check that idV is additive and homogeneous.
Now we state the propositions:

(49) Let us consider a finite rank, free Z-module V , and an ordered basis b of
V . Then len b = rankV .

(50) Let us consider a finite rank, free Z-module V , and ordered bases b1,
b2 of V . Then AutMt(idV , b1, b2) is a square matrix over ZR of dimension
rankV . The theorem is a consequence of (49) and (34).

(51) Let us consider a finite rank, free Z-module V , ordered bases b1, b2 of
V , and a square matrix M over RF of dimension rankV . Suppose M =
AutMt(idV , b1, b2). Then DetM ∈ Z. The theorem is a consequence of
(46).

(52) Let us consider a finite rank, free Z-module V1, an ordered basis b1 of
V1, and natural numbers i, j. Suppose i, j ∈ dom b1. Then

(i) if i = j, then (b1i → b1)(j) = 1, and

(ii) if i 6= j, then (b1i → b1)(j) = 0.

(53) Let us consider a finite rank, free Z-module V , and an ordered basis b1
of V . Suppose rankV > 0. Then AutMt(idV , b1, b1) = I

(rankV )×(rankV )
ZR .

The theorem is a consequence of (49), (34), (52), and (4).

(54) Let us consider a finite rank, free Z-module V , and ordered bases b1, b2
of V . Suppose rankV > 0. Then AutMt(idV , b1, b2) ·AutMt(idV , b2, b1) =
I
(rankV )×(rankV )
ZR . The theorem is a consequence of (49), (38), and (53).

(55) Let us consider a finite rank, free Z-module V , ordered bases b1, b2 of
V , and a square matrix M over ZR of dimension rankV . Suppose M =
AutMt(idV , b1, b2). Then |DetM | = 1. The theorem is a consequence of
(49), (34), and (54).



38 yuichi futa, hiroyuki okazaki, and yasunari shidama

5. Real-valued Function of Z-Module

Let V be a non empty vector space structure over ZR. Observe that there
exists a functional in V which is additive, homogeneous, and 0-preserving.

A linear functional in V is an additive, homogeneous functional in V . Now
we state the proposition:

(56) Let us consider an element a of ZR, an add-associative, right zeroed,
right complementable, vector distributive, scalar distributive, scalar
associative, scalar unital, non empty vector space structure V over ZR,
and a vector v of V . Then

(i) 0ZR · v = 0V , and

(ii) a · 0V = 0V .

Let V be a non empty vector space structure over ZR. Note that there exists
a functional in V which is additive and 0-preserving.

Let V be a right zeroed, non empty vector space structure over ZR. Let us
note that every functional in V which is additive is also 0-preserving.

Let V be an add-associative, right zeroed, right complementable, vector
distributive, scalar distributive, scalar associative, scalar unital, non emp-
ty vector space structure over ZR. Note that every functional in V which is
homogeneous is also 0-preserving.

Let V be a non empty vector space structure over ZR. Let us observe that
0FunctionalV is constant and there exists a functional in V which is constant.

Let V be a right zeroed, non empty vector space structure over ZR and f

be a 0-preserving functional in V . Let us note that f is constant if and only if
the condition (Def. 9) is satisfied.

(Def. 9) f = 0FunctionalV .

Let us note that there exists a functional in V which is constant, additive,
and 0-preserving.

Let V be a free Z-module and A, B be subsets of V . Assume A ⊆ B and B
is a basis of V . The functor Proj(A,B) yielding a linear transformation from V

to V is defined by

(Def. 10) for every vector v of V , there exist vectors v6, v7 of V such that v6 ∈
Lin(A) and v7 ∈ Lin(B \A) and v = v6 + v7 and it(v) = v6 and for every
vectors v, v6, v7 of V such that v6 ∈ Lin(A) and v7 ∈ Lin(B \ A) and
v = v6 + v7 holds it(v) = v6.

Let B be a basis of V and u be a vector of V . The functor Coordinate(u,B)
yielding a function from V into ZR is defined by

(Def. 11) for every vector v of V , there exists a linear combination L2 of B such
that v =

∑
L2 and it(v) = L2(u) and for every vector v of V and for every
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linear combination L3 of B such that v =
∑
L3 holds it(v) = L3(u) and

for every vectors v1, v2 of V , it(v1 + v2) = it(v1) + it(v2) and for every
vector v of V and for every element r of ZR, it(r · v) = r · it(v).

Now we state the propositions:

(57) Let us consider a free Z-module V , a basis B of V , and a vector u of V .
Then (Coordinate(u,B))(0V ) = 0.

(58) Let us consider a free Z-module V , a basis X of V , and a vector v of V .
If v ∈ X and v 6= 0V , then (Coordinate(v,X))(v) = 1.

Let V be a non trivial, free Z-module. One can verify that there exists a
functional in V which is additive, homogeneous, non constant, and non trivial.

Now we state the proposition:

(59) Let us consider a non trivial, free Z-module V , and a non constant,
0-preserving functional f in V . Then there exists a vector v of V such
that

(i) v 6= 0V , and

(ii) f(v) 6= 0ZR .

6. Bilinear Form of Z-Module

Let V , W be vector space structures over ZR. The functor NulForm(V,W )
yielding a form of V , W is defined by the term

(Def. 12) (the carrier of V )× (the carrier of W ) 7−→ 0ZR .

Let V , W be non empty vector space structures over ZR and f , g be forms
of V , W . The functor f + g yielding a form of V , W is defined by

(Def. 13) for every vector v of V and for every vector w of W , it(v, w) = f(v, w)+
g(v, w).

Let f be a form of V , W and a be an element of ZR. The functor a · f
yielding a form of V , W is defined by

(Def. 14) for every vector v of V and for every vector w of W , it(v, w) = a·f(v, w).

The functor −f yielding a form of V , W is defined by

(Def. 15) for every vector v of V and for every vector w of W , it(v, w) = −f(v, w).

Note that the functor −f is defined by the term

(Def. 16) (−1ZR) · f .

Let f , g be forms of V , W . The functor f − g yielding a form of V , W is
defined by the term

(Def. 17) f +−g.



40 yuichi futa, hiroyuki okazaki, and yasunari shidama

One can verify that the functor f − g is defined by

(Def. 18) for every vector v of V and for every vector w of W , it(v, w) = f(v, w)−
g(v, w).

Let us observe that the functor f + g is commutative.
Now we state the propositions:

(60) Let us consider non empty vector space structures V , W over ZR, and
a form f of V , W . Then f + NulForm(V,W ) = f .

(61) Let us consider non empty vector space structures V , W over ZR, and
forms f , g, h of V , W . Then (f + g) + h = f + (g + h).

(62) Let us consider non empty vector space structures V , W over ZR, and
a form f of V , W . Then f − f = NulForm(V,W ).

(63) Let us consider non empty vector space structures V , W over ZR, an
element a of ZR, and forms f , g of V , W . Then a · (f + g) = a · f + a · g.

Let us consider non empty vector space structures V , W over ZR, elements
a, b of ZR, and a form f of V , W . Now we state the propositions:

(64) (a+ b) · f = a · f + b · f .

(65) (a · b) · f = a · (b · f).

Now we state the proposition:

(66) Let us consider non empty vector space structures V , W over ZR, and
a form f of V , W . Then 1ZR · f = f .

Let V , W be non empty vector space structures over ZR, f be a form of V ,
W , and v be a vector of V . The functor f(v, ·) yielding a functional in W is
defined by the term

(Def. 19) (curry f)(v).

Let w be a vector of W . The functor f(·, w) yielding a functional in V is
defined by the term

(Def. 20) (curry′ f)(w).

Now we state the propositions:

(67) Let us consider non empty vector space structures V , W over ZR, a form
f of V , W , and a vector v of V . Then

(i) dom f(v, ·) = the carrier of W , and

(ii) rng f(v, ·) ⊆ the carrier of ZR, and

(iii) for every vector w of W , (f(v, ·))(w) = f(v, w).

(68) Let us consider non empty vector space structures V , W over ZR, a form
f of V , W , and a vector w of W . Then

(i) dom f(·, w) = the carrier of V , and
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(ii) rng f(·, w) ⊆ the carrier of ZR, and

(iii) for every vector v of V , (f(·, w))(v) = f(v, w).

(69) Let us consider non empty vector space structures V , W over ZR, and a
vector v of V . Then NulForm(V,W )(v, ·) = 0FunctionalW . The theorem
is a consequence of (67).

(70) Let us consider non empty vector space structures V , W over ZR, and a
vector w of W . Then NulForm(V,W )(·, w) = 0FunctionalV . The theorem
is a consequence of (68).

(71) Let us consider non empty vector space structures V , W over ZR, forms
f , g of V , W , and a vector w of W . Then (f + g)(·, w) = f(·, w) + g(·, w).
The theorem is a consequence of (68).

(72) Let us consider non empty vector space structures V , W over ZR, forms
f , g of V , W , and a vector v of V . Then (f + g)(v, ·) = f(v, ·) + g(v, ·).
The theorem is a consequence of (67).

(73) Let us consider non empty vector space structures V , W over ZR, a form
f of V , W , an element a of ZR, and a vector w of W . Then (a · f)(·, w) =
a · f(·, w). The theorem is a consequence of (68).

(74) Let us consider non empty vector space structures V , W over ZR, a form
f of V , W , an element a of ZR, and a vector v of V . Then (a · f)(v, ·) =
a · f(v, ·). The theorem is a consequence of (67).

(75) Let us consider non empty vector space structures V , W over ZR, a form
f of V , W , and a vector w of W . Then (−f)(·, w) = −f(·, w). The theorem
is a consequence of (68).

(76) Let us consider non empty vector space structures V , W over ZR, a form
f of V , W , and a vector v of V . Then (−f)(v, ·) = −f(v, ·). The theorem
is a consequence of (67).

(77) Let us consider non empty vector space structures V , W over ZR, forms
f , g of V , W , and a vector w of W . Then (f − g)(·, w) = f(·, w)− g(·, w).
The theorem is a consequence of (68).

(78) Let us consider non empty vector space structures V , W over ZR, forms
f , g of V , W , and a vector v of V . Then (f − g)(v, ·) = f(v, ·) − g(v, ·).
The theorem is a consequence of (67).

Let V , W be non empty vector space structures over ZR, f be a functional
in V , and g be a functional in W . The functor f ⊗ g yielding a form of V , W is
defined by

(Def. 21) for every vector v of V and for every vector w of W , it(v, w) = f(v)·g(w).

Now we state the propositions:
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(79) Let us consider non empty vector space structures V , W over ZR, a
functional f in V , a vector v of V , and a vector w of W . Then f ⊗
(0FunctionalW )(v, w) = 0.

(80) Let us consider non empty vector space structures V , W over ZR, a func-
tional g inW , a vector v of V , and a vector w ofW . Then (0FunctionalV )⊗
g(v, w) = 0.

(81) Let us consider non empty vector space structures V , W over ZR, and
a functional f in V . Then f ⊗ (0FunctionalW ) = NulForm(V,W ). The
theorem is a consequence of (79).

(82) Let us consider non empty vector space structures V , W over ZR, and
a functional g in W . Then (0FunctionalV ) ⊗ g = NulForm(V,W ). The
theorem is a consequence of (80).

(83) Let us consider non empty vector space structures V , W over ZR, a
functional f in V , a functional g in W , and a vector v of V . Then f ⊗
g(v, ·) = f(v) · g. The theorem is a consequence of (67).

(84) Let us consider non empty vector space structures V , W over ZR, a
functional f in V , a functional g in W , and a vector w of W . Then f ⊗
g(·, w) = g(w) · f . The theorem is a consequence of (68).

Let V , W be non empty vector space structures over ZR and f be a form of
V , W . We say that f is additive w.r.t. second argument if and only if

(Def. 22) for every vector v of V , f(v, ·) is additive.

We say that f is additive w.r.t. first argument if and only if

(Def. 23) for every vector w of W , f(·, w) is additive.

We say that f is homogeneous w.r.t. second argument if and only if

(Def. 24) for every vector v of V , f(v, ·) is homogeneous.

We say that f is homogeneous w.r.t. first argument if and only if

(Def. 25) for every vector w of W , f(·, w) is homogeneous.

One can check that NulForm(V,W ) is additive w.r.t. second argument and
NulForm(V,W ) is additive w.r.t. first argument and NulForm(V,W ) is homo-
geneous w.r.t. second argument and NulForm(V,W ) is homogeneous w.r.t. first
argument and there exists a form of V , W which is additive w.r.t. second argu-
ment, homogeneous w.r.t. second argument, additive w.r.t. first argument, and
homogeneous w.r.t. first argument.

A bilinear form of V , W is an additive w.r.t. first argument, homogeneous
w.r.t. first argument, additive w.r.t. second argument, homogeneous w.r.t.
second argument form of V , W . Let f be an additive w.r.t. second argument
form of V , W and v be a vector of V . Note that f(v, ·) is additive.
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Let f be an additive w.r.t. first argument form of V , W and w be a vector
of W . Let us observe that f(·, w) is additive.

Let f be a homogeneous w.r.t. second argument form of V , W and v be a
vector of V . Note that f(v, ·) is homogeneous.

Let f be a homogeneous w.r.t. first argument form of V , W and w be a
vector of W . Let us observe that f(·, w) is homogeneous.

Let f be a functional in V and g be an additive functional in W . Let us
observe that f ⊗ g is additive w.r.t. second argument.

Let f be an additive functional in V and g be a functional in W . Note that
f ⊗ g is additive w.r.t. first argument.

Let f be a functional in V and g be a homogeneous functional in W . Let us
observe that f ⊗ g is homogeneous w.r.t. second argument.

Let f be a homogeneous functional in V and g be a functional in W . Note
that f ⊗ g is homogeneous w.r.t. first argument.

Let V be a non trivial vector space structure over ZR, W be a Z-module,
and f be a functional in V . Note that f ⊗ g is non trivial.

Let W be a non trivial Z-module. One can verify that f ⊗ g is non trivial.
Let V , W be non trivial, free Z-modules, f be a non constant, 0-preserving

functional in V , and g be a non constant, 0-preserving functional in W . Let
us note that f ⊗ g is non constant and there exists a form of V , W which is
non trivial, non constant, additive w.r.t. second argument, homogeneous w.r.t.
second argument, additive w.r.t. first argument, and homogeneous w.r.t. first
argument.

Let V , W be non empty vector space structures over ZR and f , g be additive
w.r.t. first argument forms of V , W . One can check that f + g is additive w.r.t.
first argument.

Let f , g be additive w.r.t. second argument forms of V , W . Let us note that
f + g is additive w.r.t. second argument.

Let f be an additive w.r.t. first argument form of V , W and a be an element
of ZR. One can check that a · f is additive w.r.t. first argument.

Let f be an additive w.r.t. second argument form of V , W . Observe that
a · f is additive w.r.t. second argument.

Let f be an additive w.r.t. first argument form of V , W . One can check that
−f is additive w.r.t. first argument.

Let f be an additive w.r.t. second argument form of V , W . One can check
that −f is additive w.r.t. second argument.

Let f , g be additive w.r.t. first argument forms of V , W . One can verify that
f − g is additive w.r.t. first argument.

Let f , g be additive w.r.t. second argument forms of V , W . Let us note that
f − g is additive w.r.t. second argument.



44 yuichi futa, hiroyuki okazaki, and yasunari shidama

Let f , g be homogeneous w.r.t. first argument forms of V , W . One can verify
that f + g is homogeneous w.r.t. first argument.

Let f , g be homogeneous w.r.t. second argument forms of V , W . Note that
f + g is homogeneous w.r.t. second argument.

Let f be a homogeneous w.r.t. first argument form of V , W and a be an
element of ZR. One can verify that a · f is homogeneous w.r.t. first argument.

Let f be a homogeneous w.r.t. second argument form of V , W . Let us note
that a · f is homogeneous w.r.t. second argument.

Let f be a homogeneous w.r.t. first argument form of V , W . One can verify
that −f is homogeneous w.r.t. first argument.

Let f be a homogeneous w.r.t. second argument form of V , W . One can
verify that −f is homogeneous w.r.t. second argument.

Let f , g be homogeneous w.r.t. first argument forms of V , W . Let us observe
that f − g is homogeneous w.r.t. first argument.

Let f , g be homogeneous w.r.t. second argument forms of V , W . Note that
f − g is homogeneous w.r.t. second argument.

Now we state the propositions:

(85) Let us consider non empty vector space structures V , W over ZR, vectors
v, u of V , a vector w of W , and a form f of V , W . If f is additive w.r.t.
first argument, then f(v + u,w) = f(v, w) + f(u,w). The theorem is a
consequence of (68).

(86) Let us consider non empty vector space structures V , W over ZR, a
vector v of V , vectors u, w of W , and a form f of V , W . If f is additive
w.r.t. second argument, then f(v, u+w) = f(v, u) +f(v, w). The theorem
is a consequence of (67).

(87) Let us consider non empty vector space structures V , W over ZR, vectors
v, u of V , vectors w, t of W , and an additive w.r.t. first argument, additive
w.r.t. second argument form f of V , W . Then f(v+ u,w+ t) = f(v, w) +
f(v, t)+(f(u,w)+f(u, t)). The theorem is a consequence of (85) and (86).

(88) Let us consider right zeroed, non empty vector space structures V , W
over ZR, an additive w.r.t. second argument form f of V , W , and a vector
v of V . Then f(v, 0W ) = 0. The theorem is a consequence of (86).

(89) Let us consider right zeroed, non empty vector space structures V , W
over ZR, an additive w.r.t. first argument form f of V , W , and a vector
w of W . Then f(0V , w) = 0. The theorem is a consequence of (85).

Let us consider non empty vector space structures V , W over ZR, a vector
v of V , a vector w of W , an element a of ZR, and a form f of V , W . Now we
state the propositions:
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(90) If f is homogeneous w.r.t. first argument, then f(a · v, w) = a · f(v, w).
The theorem is a consequence of (68).

(91) If f is homogeneous w.r.t. second argument, then f(v, a ·w) = a ·f(v, w).
The theorem is a consequence of (67).

Now we state the propositions:

(92) Let us consider add-associative, right zeroed, right complementable,
vector distributive, scalar distributive, scalar associative, scalar unital,
non empty vector space structures V , W over ZR, a homogeneous w.r.t.
first argument form f of V , W , and a vector w of W . Then f(0V , w) = 0ZR .
The theorem is a consequence of (56) and (90).

(93) Let us consider add-associative, right zeroed, right complementable,
vector distributive, scalar distributive, scalar associative, scalar unital,
non empty vector space structures V , W over ZR, a homogeneous w.r.t.
second argument form f of V , W , and a vector v of V . Then f(v, 0W ) =
0ZR . The theorem is a consequence of (56) and (91).

(94) Let us consider Z-modules V , W , vectors v, u of V , a vector w of W ,
and an additive w.r.t. first argument, homogeneous w.r.t. first argument
form f of V , W . Then f(v − u,w) = f(v, w)− f(u,w). The theorem is a
consequence of (85) and (90).

(95) Let us consider Z-modules V , W , a vector v of V , vectors w, t of W , and
an additive w.r.t. second argument, homogeneous w.r.t. second argument
form f of V , W . Then f(v, w − t) = f(v, w) − f(v, t). The theorem is a
consequence of (86) and (91).

(96) Let us consider Z-modules V , W , vectors v, u of V , vectors w, t of W ,
and a bilinear form f of V , W . Then f(v− u,w− t) = f(v, w)− f(v, t)−
(f(u,w)− f(u, t)). The theorem is a consequence of (94) and (95).

(97) Let us consider add-associative, right zeroed, right complementable,
vector distributive, scalar distributive, scalar associative, scalar unital,
non empty vector space structures V , W over ZR, vectors v, u of V ,
vectors w, t of W , elements a, b of ZR, and a bilinear form f of V , W .
Then f(v+a ·u,w+b ·t) = f(v, w)+b ·f(v, t)+(a ·f(u,w)+a ·(b ·f(u, t))).
The theorem is a consequence of (87), (91), and (90).

(98) Let us consider Z-modules V , W , vectors v, u of V , vectors w, t of W ,
elements a, b of ZR, and a bilinear form f of V , W . Then f(v − a · u,w−
b · t) = f(v, w)− b · f(v, t)− (a · f(u,w)− a · (b · f(u, t))). The theorem is
a consequence of (96), (91), and (90).

(99) Let us consider right zeroed, non empty vector space structures V , W
over ZR, and a form f of V , W . Suppose f is additive w.r.t. second ar-
gument or additive w.r.t. first argument. Then f is constant if and only
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if for every vector v of V and for every vector w of W , f(v, w) = 0. The
theorem is a consequence of (88) and (89).

7. Matrix of Bilinear Form

Let V1, V2 be finite rank, free Z-modules, b1 be an ordered basis of V1, b2
be an ordered basis of V2, and f be a bilinear form of V1, V2. The functor
Bilinear(f, b1, b2) yielding a matrix over ZR of dimension len b1×len b2 is defined
by

(Def. 26) for every natural numbers i, j such that i ∈ dom b1 and j ∈ dom b2 holds
it i,j = f(b1i, b2j).

Now we state the propositions:

(100) Let us consider a finite rank, free Z-module V , a natural number i, an
element a1 of ZR, an element a2 of V , a finite sequence p1 of elements of
ZR, and a finite sequence p2 of elements of V . Suppose i ∈ dom lmlt(p1, p2)
and a1 = p1(i) and a2 = p2(i). Then (lmlt(p1, p2))(i) = a1 · a2.

(101) Let us consider a finite rank, free Z-module V , a linear functional F in
V , a finite sequence y of elements of V , a finite sequence x of elements
of ZR, and finite sequences X, Y of elements of ZR. Suppose X = x and
len y = lenx and lenX = lenY and for every natural number k such that
k ∈ Seg lenx holds Y (k) = F (yk). Then X · Y = F (

∑
lmlt(x, y)).

Proof: Define P[finite sequence of elements of V ] ≡ for every finite se-
quence x of elements of ZR for every finite sequences X, Y of elements of
ZR such that X = x and len $1 = lenx and lenX = lenY and for eve-
ry natural number k such that k ∈ Seg lenx holds Y (k) = F ($1k) holds
X ·Y = F (

∑
lmlt(x, $1)). For every finite sequence y of elements of V and

for every element w of V such that P[y] holds P[y a 〈w〉] by [5, (22), (39),
(59)], [3, (11)]. P[εα], where α is the carrier of V by [35, (43)]. For every
finite sequence p of elements of V , P[p] from [8, Sch. 2]. �

(102) Let us consider finite rank, free Z-modules V1, V2, an ordered basis b2
of V2, an ordered basis b3 of V2, a bilinear form f of V1, V2, a vector v1
of V1, a vector v2 of V2, and finite sequences X, Y of elements of ZR.
Suppose lenX = len b2 and lenY = len b2 and for every natural number k
such that k ∈ Seg len b2 holds Y (k) = f(v1, b2k) and X = v2 → b2. Then
Y ·X = f(v1, v2). The theorem is a consequence of (67), (101), and (30).

(103) Let us consider finite rank, free Z-modules V1, V2, an ordered basis b1
of V1, a bilinear form f of V1, V2, a vector v1 of V1, a vector v2 of V2,
and finite sequences X, Y of elements of ZR. Suppose lenX = len b1 and
lenY = len b1 and for every natural number k such that k ∈ Seg len b1
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holds Y (k) = f(b1k, v2) and X = v1 → b1. Then X · Y = f(v1, v2). The
theorem is a consequence of (68), (101), and (30).

(104) Let us consider finite rank, free Z-modules V1, V2, an ordered basis b1
of V1, an ordered basis b2 of V2, an ordered basis b3 of V2, and a bili-
near form f of V1, V2. Suppose 0 < rankV1. Then Bilinear(f, b1, b3) =
Bilinear(f, b1, b2) · (AutMt(idV2 , b3, b2))

T.
Proof: Set n = len b2. len b2 = rankV2. len b3 = rankV2. Reconsider
I1 = AutMt(idV2 , b3, b2) as a square matrix over ZR of dimension n.
Reconsider M1 = I1

T as a square matrix over ZR of dimension n. Set
M2 = Bilinear(f, b1, b2)·M1. 0 < len b1. For every natural numbers i, j such
that 〈〈i, j〉〉 ∈ the indices of Bilinear(f, b1, b3) holds (Bilinear(f, b1, b3))i,j =
M2i,j by [12, (87)], [5, (1)], (102). �

(105) Let us consider finite rank, free Z-modules V1, V2, an ordered basis b1
of V1, an ordered basis b2 of V2, an ordered basis b3 of V1, and a bili-
near form f of V1, V2. Suppose 0 < rankV1. Then Bilinear(f, b3, b2) =
AutMt(idV1 , b3, b1) · Bilinear(f, b1, b2).
Proof: Set n = len b3. len b1 = rankV1. len b3 = rankV1. Reconsider I1 =
AutMt(idV1 , b3, b1) as a square matrix over ZR of dimension n. Reconsider
M1 = I1 as a square matrix over ZR of dimension n. Set M2 = M1 ·
Bilinear(f, b1, b2). 0 < len b1. For every natural numbers i, j such that 〈〈i,
j〉〉 ∈ the indices of Bilinear(f, b3, b2) holds (Bilinear(f, b3, b2))i,j = M2i,j
by [12, (87)], [5, (1)], (103). �

Let us consider a finite rank, free Z-module V , ordered bases b1, b2 of V ,
and a bilinear form f of V , V . Now we state the propositions:

(106) Suppose 0 < rankV . Then Bilinear(f, b2, b2) = AutMt(idV , b2, b1)
·Bilinear(f, b1, b1) · (AutMt(idV , b2, b1))T. The theorem is a consequence
of (49), (50), (105), and (104).

(107) |Det Bilinear(f, b2, b2)| = |Det Bilinear(f, b1, b1)|. The theorem is a con-
sequence of (49), (106), (50), and (55).
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