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Summary. In this article, the equivalent expressions of the direct sum
decomposition of groups are mainly discussed. In the first section, we formalize
the fact that the internal direct sum decomposition can be defined as normal
subgroups and some of their properties. In the second section, we formalize an
equivalent form of internal direct sum of commutative groups. In the last sec-
tion, we formalize that the external direct sum leads an internal direct sum. We
referred to [19], [18] [8] and [14] in the formalization.
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The notation and terminology used in this paper have been introduced in the
following articles: [1], [20], [6], [9], [10], [7], [22], [17], [16], [23], [24], [25], [26],
[13], [3], [5], [11], [15], [28], [29], [27], and [12].

1. Internal Direct Sum Decomposition into Normal Subgroups

Let I be a set and G be a group.
A subgroup-family of I and G is a group-family of I and is defined by

(Def. 1) for every object i such that i ∈ I holds it(i) is a subgroup of G.
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Let F be a subgroup-family of I and G. We say that F is component com-
mutative if and only if

(Def. 2) for every elements i, j of I and for every elements g1, g2 of G such that
i 6= j and g1 ∈ F (i) and g2 ∈ F (j) holds g1 · g2 = g2 · g1.

Let I be a non empty set. One can verify that there exists a subgroup-family
of I and G which is component commutative.

Now we state the propositions:

(1) Let us consider a group G, a normal subgroup H of G, and elements x,
y of G. Suppose y ∈ H. Then x · y · x−1, x · (y · x−1) ∈ H.

(2) Let us consider a non empty set I, a group G, a group-family F of I,
and a function x from I into G. Suppose x ∈

∏
F . Then x is a function

from I into
⋃

(the support of F ).
Proof: For every object z such that z ∈ rng x holds z ∈

⋃
(the support

of F ) by [10, (11)], [16, (5), (4)], [9, (3)]. �

(3) Let us consider a non empty set I, a group G, a subgroup H of G, a
function x from I into G, and a function y from I into H. If x = y, then
supportx = support y.
Proof: For every object i, i ∈ supportx iff i ∈ support y by [23, (44)]. �

(4) Let us consider a non empty set I, a group G, and a subgroup H of
G. Then every finite-support function from I into H is a finite-support
function from I into G. The theorem is a consequence of (3).

(5) Let us consider a non empty set I, a group G, a subgroup H of G, and
a finite-support function x from I into G. Suppose rng x ⊆ ΩH . Then x is
a finite-support function from I into H. The theorem is a consequence of
(3).

(6) Let us consider a non empty set I, a group G, a subgroup H of G, a
finite-support function x from I into G, and a finite-support function y
from I into H. If x = y, then

∏
x =
∏
y. The theorem is a consequence

of (3).

(7) Let us consider a function f , and sets i, x. Then f = (f +· (i, x)) +·
(i, f(i)).

(8) Let us consider a non empty set I, a group G, a component commutative
subgroup-family F of I and G, finite-support functions x, y from I into
G, and an element i of I. Suppose y = x +· (i,1F (i)) and x ∈

∏
F . Then∏

x =
∏
y · x(i) = x(i) ·

∏
y.

Proof: Reconsider p2 = y as an element of
∏
F . Reconsider s1 = p2

as an element of sumF . Set z = 1∏F +· (i, x(i)). Reconsider s2 = z as
an element of sumF . x = s1 · s2 by [16, (5), (24)], [23, (40)], [7, (31)].
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s1 · s2 = s2 · s1 by [16, (27), (17)], [23, (43)], [16, (32)]. �

(9) Let us consider a non empty set I, a group G, a component commutative
subgroup-family F of I and G, a subset U of G, an element i of I, and
finite-support functions x, y from I into gr(U). Suppose y = x+· (i,1F (i))
and x ∈

∏
F . Then

∏
x =

∏
y · x(i) = x(i) ·

∏
y. The theorem is a

consequence of (4), (6), and (8).

(10) Let us consider a non empty set I, a group G, a component commutative
subgroup-family F of I and G, a subset U of G, a finite-support function
y from I into gr(U), an element i of I, and an element g of gr(U). Suppose
y ∈
∏
F and y(i) = 1F (i) and g ∈ F (i). Then

∏
y ·g = g ·

∏
y. The theorem

is a consequence of (7) and (9).

(11) Let us consider a non empty set I, a group G, a component commu-
tative subgroup-family F of I and G, and a subset U of G. Suppose
U =

⋃
(the support of F ). Let us consider an element g of G, a finite

sequence H of elements of G, and a finite sequence K of elements of Z.
Suppose lenH = lenK and rngH ⊆ U and

∏
HK = g. Then there exists

a finite-support function f from I into G such that

(i) f ∈
∏
F , and

(ii) g =
∏
f .

Proof: Define P[natural number] ≡ for every element g of G for every
finite sequence H of elements of G for every finite sequence K of elements
of Z such that lenH = $1 and lenH = lenK and rngH ⊆ U and

∏
HK =

g there exists a finite-support function f from I into G such that f ∈
∏
F

and g =
∏
f . P[0] by [25, (21)], [16, (12), (13), (16)]. For every natural

number n such that P[n] holds P[n + 1] by [28, (70)], [6, (4)], [21, (55)],
[9, (3)]. For every natural number n, P[n] from [4, Sch. 2]. �

(12) Let us consider a non empty set I, a group G, a subgroup-family F of
I and G, finite-support functions h, h0 from I into G, an element i of I,
and a subset U1 of G. Suppose U1 =

⋃
((the support of F )�(I \ {i})) and

h0 = h+· (i,1F (i)) and h ∈
∏
F . Then

∏
h0 ∈ gr(U1).

Proof: For every object y such that y ∈ rng h0 holds y ∈ Ωgr(U1) by
[10, (113)], [7, (32)], [16, (5), (4)]. Reconsider x0 = h0 as a finite-support
function from I into gr(U1).

∏
x0 =

∏
h0. �

(13) Let us consider a non empty set I, a group G, a component commu-
tative subgroup-family F of I and G, and a subset U of G. Suppose
U =

⋃
(the support of F ). Let us consider an element g of G. Suppose

g ∈ gr(U). Then there exists a finite-support function f from I into gr(U)
such that
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(i) f ∈ sumF , and

(ii) g =
∏
f .

The theorem is a consequence of (11), (2), (5), and (6).

(14) Let us consider a non empty set I, a group G, a component commu-
tative subgroup-family F of I and G, and a subset U of G. Suppose
U =

⋃
(the support of F ). Let us consider an element i of I. Then F (i) is

a normal subgroup of gr(U).
Proof: Reconsider F1 = F (i) as a subgroup of gr(U). For every element
a of gr(U), a · F1 ⊆ F1 · a by [23, (103), (42)], (13), [23, (40)]. �

(15) Let us consider a non empty set I, a group G, and a component com-
mutative subgroup-family F of I and G. Suppose for every element i of I,
there exists a subset U1 of G such that U1 =

⋃
((the support of F )�(I\{i}))

and Ωgr(U1) ∩ ΩF (i) = {1G}. Let us consider finite-support functions x1,
x2 from I into G. If x1, x2 ∈ sumF and

∏
x1 =

∏
x2, then x1 = x2.

Proof: Define P[natural number] ≡ for every finite-support functions x1,
x2 from I into G such that supportx1 = $1 and x1, x2 ∈ sumF and∏
x1 =

∏
x2 holds x1 = x2. P[0] by [16, (15), (14)], [23, (42)], [16, (26)].

For every natural number k such that P[k] holds P[k+1] by [23, (42)], [16,
(26)], [23, (44)], [16, (30), (25)]. For every natural number k, P[k] from [4,
Sch. 2]. �

(16) Let us consider a non empty set I, a strict group G, and a group-family
F of I. Then F is an internal direct sum components of G and I if and
only if for every element i of I, F (i) is a normal subgroup of G and there
exists a subset U of G such that U =

⋃
(the support of F ) and gr(U) = G

and for every element i of I, there exists a subset U1 of G such that
U1 =

⋃
((the support of F )�(I \ {i})) and Ωgr(U1) ∩ ΩF (i) = {1G}.

Proof: Consider U being a subset of G such that U =
⋃

(the support
of F ) and gr(U) = G. For every elements i, j of I such that i 6= j holds
ΩF (i)∩ΩF (j) = {1G} by [23, (46)], [12, (31)], [28, (62)], [9, (49)]. For every
elements i, j of I and for every elements g1, g2 of G such that i 6= j and
g1 ∈ F (i) and g2 ∈ F (j) holds g1 · g2 = g2 · g1 by [23, (51)], (1), [22, (17)],
[23, (50)]. For every element y of G, there exists a finite-support function x
from I into G such that x ∈ sumF and y =

∏
x. For every finite-support

functions x1, x2 from I into G such that x1, x2 ∈ sumF and
∏
x1 =

∏
x2

holds x1 = x2. �
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2. Internal Direct Sum Decomposition for Commutative Group

Now we state the proposition:

(17) Let us consider a non empty set I, a commutative group G, and a group-
family F of I. Then F is an internal direct sum components of G and I if
and only if for every element i of I, F (i) is a subgroup of G and for every
elements i, j of I such that i 6= j holds ΩF (i)∩ΩF (j) = {1G} and for every
element y of G, there exists a finite-support function x from I into G such
that x ∈ sumF and y =

∏
x and for every finite-support functions x1, x2

from I into G such that x1, x2 ∈ sumF and
∏
x1 =

∏
x2 holds x1 = x2.

3. Equivalence between Internal and External Direct Sum

Now we state the propositions:

(18) Let us consider a non empty set I, a group G, a subgroup-family F of I
and G, a homomorphism h from sumF to G, and a finite-support function
a from I into G. Suppose a ∈ sumF and for every element i of I and for
every element x of F (i), h((1ProdHom(F, i))(x)) = x. Then h(a) =

∏
a.

Proof: Define P[natural number] ≡ for every finite-support function b
from I intoG such that b ∈ sumF holds if support b = $1, then h(b) =

∏
b.

P[0] by [16, (14)], [23, (44)], [26, (31)], [16, (15)]. For every natural number
k such that P[k] holds P[k + 1] by [16, (25)], [23, (44)], [16, (26)], [23,
(40)]. For every natural number k, P[k] from [4, Sch. 2]. Consider k being
a natural number such that support a = k. �

(19) Let us consider a non empty set I, a group G, and a direct sum compo-
nents M of G and I. Then there exists a homomorphism f from sumM
to G and there exists an internal direct sum components N of G and I
such that f is bijective and for every element i of I, there exists a homo-
morphism q1 from M(i) to N(i) such that q1 = f · 1ProdHom(M, i) and
q1 is bijective.
Proof: Consider f being a homomorphism from sumM to G such that
f is bijective. Define D(element of I) = f◦(ProjGroup(M, $1)). Consider
N being a function such that domN = I and for every element i of I
such that i ∈ I holds N(i) = D(i) from [2, Sch. 2]. For every object i such
that i ∈ I holds N(i) is a strict subgroup of G. Define E(element of I) =
f ·1ProdHom(M, $1). Consider q being a function such that dom q = I and
for every element i of I such that i ∈ I holds q(i) = E(i) from [2, Sch. 2].
Reconsider r = SumMap(M,N, q) as a homomorphism from sumM to
sumN . Reconsider s = r−1 as a homomorphism from sumN to sumM .
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Reconsider g = f · s as a function. For every element i of I and for every
element n of N(i), g((1ProdHom(N, i))(n)) = n by [16, (42)], [23, (40)],
[9, (13), (34)]. For every finite-support function a from I into G such that
a ∈ sumN holds g(a) =

∏
a. For every element i of I, there exists a

homomorphism q1 from M(i) to N(i) such that q1 = f · 1ProdHom(M, i)
and q1 is bijective. �
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