Matrix of \mathbb{Z}-module ${ }^{1}$

Yuichi Futa
Japan Advanced Institute
of Science and Technology
Ishikawa, Japan

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Abstract

Summary. In this article, we formalize a matrix of \mathbb{Z}-module and its properties. Specially, we formalize a matrix of a linear transformation of \mathbb{Z}-module, a bilinear form and a matrix of the bilinear form (Gramian matrix). We formally prove that for a finite-rank free \mathbb{Z}-module V, determinant of its Gramian matrix is constant regardless of selection of its basis. \mathbb{Z}-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic systems with lattices [22] and coding theory [14. Some theorems in this article are described by translating theorems in [24, [26] and 19] into theorems of \mathbb{Z}-module.

MSC: 11E39 13C10 03B35
Keywords: matrix of Z-module; matrix of linear transformation; bilinear form
MML identifier: ZMATRLIN version: 8.1.04 5.31.1231

The notation and terminology used in this paper have been introduced in the following articles: [6], [1], [7], [5], 8], [13], [30], 9], [10], [2], 41], 34], [23], [31], [28, [27], [17], 42], [24], [25], 4], [11], 18], 39], 40], 35], 38], 21], [36], 37], [12], [15], and [16].

[^0]
1. Preliminaries

From now on x, y, z denote objects, i, j, k, l, n, m denote natural numbers, D, E denote non empty sets, M denotes a matrix over D, and L denotes a matrix over E.

Now we state the proposition:
(1) Let us consider natural numbers i, j. Suppose $M=L$ and $\langle i, j\rangle \in$ the indices of M. Then $M_{i, j}=L_{i, j}$.
Let us consider a natural number i. Now we state the propositions:
(2) If $M=L$ and $i \in \operatorname{dom} M$, then $\operatorname{Line}(M, i)=\operatorname{Line}(L, i)$.

Proof: For every j such that $j \in \operatorname{dom} \operatorname{Line}(M, i)$ holds $\operatorname{Line}(M, i)(j)=$ Line $(L, i)(j)$ by [12, (87)], (1).
(3) If $M=L$ and $i \in \operatorname{Seg}$ width M, then $M_{\square, i}=L_{\square, i}$.

Proof: For every j such that $j \in \operatorname{dom} M_{\square, i}$ holds $M_{\square, i}(j)=L_{\square, i}(j)$ by [12, (87)], (1).
Now we state the propositions:
(4) Suppose len $M=\operatorname{len} L$ and width $M=$ width L and for every natural numbers i, j such that $\langle i, j\rangle \in$ the indices of M holds $M_{i, j}=L_{i, j}$. Then $M=L$.
Proof: M is a matrix over E by [12, (87)]. Reconsider $L_{0}=M$ as a matrix over E. For every natural numbers i, j such that $\langle i, j\rangle \in$ the indices of L_{0} holds $L_{0 i, j}=L_{i, j}$.
(5) Let us consider a matrix M over D. Suppose for every natural numbers i, j such that $\langle i, j\rangle \in$ the indices of M holds $M_{i, j} \in E$. Then M is a matrix over E.
(6) If $M=L$, then $M^{\mathrm{T}}=L^{\mathrm{T}}$. The theorem is a consequence of (1) and (5).
(7) Every matrix over \mathbb{Z} is a matrix over \mathbb{R}.

Let M be a matrix over \mathbb{Z}. The functor $\mathbb{Z} 2 \mathbb{R}(M)$ yielding a matrix over \mathbb{R} is defined by the term
(Def. 1) M.
Let n, m be natural numbers and M be a matrix over \mathbb{Z} of dimension $n \times m$. Let us note that the functor $\mathbb{Z} 2 \mathbb{R}(M)$ yields a matrix over \mathbb{R} of dimension $n \times m$. Let n be a natural number and M be a square matrix over \mathbb{Z} of dimension n. Observe that the functor $\mathbb{Z} 2 \mathbb{R}(M)$ yields a square matrix over \mathbb{R} of dimension n. Let M be a matrix over \mathbb{R}. We say that M is integer if and only if
(Def. 2) $\quad M$ is a matrix over \mathbb{Z}.
One can verify that there exists a matrix over \mathbb{R} which is integer.

Let n, m be natural numbers. Observe that there exists a matrix over \mathbb{R} of dimension $n \times m$ which is integer.

Let M be an integer matrix over \mathbb{R}. The functor $\mathbb{R} 2 \mathbb{Z}(M)$ yielding a matrix over \mathbb{Z} is defined by the term
(Def. 3) M.
Let n, m be natural numbers and M be an integer matrix over \mathbb{R} of dimension $n \times m$. Let us note that the functor $\mathbb{R} 2 \mathbb{Z}(M)$ yields a matrix over \mathbb{Z} of dimension $n \times m$. Let n be a natural number and M be an integer square matrix over \mathbb{R} of dimension n. Observe that the functor $\mathbb{R} 2 \mathbb{Z}(M)$ yields a square matrix over \mathbb{Z} of dimension n. Let n, m be natural numbers. The functor $0_{n}^{m \times m}$ yielding a matrix over \mathbb{Z}^{R} of dimension $n \times m$ is defined by the term
(Def. 4) $\quad n \mapsto\left(m \mapsto 0_{\mathbb{Z}^{\mathrm{R}}}\right)$.

2. Sequences and Matrices Concerning Linear Transformations

In the sequel k, t, i, j, m, n denote natural numbers, D denotes a non empty set, V denotes a free \mathbb{Z}-module, a denotes an element of $\mathbb{Z}^{\mathrm{R}}, W$ denotes an element of V, K_{1}, K_{2}, K_{3} denote linear combinations of V, and X denotes a subset of V.

Now we state the propositions:
(8) Suppose X is linearly independent and the support of $K_{1} \subseteq X$ and the support of $K_{2} \subseteq X$ and the support of $K_{3} \subseteq X$ and $\sum K_{1}=\sum K_{2}+$ $\sum K_{3}$. Then $K_{1}=K_{2}+K_{3}$.
(9) Suppose X is linearly independent and the support of $K_{1} \subseteq X$ and the support of $K_{2} \subseteq X$ and $a \neq 0_{\mathbb{Z}^{\mathrm{R}}}$ and $\sum K_{1}=a \cdot \sum K_{2}$. Then $K_{1}=$ $a \cdot K_{2}$.
From now on V denotes a finite rank, free \mathbb{Z}-module, W denotes an element of V, K_{1}, K_{2}, K_{3} denote linear combinations of V, and X denotes a subset of V.

Now we state the proposition:
(10) Let us consider a basis b_{2} of V. Then there exists a linear combination K of V such that
(i) $W=\sum K$, and
(ii) the support of $K \subseteq b_{2}$.

Let V be a finite rank, free \mathbb{Z}-module.
An ordered basis of V is a finite sequence of elements of V and is defined by (Def. 5) it is one-to-one and rng it is a basis of V.

From now on s denotes a finite sequence, V_{1}, V_{2}, V_{3} denote finite rank, free \mathbb{Z}-modules, f, f_{1}, f_{2} denote functions from V_{1} into V_{2}, g denotes a function from V_{2} into V_{3}, b_{1} denotes an ordered basis of V_{1}, b_{2} denotes an ordered basis of V_{2}, b_{3} denotes an ordered basis of V_{3}, v_{1}, v_{2} denote vectors of V_{2}, v, w denote elements of V_{1}, p_{2}, F denote finite sequences of elements of V_{1}, p_{1}, d denote finite sequences of elements of \mathbb{Z}^{R}, and K denotes a linear combination of V_{1}.

Now we state the propositions:
(11) Let us consider an element a of V_{1}, a finite sequence F of elements of V_{1}, and a finite sequence G of elements of \mathbb{Z}^{R}. Suppose len $F=\operatorname{len} G$ and for every k and for every element v of \mathbb{Z}^{R} such that $k \in \operatorname{dom} F$ and $v=G(k)$ holds $F(k)=v \cdot a$. Then $\sum F=\sum G \cdot a$.
Proof: Define \mathcal{P} [natural number] \equiv for every finite sequence H of elements of V_{1} for every finite sequence I of elements of \mathbb{Z}^{R} such that len $H=$ len I and len $H=\$_{1}$ and for every k and for every element v of \mathbb{Z}^{R} such that $k \in \operatorname{dom} H$ and $v=I(k)$ holds $H(k)=v \cdot a$ holds $\sum H=\sum I \cdot a$. For every n such that $\mathcal{P}[n$] holds $\mathcal{P}[n+1]$ by [5, (18)], [3, (12)], [5, (17)], 32, (30)]. $\mathcal{P}[0]$ by [35, (43)], [21, (14)]. For every $n, \mathcal{P}[n]$ from [3, Sch. 2].
(12) Let us consider an element a of V_{1}, a finite sequence F of elements of \mathbb{Z}^{R}, and a finite sequence G of elements of V_{1}. Suppose len $F=\operatorname{len} G$ and for every k such that $k \in \operatorname{dom} F$ holds $G(k)=F_{k} \cdot a$. Then $\sum G=\sum F \cdot a$. The theorem is a consequence of (11).
Let us consider V_{1}, p_{1}, and p_{2}. The functor $\operatorname{lmlt}\left(p_{1}, p_{2}\right)$ yielding a finite sequence of elements of V_{1} is defined by the term
(Def. 6) (the left multiplication of $\left.V_{1}\right)^{\circ}\left(p_{1}, p_{2}\right)$.
Now we state the propositions:
(13) If $\operatorname{dom} p_{1}=\operatorname{dom} p_{2}$, then $\operatorname{dom} \operatorname{lmlt}\left(p_{1}, p_{2}\right)=\operatorname{dom} p_{1}$.
(14) Let us consider a matrix M over the carrier of V_{1}. If len $M=0$, then $\sum \sum M=0_{V_{1}}$.
(15) Let us consider a matrix M over the carrier of V_{1} of dimension $m+1 \times 0$. Then $\sum \sum M=0_{V_{1}}$.
Proof: For every k such that $k \in \operatorname{dom} \sum M$ holds $\left(\sum M\right)_{k}=0_{V_{1}}$ by 32, (29)], [20, (2)], [35, (43)].
(16) Let us consider \mathbb{Z}-modules V_{1}, V_{2}, a function f from V_{1} into V_{2}, and a finite sequence p of elements of V_{1}. If f is additive and homogeneous, then $f\left(\sum p\right)=\sum(f \cdot p)$.
PROOF: Define \mathcal{P} [finite sequence of elements of $\left.V_{1}\right] \equiv f\left(\sum \$_{1}\right)=\sum\left(f \cdot \$_{1}\right)$. For every finite sequence p of elements of V_{1} and for every element w of V_{1} such that $\mathcal{P}[p]$ holds $\mathcal{P}\left[p^{\wedge}\langle w\rangle\right.$] by [35, (41), (44)], [7, (8)]. For every finite sequence p of elements of $V_{1}, \mathcal{P}[p]$ from [8, Sch. 2].
(17) Let us consider a finite sequence a of elements of \mathbb{Z}^{R}, and a finite sequence p of elements of V_{1}. Suppose len $p=\operatorname{len} a$. If f is additive and homogeneous, then $f \cdot \operatorname{lmlt}(a, p)=\operatorname{lmlt}(a, f \cdot p)$. The theorem is a consequence of (13).
(18) Let us consider a finite sequence a of elements of \mathbb{Z}^{R}. Suppose len $a=$ len b_{2} and g is additive and homogeneous. Then $g\left(\sum \operatorname{lmlt}\left(a, b_{2}\right)\right)=$ $\sum \operatorname{lmlt}\left(a, g \cdot b_{2}\right)$. The theorem is a consequence of (16) and (17).
(19) Let us consider finite sequences F, F_{1} of elements of V_{1}, a linear combination K of V_{1}, and a permutation p of $\operatorname{dom} F$. If $F_{1}=F \cdot p$, then $K \cdot F_{1}=(K \cdot F) \cdot p$.
(20) If F is one-to-one and the support of $K \subseteq \operatorname{rng} F$, then $\sum(K \cdot F)=\sum K$. Proof: Reconsider $A=$ the support of K as a subset of $\operatorname{rng} F$. Consider p_{1} being a permutation of $\operatorname{dom} F$ such that $\left(F-A^{\mathrm{c}}\right)^{\wedge}(F-A)=F \cdot p_{1}$. Reconsider $G_{1}=F-A^{\mathrm{c}}, G_{2}=F-A$ as a finite sequence of elements of V_{1}. For every k such that $k \in \operatorname{dom}\left(K \cdot G_{2}\right)$ holds $\left(K \cdot G_{2}\right)_{k}=0_{V_{1}}$ by [32, (29), (65)], [15, (1)]. $K \cdot\left(G_{1}{ }^{\wedge} G_{2}\right)=(K \cdot F) \cdot p_{1}$. \square
(21) Let us consider a set A, and a finite sequence p of elements of V_{1}. Suppose $\operatorname{rng} p \subseteq A$. Suppose f_{1} is additive and homogeneous and f_{2} is additive and homogeneous and for every v such that $v \in A$ holds $f_{1}(v)=f_{2}(v)$. Then $f_{1}\left(\sum p\right)=f_{2}\left(\sum p\right)$.
Proof: Define \mathcal{P} [finite sequence of elements of V_{1}] \equiv if $\mathrm{rng} \$_{1} \subseteq A$, then $f_{1}\left(\sum \$_{1}\right)=f_{2}\left(\sum \$_{1}\right)$. For every finite sequence p of elements of V_{1} and for every element x of V_{1} such that $\mathcal{P}[p]$ holds $\mathcal{P}\left[p^{\wedge}\langle x\rangle\right.$] by [5, (31), (39)], [35, (41), (44)]. $\mathcal{P}\left[\varepsilon_{\alpha}\right]$, where α is the carrier of V_{1} by [35, (43)], [15, (1)]. For every finite sequence p of elements of $V_{1}, \mathcal{P}[p]$ from [8, Sch. 2].
(22) Suppose f_{1} is additive and homogeneous and f_{2} is additive and homogeneous. Let us consider an ordered basis b_{1} of V_{1}. Suppose len $b_{1}>0$. If $f_{1} \cdot b_{1}=f_{2} \cdot b_{1}$, then $f_{1}=f_{2}$. The theorem is a consequence of (20) and (21).
(23) Let us consider a matrix M_{1} over the carrier of V of dimension $n \times k$, and a matrix M_{2} over the carrier of V of dimension $m \times k$. Then $\sum\left(M_{1} \wedge M_{2}\right)=$ $\sum M_{1} \frown \sum M_{2}$.
(24) Let us consider matrices M_{1}, M_{2} over the carrier of V_{1}. Then $\sum M_{1}+$ $\sum M_{2}=\sum\left(M_{1} \frown M_{2}\right)$.
(25) Let us consider finite sequences P_{1}, P_{2} of elements of V_{1}. Suppose len $P_{1}=$ len P_{2}. Then $\sum\left(P_{1}+P_{2}\right)=\sum P_{1}+\sum P_{2}$.
(26) Let us consider matrices M_{1}, M_{2} over the carrier of V_{1}. Suppose len $M_{1}=$ len M_{2}. Then $\sum \sum M_{1}+\sum \sum M_{2}=\sum \sum\left(M_{1} \frown M_{2}\right)$. The theorem is a consequence of (25) and (24).
(27) Let us consider a matrix M over the carrier of V_{1}. Then $\sum \sum M=$ $\sum \sum M^{\mathrm{T}}$.
Proof: Define \mathcal{X} [natural number] \equiv for every matrix M over the carrier of V_{1} such that len $M=\$_{1}$ holds $\sum \sum M=\sum \sum M^{\mathrm{T}}$. For every finite sequence P of elements of $V_{1}, \sum \sum\langle P\rangle=\sum \sum\langle P\rangle^{\mathrm{T}}$ by [5, (38), (6), (39)]. For every n such that $\mathcal{X}[n]$ holds $\mathcal{X}[n+1]$ by [5, (4), (40)], [24, (3), (2), (1)]. $\mathcal{X}[0]$. For every $n, \mathcal{X}[n]$ from [3, Sch. 2$]$.
(28) Let us consider a matrix M over \mathbb{Z}^{R} of dimension $n \times m$. Suppose $n>0$ and $m>0$. Let us consider finite sequences p, d of elements of \mathbb{Z}^{R}. Suppose len $p=n$ and len $d=m$ and for every j such that $j \in \operatorname{dom} d$ holds $d_{j}=\sum\left(p \bullet M_{\square, j}\right)$. Let us consider finite sequences b, c of elements of V_{1}. Suppose len $b=m$ and len $c=n$ and for every i such that $i \in \operatorname{dom} c$ holds $c_{i}=\sum \operatorname{lmlt}(\operatorname{Line}(M, i), b)$. Then $\sum \operatorname{lmlt}(p, c)=\sum \operatorname{lmlt}(d, b)$.
Proof: Reconsider $n_{1}=n, m_{1}=m$ as an element of \mathbb{N}. Define \mathcal{V} (natural number, natural number) $=p_{\$_{1}} \cdot M_{\$_{1}, \$_{2}} \cdot b_{\$_{2}}$. Consider M_{1} being a matrix over the carrier of V_{1} of dimension $n_{1} \times m_{1}$ such that for every i and j such that $\langle i, j\rangle \in$ the indices of M_{1} holds $M_{1 i, j}=\mathcal{V}(i, j)$. dom $\operatorname{lmlt}(d, b)=$ $\operatorname{dom} b . \operatorname{dom} \operatorname{lmlt}(p, c)=\operatorname{dom} p$.

3. Decomposition of a Vector in Basis

Let V be a finite rank, free \mathbb{Z}-module, b_{1} be an ordered basis of V, and W be an element of V. The functor $W \rightarrow b_{1}$ yielding a finite sequence of elements of \mathbb{Z}^{R} is defined by
(Def. 7) len $i t=\operatorname{len} b_{1}$ and there exists a linear combination K of V such that $W=\sum K$ and the support of $K \subseteq \operatorname{rng} b_{1}$ and for every k such that $1 \leqslant k \leqslant$ len $i t$ holds $i t_{k}=K\left(b_{1 k}\right)$.
Now we state the propositions:
(29) If $v_{1} \rightarrow b_{2}=v_{2} \rightarrow b_{2}$, then $v_{1}=v_{2}$.
(30) $\quad v=\sum \operatorname{lmlt}\left(v \rightarrow b_{1}, b_{1}\right)$. The theorem is a consequence of (13) and (20).
(31) If len $d=\operatorname{len} b_{1}$, then $d=\sum \operatorname{lmlt}\left(d, b_{1}\right) \rightarrow b_{1}$.

Proof: Define \mathcal{X} [element of V_{1}, element of $\left.\mathbb{Z}^{\mathrm{R}}\right] \equiv$ if $\$_{1} \in \operatorname{rng} b_{1}$, then for every k such that $k \in \operatorname{dom} b_{1}$ and $b_{1 k}=\$_{1}$ holds $\$_{2}=d_{k}$ and if $\$_{1} \notin \operatorname{rng} b_{1}$, then $\$_{2}=0_{\mathbb{Z}^{\mathrm{R}}}$. For every v, there exists an element u of \mathbb{Z}^{R} such that $\mathcal{X}[v, u]$ by $[20,(2)]$. Consider K being a function from V_{1} into the carrier of \mathbb{Z}^{R} such that for every $v, \mathcal{X}[v, K(v)]$ from [10, Sch. 3]. \square
(32) Let us consider finite sequences a, d of elements of \mathbb{Z}^{R}. Suppose len $a=$ len b_{1}. Let us consider a natural number j. Suppose $j \in \operatorname{dom} b_{2}$ and len $d=$
len b_{1} and for every k such that $k \in \operatorname{dom} b_{1}$ holds $d(k)=\left(f\left(b_{1 k}\right) \rightarrow b_{2}\right)_{j}$. If len $b_{1}>0$, then $\left(\sum \operatorname{lmlt}\left(a, f \cdot b_{1}\right) \rightarrow b_{2}\right)_{j}=\sum(a \bullet d)$.
Proof: Reconsider $B_{3}=f \cdot b_{1}$ as a finite sequence of elements of V_{2}. Define \mathcal{V} (natural number, natural number) $=\left(B_{3 \$_{1}} \rightarrow b_{2}\right)_{\$_{2}}$. Consider M being a matrix over \mathbb{Z}^{R} of dimension len $b_{1} \times \operatorname{len} b_{2}$ such that for every i and j such that $\langle i, j\rangle \in$ the indices of M holds $M_{i, j}=\mathcal{V}(i, j)$. Define \mathcal{W} (natural number) $=\sum\left(a \bullet M_{\square, \$_{1}}\right)$. Consider d_{1} being a finite sequence of elements of \mathbb{Z}^{R} such that len $d_{1}=\operatorname{len} b_{2}$ and for every natural number j such that $j \in \operatorname{dom} d_{1}$ holds $d_{1 j}=\mathcal{W}(j)$ from [33, Sch. 2].

4. Matrices of Linear Transformations

Let V_{1}, V_{2} be finite rank, free \mathbb{Z}-modules, f be a function from V_{1} into V_{2}, b_{1} be a finite sequence of elements of V_{1}, and b_{2} be an ordered basis of V_{2}. The functor $\operatorname{AutMt}\left(f, b_{1}, b_{2}\right)$ yielding a matrix over \mathbb{Z}^{R} is defined by
(Def. 8) len $i t=$ len b_{1} and for every k such that $k \in \operatorname{dom} b_{1}$ holds $i t_{k}=f\left(b_{1 k}\right) \rightarrow$ b_{2}.
Now we state the propositions:
(33) If len $b_{1}=0$, then $\operatorname{AutMt}\left(f, b_{1}, b_{2}\right)=\emptyset$.
(34) If len $b_{1}>0$, then width $\operatorname{AutMt}\left(f, b_{1}, b_{2}\right)=\operatorname{len} b_{2}$.
(35) Suppose f_{1} is additive and homogeneous and f_{2} is additive and homogeneous and $\operatorname{AutMt}\left(f_{1}, b_{1}, b_{2}\right)=\operatorname{AutMt}\left(f_{2}, b_{1}, b_{2}\right)$ and len $b_{1}>0$. Then $f_{1}=f_{2}$. The theorem is a consequence of (29) and (22).
(36) Let us consider a finite sequence F of elements of \mathbb{R}_{F}, and a finite sequence G of elements of \mathbb{Z}^{R}. If $F=G$, then $\sum F=\sum G$.
Proof: Define \mathcal{P} [natural number] \equiv for every finite sequence F of elements of \mathbb{R}_{F} for every finite sequence G of elements of \mathbb{Z}^{R} such that len $F=\$_{1}$ and $F=G$ holds $\sum F=\sum G$. $\mathcal{P}[0]$ by [35, (43)]. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [5, (4)], [9, (3)], [5, (59)], [3, (11)]. For every natural number $n, \mathcal{P}[n]$ from [3, Sch. 2].
(37) Let us consider finite sequences p, q of elements of \mathbb{Z}^{R}, and finite sequences p_{1}, q_{1} of elements of \mathbb{R}_{F}. If $p=p_{1}$ and $q=q_{1}$, then $p \cdot q=p_{1} \cdot q_{1}$. The theorem is a consequence of (36).
(38) Suppose g is additive and homogeneous and len $b_{1}>0$ and len $b_{2}>0$. Then $\operatorname{AutMt}\left(g \cdot f, b_{1}, b_{3}\right)=\operatorname{AutMt}\left(f, b_{1}, b_{2}\right) \cdot \operatorname{AutMt}\left(g, b_{2}, b_{3}\right)$.
Proof: width $\operatorname{AutMt}\left(f, b_{1}, b_{2}\right)=\operatorname{len} b_{2}$. width $\operatorname{AutMt}\left(g \cdot f, b_{1}, b_{3}\right)=\operatorname{len} b_{3}$. For every i and j such that $\langle i, j\rangle \in$ the indices of $\operatorname{AutMt}\left(g \cdot f, b_{1}, b_{3}\right)$ holds $\left(\operatorname{AutMt}\left(g \cdot f, b_{1}, b_{3}\right)\right)_{i, j}=\left(\operatorname{AutMt}\left(f, b_{1}, b_{2}\right) \cdot \operatorname{AutMt}\left(g, b_{2}, b_{3}\right)\right)_{i, j}$ by [12, (87)], [32, (29)], (34), [32, (25)].

$$
\begin{equation*}
\operatorname{AutMt}\left(f_{1}+f_{2}, b_{1}, b_{2}\right)=\operatorname{AutMt}\left(f_{1}, b_{1}, b_{2}\right)+\operatorname{AutMt}\left(f_{2}, b_{1}, b_{2}\right) . \tag{39}
\end{equation*}
$$

Proof: width $\operatorname{AutMt}\left(f_{1}, b_{1}, b_{2}\right)=$ width $\operatorname{AutMt}\left(f_{2}, b_{1}, b_{2}\right)$. width AutMt $\left(f_{1}+f_{2}, b_{1}, b_{2}\right)=\operatorname{width} \operatorname{AutMt}\left(f_{1}, b_{1}, b_{2}\right)$. For every i and j such that $\langle i$, $j\rangle \in \operatorname{the}$ indices of $\operatorname{AutMt}\left(f_{1}+f_{2}, b_{1}, b_{2}\right)$ holds $\left(\operatorname{AutMt}\left(f_{1}+f_{2}, b_{1}, b_{2}\right)\right)_{i, j}=$ $\left(\operatorname{AutMt}\left(f_{1}, b_{1}, b_{2}\right)+\operatorname{AutMt}\left(f_{2}, b_{1}, b_{2}\right)\right)_{i, j}$ by [32, (29)], [12, (87)], (8), [36, (22)].
(40) If $a \neq 0_{\mathbb{Z}^{\mathrm{R}}}$, then $\operatorname{AutMt}\left(a \cdot f, b_{1}, b_{2}\right)=a \cdot \operatorname{AutMt}\left(f, b_{1}, b_{2}\right)$.

Proof: width $\operatorname{AutMt}\left(a \cdot f, b_{1}, b_{2}\right)=$ width $\operatorname{AutMt}\left(f, b_{1}, b_{2}\right)$. For every i and j such that $\langle i, j\rangle \in$ the indices of $\operatorname{AutMt}\left(a \cdot f, b_{1}, b_{2}\right)$ holds $(\operatorname{AutMt}(a$. $\left.\left.f, b_{1}, b_{2}\right)\right)_{i, j}=\left(a \cdot \operatorname{AutMt}\left(f, b_{1}, b_{2}\right)\right)_{i, j}$ by [32, (29)], [12, (87)], (9), [5] (1)].
(41) Let us consider non empty sets D, E, natural numbers n, m, i, j, and a matrix M over D of dimension $n \times m$. Suppose $0<n$ and M is a matrix over E of dimension $n \times m$ and $\langle i, j\rangle \in$ the indices of M. Then $M_{i, j}$ is an element of E.
(42) Let us consider a finite sequence F of elements of \mathbb{R}_{F}. Suppose for every natural number i such that $i \in \operatorname{dom} F$ holds $F(i) \in \mathbb{Z}$. Then $\sum F \in \mathbb{Z}$.
Proof: Define \mathcal{P} [natural number] \equiv for every finite sequence F of elements of \mathbb{R}_{F} such that len $F=\$_{1}$ and for every natural number i such that $i \in \operatorname{dom} F$ holds $F(i) \in \mathbb{Z}$ holds $\sum F \in \mathbb{Z}$. $\mathcal{P}[0]$ by [35, (43)]. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [5, (4)], [9, (3)], [5, (59)], [3, (11)]. For every natural number $n, \mathcal{P}[n]$ from [3, Sch. 2].
(43) Let us consider a natural number i, and an element j of \mathbb{R}_{F}. Suppose $j \in \mathbb{Z}$. Then power $\mathbb{R}_{\mathbb{R}_{F}}\left(-\mathbf{1}_{\mathbb{R}_{F}}, i\right) \cdot j \in \mathbb{Z}$.
Proof: Define \mathcal{P} [natural number] $\equiv \operatorname{power}_{\mathbb{R}_{\mathfrak{F}}}\left(-\mathbf{1}_{\mathbb{R}_{\mathrm{F}}}, \$_{1}\right) \cdot j \in \mathbb{Z} . \mathcal{P}[0]$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number $n, \mathcal{P}[n]$ from [3, Sch. 2].
(44) Let us consider natural numbers n, i, j, k, m, and a square matrix M over \mathbb{R}_{F} of dimension $n+1$. Suppose $0<n$ and M is a square matrix over \mathbb{Z} of dimension $n+1$ and $\langle i, j\rangle \in$ the indices of M and $\langle k, m\rangle \in$ the indices of $\operatorname{Delete}(M, i, j)$. Then $(\operatorname{Delete}(M, i, j))_{k, m}$ is an element of \mathbb{Z}. The theorem is a consequence of (41).
(45) Let us consider natural numbers n, i, j, and a square matrix M over \mathbb{R}_{F} of dimension $n+1$. Suppose $0<n$ and M is a square matrix over \mathbb{Z} of dimension $n+1$ and $\langle i, j\rangle \in$ the indices of M. Then $\operatorname{Delete}(M, i, j)$ is a square matrix over \mathbb{Z} of dimension n.
Proof: Set $M_{0}=\operatorname{Delete}(M, i, j)$. For every object x such that $x \in \operatorname{rng} M_{0}$ there exists a finite sequence p of elements of \mathbb{Z} such that $x=p$ and len $p=n$ by [12, (87)], (44).

Let us consider a natural number n and a square matrix M over \mathbb{R}_{F} of dimension n. Now we state the propositions:
(46) If M is a square matrix over \mathbb{Z} of dimension n, then $\operatorname{Det} M \in \mathbb{Z}$. Proof: Define \mathcal{P} [natural number] \equiv for every square matrix M over \mathbb{R}_{F} of dimension $\$_{1}$ such that M is a square matrix over \mathbb{Z} of dimension $\$_{1}$ holds $\operatorname{Det} M \in \mathbb{Z}$. $\mathcal{P}[0]$ by [29, (41)]. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [3, (14)], [5, (1)], [27, (27)], [12, (87)]. For every natural number $n, \mathcal{P}[n]$ from [3, Sch. 2].
(47) If M is a square matrix over \mathbb{Z}^{R} of dimension n, then $\operatorname{Det} M \in \mathbb{Z}$.

Now we state the proposition:
(48) Let us consider a finite rank, free \mathbb{Z}-module V, and a basis I of V. Then there exists an ordered basis J of V such that $\operatorname{rng} J=I$.
Let V be a \mathbb{Z}-module. One can check that id_{V} is additive and homogeneous. Now we state the propositions:
(49) Let us consider a finite rank, free \mathbb{Z}-module V, and an ordered basis b of V. Then len $b=\operatorname{rank} V$.
(50) Let us consider a finite rank, free \mathbb{Z}-module V, and ordered bases b_{1}, b_{2} of V. Then AutMt $\left(\mathrm{id}_{V}, b_{1}, b_{2}\right)$ is a square matrix over \mathbb{Z}^{R} of dimension rank V. The theorem is a consequence of (49) and (34).
(51) Let us consider a finite rank, free \mathbb{Z}-module V, ordered bases b_{1}, b_{2} of V, and a square matrix M over \mathbb{R}_{F} of dimension rank V. Suppose $M=$ AutMt $\left(\mathrm{id}_{V}, b_{1}, b_{2}\right)$. Then $\operatorname{Det} M \in \mathbb{Z}$. The theorem is a consequence of (46).
(52) Let us consider a finite rank, free \mathbb{Z}-module V_{1}, an ordered basis b_{1} of V_{1}, and natural numbers i, j. Suppose $i, j \in \operatorname{dom} b_{1}$. Then
(i) if $i=j$, then $\left(b_{1 i} \rightarrow b_{1}\right)(j)=1$, and
(ii) if $i \neq j$, then $\left(b_{1 i} \rightarrow b_{1}\right)(j)=0$.
(53) Let us consider a finite rank, free \mathbb{Z}-module V, and an ordered basis b_{1} of V. Suppose rank $V>0$. Then AutMt $\left(\operatorname{id}_{V}, b_{1}, b_{1}\right)=I_{\mathbb{Z}^{\mathrm{R}}}^{(\operatorname{rank} V) \times(\operatorname{rank} V)}$. The theorem is a consequence of (49), (34), (52), and (4).
(54) Let us consider a finite rank, free \mathbb{Z}-module V, and ordered bases b_{1}, b_{2} of V. Suppose rank $V>0$. Then $\operatorname{AutMt}\left(\mathrm{id}_{V}, b_{1}, b_{2}\right) \cdot \operatorname{AutMt}\left(\mathrm{id}_{V}, b_{2}, b_{1}\right)=$ $I_{\mathbb{Z}^{\mathrm{R}}}^{(\operatorname{rank} V) \times(\operatorname{rank} V)}$. The theorem is a consequence of (49), (38), and (53).
(55) Let us consider a finite rank, free \mathbb{Z}-module V, ordered bases b_{1}, b_{2} of V, and a square matrix M over \mathbb{Z}^{R} of dimension rank V. Suppose $M=$ $\operatorname{AutMt}\left(\mathrm{id}_{V}, b_{1}, b_{2}\right)$. Then $|\operatorname{Det} M|=1$. The theorem is a consequence of (49), (34), and (54).

5. Real-valued Function of \mathbb{Z}-Module

Let V be a non empty vector space structure over \mathbb{Z}^{R}. Observe that there exists a functional in V which is additive, homogeneous, and 0 -preserving.

A linear functional in V is an additive, homogeneous functional in V. Now we state the proposition:
(56) Let us consider an element a of \mathbb{Z}^{R}, an add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, scalar unital, non empty vector space structure V over \mathbb{Z}^{R}, and a vector v of V. Then
(i) $0_{\mathbb{Z}^{\mathrm{R}}} \cdot v=0_{V}$, and
(ii) $a \cdot 0_{V}=0_{V}$.

Let V be a non empty vector space structure over \mathbb{Z}^{R}. Note that there exists a functional in V which is additive and 0-preserving.

Let V be a right zeroed, non empty vector space structure over \mathbb{Z}^{R}. Let us note that every functional in V which is additive is also 0-preserving.

Let V be an add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, scalar unital, non empty vector space structure over \mathbb{Z}^{R}. Note that every functional in V which is homogeneous is also 0-preserving.

Let V be a non empty vector space structure over \mathbb{Z}^{R}. Let us observe that 0Functional V is constant and there exists a functional in V which is constant.

Let V be a right zeroed, non empty vector space structure over \mathbb{Z}^{R} and f be a 0 -preserving functional in V. Let us note that f is constant if and only if the condition (Def. 9) is satisfied.
(Def. 9) $\quad f=0$ Functional V.
Let us note that there exists a functional in V which is constant, additive, and 0 -preserving.

Let V be a free \mathbb{Z}-module and A, B be subsets of V. Assume $A \subseteq B$ and B is a basis of V. The functor $\operatorname{Proj}(A, B)$ yielding a linear transformation from V to V is defined by
(Def. 10) for every vector v of V, there exist vectors v_{6}, v_{7} of V such that $v_{6} \in$ $\operatorname{Lin}(A)$ and $v_{7} \in \operatorname{Lin}(B \backslash A)$ and $v=v_{6}+v_{7}$ and $i t(v)=v_{6}$ and for every vectors v, v_{6}, v_{7} of V such that $v_{6} \in \operatorname{Lin}(A)$ and $v_{7} \in \operatorname{Lin}(B \backslash A)$ and $v=v_{6}+v_{7}$ holds $i t(v)=v_{6}$.
Let B be a basis of V and u be a vector of V. The functor Coordinate (u, B) yielding a function from V into \mathbb{Z}^{R} is defined by
(Def. 11) for every vector v of V, there exists a linear combination L_{2} of B such that $v=\sum L_{2}$ and $i t(v)=L_{2}(u)$ and for every vector v of V and for every
linear combination L_{3} of B such that $v=\sum L_{3}$ holds $i t(v)=L_{3}(u)$ and for every vectors v_{1}, v_{2} of V, it $\left(v_{1}+v_{2}\right)=i t\left(v_{1}\right)+i t\left(v_{2}\right)$ and for every vector v of V and for every element r of $\mathbb{Z}^{\mathrm{R}}, i t(r \cdot v)=r \cdot i t(v)$.
Now we state the propositions:
(57) Let us consider a free \mathbb{Z}-module V, a basis B of V, and a vector u of V. Then $($ Coordinate $(u, B))\left(0_{V}\right)=0$.
(58) Let us consider a free \mathbb{Z}-module V, a basis X of V, and a vector v of V. If $v \in X$ and $v \neq 0_{V}$, then (Coordinate $\left.(v, X)\right)(v)=1$.
Let V be a non trivial, free \mathbb{Z}-module. One can verify that there exists a functional in V which is additive, homogeneous, non constant, and non trivial.

Now we state the proposition:
(59) Let us consider a non trivial, free \mathbb{Z}-module V, and a non constant, 0 -preserving functional f in V. Then there exists a vector v of V such that
(i) $v \neq 0_{V}$, and
(ii) $f(v) \neq 0_{\mathbb{Z}^{\mathrm{R}}}$.

6. Bilinear Form of \mathbb{Z}-Module

Let V, W be vector space structures over \mathbb{Z}^{R}. The functor $\operatorname{NulForm}(V, W)$ yielding a form of V, W is defined by the term
(Def. 12) (the carrier of $V) \times($ the carrier of $W) \longmapsto 0_{\mathbb{Z}^{\mathrm{R}}}$.
Let V, W be non empty vector space structures over \mathbb{Z}^{R} and f, g be forms of V, W. The functor $f+g$ yielding a form of V, W is defined by
(Def. 13) for every vector v of V and for every vector w of W, it $(v, w)=f(v, w)+$ $g(v, w)$.
Let f be a form of V, W and a be an element of \mathbb{Z}^{R}. The functor $a \cdot f$ yielding a form of V, W is defined by
(Def. 14) for every vector v of V and for every vector w of $W, i t(v, w)=a \cdot f(v, w)$.
The functor $-f$ yielding a form of V, W is defined by
(Def. 15) for every vector v of V and for every vector w of W, it $(v, w)=-f(v, w)$.
Note that the functor $-f$ is defined by the term
(Def. 16) $\quad\left(-1_{\mathbb{Z}^{R}}\right) \cdot f$.
Let f, g be forms of V, W. The functor $f-g$ yielding a form of V, W is defined by the term
(Def. 17) $f+-g$.

One can verify that the functor $f-g$ is defined by
(Def. 18) for every vector v of V and for every vector w of $W, i t(v, w)=f(v, w)-$ $g(v, w)$.
Let us observe that the functor $f+g$ is commutative.
Now we state the propositions:
(60) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, and a form f of V, W. Then $f+\operatorname{NulForm}(V, W)=f$.
(61) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, and forms f, g, h of V, W. Then $(f+g)+h=f+(g+h)$.
(62) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, and a form f of V, W. Then $f-f=\operatorname{NulForm}(V, W)$.
(63) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, an element a of \mathbb{Z}^{R}, and forms f, g of V, W. Then $a \cdot(f+g)=a \cdot f+a \cdot g$.
Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, elements a, b of \mathbb{Z}^{R}, and a form f of V, W. Now we state the propositions:

$$
\begin{align*}
& (a+b) \cdot f=a \cdot f+b \cdot f \tag{64}\\
& (a \cdot b) \cdot f=a \cdot(b \cdot f)
\end{align*}
$$

Now we state the proposition:
(66) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, and a form f of V, W. Then $1_{\mathbb{Z}^{R}} \cdot f=f$.
Let V, W be non empty vector space structures over $\mathbb{Z}^{\mathrm{R}}, f$ be a form of V, W, and v be a vector of V. The functor $f(v, \cdot)$ yielding a functional in W is defined by the term
(Def. 19) (curry $f)(v)$.
Let w be a vector of W. The functor $f(\cdot, w)$ yielding a functional in V is defined by the term
(Def. 20) (curry' f) (w).
Now we state the propositions:
(67) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, a form f of V, W, and a vector v of V. Then
(i) $\operatorname{dom} f(v, \cdot)=$ the carrier of W, and
(ii) $\operatorname{rng} f(v, \cdot) \subseteq$ the carrier of \mathbb{Z}^{R}, and
(iii) for every vector w of $W,(f(v, \cdot))(w)=f(v, w)$.
(68) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, a form f of V, W, and a vector w of W. Then
(i) $\operatorname{dom} f(\cdot, w)=$ the carrier of V, and
(ii) $\operatorname{rng} f(\cdot, w) \subseteq$ the carrier of \mathbb{Z}^{R}, and
(iii) for every vector v of $V,(f(\cdot, w))(v)=f(v, w)$.
(69) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, and a vector v of V. Then $\operatorname{NulForm}(V, W)(v, \cdot)=0$ Functional W. The theorem is a consequence of (67).
(70) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, and a vector w of W. Then $\operatorname{NulForm}(V, W)(\cdot, w)=0$ Functional V. The theorem is a consequence of (68).
(71) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, forms f, g of V, W, and a vector w of W. Then $(f+g)(\cdot, w)=f(\cdot, w)+g(\cdot, w)$. The theorem is a consequence of (68).
(72) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, forms f, g of V, W, and a vector v of V. Then $(f+g)(v, \cdot)=f(v, \cdot)+g(v, \cdot)$. The theorem is a consequence of (67).
(73) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, a form f of V, W, an element a of \mathbb{Z}^{R}, and a vector w of W. Then $(a \cdot f)(\cdot, w)=$ $a \cdot f(\cdot, w)$. The theorem is a consequence of (68).
(74) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, a form f of V, W, an element a of \mathbb{Z}^{R}, and a vector v of V. Then $(a \cdot f)(v, \cdot)=$ $a \cdot f(v, \cdot)$. The theorem is a consequence of (67).
(75) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, a form f of V, W, and a vector w of W. Then $(-f)(\cdot, w)=-f(\cdot, w)$. The theorem is a consequence of (68).
(76) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, a form f of V, W, and a vector v of V. Then $(-f)(v, \cdot)=-f(v, \cdot)$. The theorem is a consequence of (67).
(77) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, forms f, g of V, W, and a vector w of W. Then $(f-g)(\cdot, w)=f(\cdot, w)-g(\cdot, w)$. The theorem is a consequence of (68).
(78) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, forms f, g of V, W, and a vector v of V. Then $(f-g)(v, \cdot)=f(v, \cdot)-g(v, \cdot)$. The theorem is a consequence of (67).
Let V, W be non empty vector space structures over $\mathbb{Z}^{\mathrm{R}}, f$ be a functional in V, and g be a functional in W. The functor $f \otimes g$ yielding a form of V, W is defined by
(Def. 21) for every vector v of V and for every vector w of $W, i t(v, w)=f(v) \cdot g(w)$.
Now we state the propositions:
(79) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, a functional f in V, a vector v of V, and a vector w of W. Then $f \otimes$ $(0$ Functional $W)(v, w)=0$.
(80) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, a functional g in W, a vector v of V, and a vector w of W. Then (0Functional V) \otimes $g(v, w)=0$.
(81) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, and a functional f in V. Then $f \otimes(0$ Functional $W)=\operatorname{NulForm}(V, W)$. The theorem is a consequence of (79).
(82) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, and a functional g in W. Then (0Functional $V) \otimes g=\operatorname{NulForm}(V, W)$. The theorem is a consequence of (80).
(83) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, a functional f in V, a functional g in W, and a vector v of V. Then $f \otimes$ $g(v, \cdot)=f(v) \cdot g$. The theorem is a consequence of (67).
(84) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, a functional f in V, a functional g in W, and a vector w of W. Then $f \otimes$ $g(\cdot, w)=g(w) \cdot f$. The theorem is a consequence of (68).
Let V, W be non empty vector space structures over \mathbb{Z}^{R} and f be a form of V, W. We say that f is additive w.r.t. second argument if and only if
(Def. 22) for every vector v of $V, f(v, \cdot)$ is additive.
We say that f is additive w.r.t. first argument if and only if
(Def. 23) for every vector w of $W, f(\cdot, w)$ is additive.
We say that f is homogeneous w.r.t. second argument if and only if
(Def. 24) for every vector v of $V, f(v, \cdot)$ is homogeneous.
We say that f is homogeneous w.r.t. first argument if and only if
(Def. 25) for every vector w of $W, f(\cdot, w)$ is homogeneous.
One can check that NulForm (V, W) is additive w.r.t. second argument and $\operatorname{NulForm}(V, W)$ is additive w.r.t. first argument and $\operatorname{NulForm}(V, W)$ is homogeneous w.r.t. second $\operatorname{argument}$ and $\operatorname{NulForm}(V, W)$ is homogeneous w.r.t. first argument and there exists a form of V, W which is additive w.r.t. second argument, homogeneous w.r.t. second argument, additive w.r.t. first argument, and homogeneous w.r.t. first argument.

A bilinear form of V, W is an additive w.r.t. first argument, homogeneous w.r.t. first argument, additive w.r.t. second argument, homogeneous w.r.t. second argument form of V, W. Let f be an additive w.r.t. second argument form of V, W and v be a vector of V. Note that $f(v, \cdot)$ is additive.

Let f be an additive w.r.t. first argument form of V, W and w be a vector of W. Let us observe that $f(\cdot, w)$ is additive.

Let f be a homogeneous w.r.t. second argument form of V, W and v be a vector of V. Note that $f(v, \cdot)$ is homogeneous.

Let f be a homogeneous w.r.t. first argument form of V, W and w be a vector of W. Let us observe that $f(\cdot, w)$ is homogeneous.

Let f be a functional in V and g be an additive functional in W. Let us observe that $f \otimes g$ is additive w.r.t. second argument.

Let f be an additive functional in V and g be a functional in W. Note that $f \otimes g$ is additive w.r.t. first argument.

Let f be a functional in V and g be a homogeneous functional in W. Let us observe that $f \otimes g$ is homogeneous w.r.t. second argument.

Let f be a homogeneous functional in V and g be a functional in W. Note that $f \otimes g$ is homogeneous w.r.t. first argument.

Let V be a non trivial vector space structure over $\mathbb{Z}^{\mathrm{R}}, W$ be a \mathbb{Z}-module, and f be a functional in V. Note that $f \otimes g$ is non trivial.

Let W be a non trivial \mathbb{Z}-module. One can verify that $f \otimes g$ is non trivial.
Let V, W be non trivial, free \mathbb{Z}-modules, f be a non constant, 0 -preserving functional in V, and g be a non constant, 0-preserving functional in W. Let us note that $f \otimes g$ is non constant and there exists a form of V, W which is non trivial, non constant, additive w.r.t. second argument, homogeneous w.r.t. second argument, additive w.r.t. first argument, and homogeneous w.r.t. first argument.

Let V, W be non empty vector space structures over \mathbb{Z}^{R} and f, g be additive w.r.t. first argument forms of V, W. One can check that $f+g$ is additive w.r.t. first argument.

Let f, g be additive w.r.t. second argument forms of V, W. Let us note that $f+g$ is additive w.r.t. second argument.

Let f be an additive w.r.t. first argument form of V, W and a be an element of \mathbb{Z}^{R}. One can check that $a \cdot f$ is additive w.r.t. first argument.

Let f be an additive w.r.t. second argument form of V, W. Observe that $a \cdot f$ is additive w.r.t. second argument.

Let f be an additive w.r.t. first argument form of V, W. One can check that $-f$ is additive w.r.t. first argument.

Let f be an additive w.r.t. second argument form of V, W. One can check that $-f$ is additive w.r.t. second argument.

Let f, g be additive w.r.t. first argument forms of V, W. One can verify that $f-g$ is additive w.r.t. first argument.

Let f, g be additive w.r.t. second argument forms of V, W. Let us note that $f-g$ is additive w.r.t. second argument.

Let f, g be homogeneous w.r.t. first argument forms of V, W. One can verify that $f+g$ is homogeneous w.r.t. first argument.

Let f, g be homogeneous w.r.t. second argument forms of V, W. Note that $f+g$ is homogeneous w.r.t. second argument.

Let f be a homogeneous w.r.t. first argument form of V, W and a be an element of \mathbb{Z}^{R}. One can verify that $a \cdot f$ is homogeneous w.r.t. first argument.

Let f be a homogeneous w.r.t. second argument form of V, W. Let us note that $a \cdot f$ is homogeneous w.r.t. second argument.

Let f be a homogeneous w.r.t. first argument form of V, W. One can verify that $-f$ is homogeneous w.r.t. first argument.

Let f be a homogeneous w.r.t. second argument form of V, W. One can verify that $-f$ is homogeneous w.r.t. second argument.

Let f, g be homogeneous w.r.t. first argument forms of V, W. Let us observe that $f-g$ is homogeneous w.r.t. first argument.

Let f, g be homogeneous w.r.t. second argument forms of V, W. Note that $f-g$ is homogeneous w.r.t. second argument.

Now we state the propositions:
(85) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, vectors v, u of V, a vector w of W, and a form f of V, W. If f is additive w.r.t. first argument, then $f(v+u, w)=f(v, w)+f(u, w)$. The theorem is a consequence of (68).
(86) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, a vector v of V, vectors u, w of W, and a form f of V, W. If f is additive w.r.t. second argument, then $f(v, u+w)=f(v, u)+f(v, w)$. The theorem is a consequence of (67).
(87) Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, vectors v, u of V, vectors w, t of W, and an additive w.r.t. first argument, additive w.r.t. second argument form f of V, W. Then $f(v+u, w+t)=f(v, w)+$ $f(v, t)+(f(u, w)+f(u, t))$. The theorem is a consequence of (85) and (86).
(88) Let us consider right zeroed, non empty vector space structures V, W over \mathbb{Z}^{R}, an additive w.r.t. second argument form f of V, W, and a vector v of V. Then $f\left(v, 0_{W}\right)=0$. The theorem is a consequence of (86).
(89) Let us consider right zeroed, non empty vector space structures V, W over \mathbb{Z}^{R}, an additive w.r.t. first argument form f of V, W, and a vector w of W. Then $f\left(0_{V}, w\right)=0$. The theorem is a consequence of (85).
Let us consider non empty vector space structures V, W over \mathbb{Z}^{R}, a vector v of V, a vector w of W, an element a of \mathbb{Z}^{R}, and a form f of V, W. Now we state the propositions:
(90) If f is homogeneous w.r.t. first argument, then $f(a \cdot v, w)=a \cdot f(v, w)$. The theorem is a consequence of (68).
(91) If f is homogeneous w.r.t. second argument, then $f(v, a \cdot w)=a \cdot f(v, w)$. The theorem is a consequence of (67).
Now we state the propositions:
(92) Let us consider add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, scalar unital, non empty vector space structures V, W over \mathbb{Z}^{R}, a homogeneous w.r.t. first argument form f of V, W, and a vector w of W. Then $f\left(0_{V}, w\right)=0_{\mathbb{Z}^{\mathrm{R}}}$. The theorem is a consequence of (56) and (90).
(93) Let us consider add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, scalar unital, non empty vector space structures V, W over \mathbb{Z}^{R}, a homogeneous w.r.t. second argument form f of V, W, and a vector v of V. Then $f\left(v, 0_{W}\right)=$ $0_{\mathbb{Z}^{\mathrm{R}}}$. The theorem is a consequence of (56) and (91).
(94) Let us consider \mathbb{Z}-modules V, W, vectors v, u of V, a vector w of W, and an additive w.r.t. first argument, homogeneous w.r.t. first argument form f of V, W. Then $f(v-u, w)=f(v, w)-f(u, w)$. The theorem is a consequence of (85) and (90).
(95) Let us consider \mathbb{Z}-modules V, W, a vector v of V, vectors w, t of W, and an additive w.r.t. second argument, homogeneous w.r.t. second argument form f of V, W. Then $f(v, w-t)=f(v, w)-f(v, t)$. The theorem is a consequence of (86) and (91).
(96) Let us consider \mathbb{Z}-modules V, W, vectors v, u of V, vectors w, t of W, and a bilinear form f of V, W. Then $f(v-u, w-t)=f(v, w)-f(v, t)-$ $(f(u, w)-f(u, t))$. The theorem is a consequence of (94) and (95).
(97) Let us consider add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, scalar unital, non empty vector space structures V, W over \mathbb{Z}^{R}, vectors v, u of V, vectors w, t of W, elements a, b of \mathbb{Z}^{R}, and a bilinear form f of V, W. Then $f(v+a \cdot u, w+b \cdot t)=f(v, w)+b \cdot f(v, t)+(a \cdot f(u, w)+a \cdot(b \cdot f(u, t)))$. The theorem is a consequence of (87), (91), and (90).
(98) Let us consider \mathbb{Z}-modules V, W, vectors v, u of V, vectors w, t of W, elements a, b of \mathbb{Z}^{R}, and a bilinear form f of V, W. Then $f(v-a \cdot u, w-$ $b \cdot t)=f(v, w)-b \cdot f(v, t)-(a \cdot f(u, w)-a \cdot(b \cdot f(u, t)))$. The theorem is a consequence of (96), (91), and (90).
(99) Let us consider right zeroed, non empty vector space structures V, W over \mathbb{Z}^{R}, and a form f of V, W. Suppose f is additive w.r.t. second argument or additive w.r.t. first argument. Then f is constant if and only
if for every vector v of V and for every vector w of $W, f(v, w)=0$. The theorem is a consequence of (88) and (89).

7. Matrix of Bilinear Form

Let V_{1}, V_{2} be finite rank, free \mathbb{Z}-modules, b_{1} be an ordered basis of V_{1}, b_{2} be an ordered basis of V_{2}, and f be a bilinear form of V_{1}, V_{2}. The functor $\operatorname{Bilinear}\left(f, b_{1}, b_{2}\right)$ yielding a matrix over \mathbb{Z}^{R} of dimension len $b_{1} \times \operatorname{len} b_{2}$ is defined by
(Def. 26) for every natural numbers i, j such that $i \in \operatorname{dom} b_{1}$ and $j \in \operatorname{dom} b_{2}$ holds $i t_{i, j}=f\left(b_{1 i}, b_{2 j}\right)$.
Now we state the propositions:
(100) Let us consider a finite rank, free \mathbb{Z}-module V, a natural number i, an element a_{1} of \mathbb{Z}^{R}, an element a_{2} of V, a finite sequence p_{1} of elements of \mathbb{Z}^{R}, and a finite sequence p_{2} of elements of V. Suppose $i \in \operatorname{dom} \operatorname{lmlt}\left(p_{1}, p_{2}\right)$ and $a_{1}=p_{1}(i)$ and $a_{2}=p_{2}(i)$. Then $\left(\operatorname{lmlt}\left(p_{1}, p_{2}\right)\right)(i)=a_{1} \cdot a_{2}$.
(101) Let us consider a finite rank, free \mathbb{Z}-module V, a linear functional F in V, a finite sequence y of elements of V, a finite sequence x of elements of \mathbb{Z}^{R}, and finite sequences X, Y of elements of \mathbb{Z}^{R}. Suppose $X=x$ and len $y=\operatorname{len} x$ and len $X=\operatorname{len} Y$ and for every natural number k such that $k \in \operatorname{Seg}$ len x holds $Y(k)=F\left(y_{k}\right)$. Then $X \cdot Y=F\left(\sum \operatorname{lmlt}(x, y)\right)$.
Proof: Define \mathcal{P} [finite sequence of elements of V] \equiv for every finite sequence x of elements of \mathbb{Z}^{R} for every finite sequences X, Y of elements of \mathbb{Z}^{R} such that $X=x$ and len $\$_{1}=\operatorname{len} x$ and len $X=\operatorname{len} Y$ and for every natural number k such that $k \in \operatorname{Seg}$ len x holds $Y(k)=F\left(\$_{1 k}\right)$ holds $X \cdot Y=F\left(\sum \operatorname{lmlt}\left(x, \$_{1}\right)\right)$. For every finite sequence y of elements of V and for every element w of V such that $\mathcal{P}[y]$ holds $\mathcal{P}\left[y^{\wedge}\langle w\rangle\right.$] by [5, (22), (39), (59)], [3, (11)]. $\mathcal{P}\left[\varepsilon_{\alpha}\right]$, where α is the carrier of V by [35, (43)]. For every finite sequence p of elements of $V, \mathcal{P}[p]$ from [8, Sch. 2].
(102) Let us consider finite rank, free \mathbb{Z}-modules V_{1}, V_{2}, an ordered basis b_{2} of V_{2}, an ordered basis b_{3} of V_{2}, a bilinear form f of V_{1}, V_{2}, a vector v_{1} of V_{1}, a vector v_{2} of V_{2}, and finite sequences X, Y of elements of \mathbb{Z}^{R}. Suppose len $X=\operatorname{len} b_{2}$ and len $Y=\operatorname{len} b_{2}$ and for every natural number k such that $k \in \operatorname{Seg}$ len b_{2} holds $Y(k)=f\left(v_{1}, b_{2 k}\right)$ and $X=v_{2} \rightarrow b_{2}$. Then $Y \cdot X=f\left(v_{1}, v_{2}\right)$. The theorem is a consequence of (67), (101), and (30).
(103) Let us consider finite rank, free \mathbb{Z}-modules V_{1}, V_{2}, an ordered basis b_{1} of V_{1}, a bilinear form f of V_{1}, V_{2}, a vector v_{1} of V_{1}, a vector v_{2} of V_{2}, and finite sequences X, Y of elements of \mathbb{Z}^{R}. Suppose len $X=\operatorname{len} b_{1}$ and len $Y=\operatorname{len} b_{1}$ and for every natural number k such that $k \in \operatorname{Seg} \operatorname{len} b_{1}$
holds $Y(k)=f\left(b_{1 k}, v_{2}\right)$ and $X=v_{1} \rightarrow b_{1}$. Then $X \cdot Y=f\left(v_{1}, v_{2}\right)$. The theorem is a consequence of (68), (101), and (30).
(104) Let us consider finite rank, free \mathbb{Z}-modules V_{1}, V_{2}, an ordered basis b_{1} of V_{1}, an ordered basis b_{2} of V_{2}, an ordered basis b_{3} of V_{2}, and a bilinear form f of V_{1}, V_{2}. Suppose $0<\operatorname{rank} V_{1}$. Then $\operatorname{Bilinear}\left(f, b_{1}, b_{3}\right)=$ $\operatorname{Bilinear}\left(f, b_{1}, b_{2}\right) \cdot\left(\operatorname{AutMt}\left(\mathrm{id}_{V_{2}}, b_{3}, b_{2}\right)\right)^{\mathrm{T}}$.
Proof: Set $n=\operatorname{len} b_{2}$. len $b_{2}=\operatorname{rank} V_{2}$. len $b_{3}=\operatorname{rank} V_{2}$. Reconsider $I_{1}=\operatorname{AutMt}\left(\mathrm{id}_{V_{2}}, b_{3}, b_{2}\right)$ as a square matrix over \mathbb{Z}^{R} of dimension n. Reconsider $M_{1}=I_{1}{ }^{\mathrm{T}}$ as a square matrix over \mathbb{Z}^{R} of dimension n. Set $M_{2}=\operatorname{Bilinear}\left(f, b_{1}, b_{2}\right) \cdot M_{1} .0<\operatorname{len} b_{1}$. For every natural numbers i, j such that $\langle i, j\rangle \in$ the indices of $\operatorname{Bilinear}\left(f, b_{1}, b_{3}\right)$ holds $\left(\operatorname{Bilinear}\left(f, b_{1}, b_{3}\right)\right)_{i, j}=$ $M_{2 i, j}$ by [12, (87)], [5, (1)], (102).
(105) Let us consider finite rank, free \mathbb{Z}-modules V_{1}, V_{2}, an ordered basis b_{1} of V_{1}, an ordered basis b_{2} of V_{2}, an ordered basis b_{3} of V_{1}, and a bilinear form f of V_{1}, V_{2}. Suppose $0<\operatorname{rank} V_{1}$. Then $\operatorname{Bilinear}\left(f, b_{3}, b_{2}\right)=$ AutMt $\left(\mathrm{id}_{V_{1}}, b_{3}, b_{1}\right) \cdot \operatorname{Bilinear}\left(f, b_{1}, b_{2}\right)$.
Proof: Set $n=\operatorname{len} b_{3}$. len $b_{1}=\operatorname{rank} V_{1}$. len $b_{3}=\operatorname{rank} V_{1}$. Reconsider $I_{1}=$ AutMt $\left(\mathrm{id}_{V_{1}}, b_{3}, b_{1}\right)$ as a square matrix over \mathbb{Z}^{R} of dimension n. Reconsider $M_{1}=I_{1}$ as a square matrix over \mathbb{Z}^{R} of dimension n. Set $M_{2}=M_{1}$. $\operatorname{Bilinear}\left(f, b_{1}, b_{2}\right) .0<\operatorname{len} b_{1}$. For every natural numbers i, j such that $\langle i$, $j\rangle \in$ the indices of $\operatorname{Bilinear}\left(f, b_{3}, b_{2}\right)$ holds $\left(\operatorname{Bilinear}\left(f, b_{3}, b_{2}\right)\right)_{i, j}=M_{2 i, j}$ by [12, (87)], 5, (1)], (103).
Let us consider a finite rank, free \mathbb{Z}-module V, ordered bases b_{1}, b_{2} of V, and a bilinear form f of V, V. Now we state the propositions:
(106) Suppose $0<\operatorname{rank} V$. Then $\operatorname{Bilinear}\left(f, b_{2}, b_{2}\right)=\operatorname{AutMt}\left(\mathrm{id}_{V}, b_{2}, b_{1}\right)$

- Bilinear $\left(f, b_{1}, b_{1}\right) \cdot\left(\operatorname{AutMt}\left(\mathrm{id}_{V}, b_{2}, b_{1}\right)\right)^{\mathrm{T}}$. The theorem is a consequence of (49), (50), (105), and (104).
(107) $\left|\operatorname{Det} \operatorname{Bilinear}\left(f, b_{2}, b_{2}\right)\right|=\left|\operatorname{Det} \operatorname{Bilinear}\left(f, b_{1}, b_{1}\right)\right|$. The theorem is a consequence of (49), (106), (50), and (55).

References

[1] Grzegorz Bancerek. Cardinal numbers Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3): 537-541, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek. The ordinal numbers, Formalized Mathematics, 1(1):91-96, 1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[6] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[7] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[9] Czesław Byliński. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[10] Czesław Byliński. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[11] Czesław Byliński. Partial functions, Formalized Mathematics, 1(2):357-367, 1990.
[12] Czesław Byliński. Some basic properties of sets Formalized Mathematics, 1(1):47-53, 1990.
[13] Agata Darmochwał. Finite sets, Formalized Mathematics, 1(1):165-167, 1990.
[14] Wolfgang Ebeling. Lattices and Codes. Advanced Lectures in Mathematics. Springer Fachmedien Wiesbaden, 2013.
[15] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. \mathbb{Z}-modules. Formalized Mathematics, 20(1):47-59, 2012. doi $10.2478 / \mathrm{v} 10037-012-0007-\mathrm{z}$.
[16] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Free \mathbb{Z}-module. Formalized Mathematics, 20(4):275-280, 2012. doi 10.2478/v10037-012-0033-x.
[17] Katarzyna Jankowska. Matrices. Abelian group of matrices Formalized Mathematics, 2 (4):475-480, 1991.
[18] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990.
[19] Jarosław Kotowicz. Bilinear functionals in vector spaces Formalized Mathematics, 11(1): 69-86, 2003.
[20] Jarosław Kotowicz. Partial functions from a domain to a domain Formalized Mathematics, 1(4):697-702, 1990.
[21] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[22] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a cryptographic perspective. The International Series in Engineering and Computer Science, 2002.
[23] Anna Justyna Milewska. The Hahn Banach theorem in the vector space over the field of complex numbers. Formaluzed Mathematıcs, y(2):363-371, 2001.
[24] Robert Milewski. Associated matrix of linear map Formalized Mathematics, 5(3):339345, 1996.
[25] Michał Muzalewski. Rings and modules - part II Formalized Mathematics, 2(4):579-585, 1991.
[26] Bogdan Nowak and Andrzej Trybulec. Hahn-Banach theorem Formalized Mathematics, 4(1):29-34, 1993.
[27] Karol Pąk and Andrzei Trybulec. Laplace expansion. Formalized Mathematics, 15(3): 143-150, 2007. doi $10.2478 /$ v10037-007-0016-5.
[28] Christoph Schwarzweller. The ring of integers, Euclidean rings and modulo integers. Formalized Mathematics, 8(1):29-34, 1999.
[29] Nobuyuki Tamura and Yatsuka Nakamura. Determinant and inverse of matrices of real elements. Formalized Mathematics, 15(3):127-136, 2007. doi 10.2478/v10037-007-0014-7.
[30] Andrzej Trybulec. Binary operations applied to functions Formalized Mathematics, 1 (2):329-334, 1990.
[31] Michał J. Trybulec. Integers Formalized Mathematics, 1(3):501-505, 1990.
[32] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences Formalized Mathematics, 1(3):569-573, 1990.
[33] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[34] Wojciech A. Trybulec. Groups Formalized Mathematics, 1(5):821-827, 1990.
[35] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[36] Wojciech A. Trybulec. Linear combinations in vector space Formalized Mathematics, 1
(5):877-882, 1990.
[37] Wojciech A. Trybulec. Basis of vector space Formalized Mathematics, 1(5):883-885, 1990.
[38] Zinaida Trybulec. Properties of subsets Formalized Mathematics, 1(1):67-71, 1990.
[39] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
[40] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[41] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.
[42] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field Formalized Mathematıcs, 4(1):1-8, 1993.

Received February 18, 2015

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI 21240001 and 22300285.

