Definition and Properties of Direct Sum Decomposition of Groups ${ }^{1}$

Kazuhisa Nakasho
Shinshu University
Nagano, Japan

Hiroshi Yamazaki
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Abstract

Summary. In this article, direct sum decomposition of group is mainly discussed. In the second section, support of element of direct product group is defined and its properties are formalized. It is formalized here that an element of direct product group belongs to its direct sum if and only if support of the element is finite. In the third section, product map and sum map are prepared. In the fourth section, internal and external direct sum are defined. In the last section, an equivalent form of internal direct sum is proved. We referred to [23], [22, [8] and [18 in the formalization.

MSC: 20E34 03B35
Keywords: group theory; direct sum decomposition
MML identifier: GROUP_19, version: 8.1.03 5.29.1227
The notation and terminology used in this paper have been introduced in the following articles: [1], [2], [6], [16], [24], [10], [11], [12], [13], [7], 27], [20], [21], [28], [29], [30], [17], [33], [25], [3], [5], 14], 19], [32], 31], and [15].

1. Miscellanies

Let D be a non empty set and x be an element of D. Observe that the functor $\langle x\rangle$ yields a finite sequence of elements of D. Let I be a set.

[^0]A family of groups of I is an associative, group-like multiplicative magma family of I. Let G be a group. Note that there exists a subgroup of G which is commutative.

Now we state the proposition:
(1) Let us consider a set I, a family F of groups of I, and an object i. If $i \in I$, then $F(i)$ is a group.
Let I be a set, F be a family of groups of I, and i be an object. Assume $i \in I$. One can verify that the functor $F(i)$ yields a group. One can verify that sum F is non empty and constituted functions.

Now we state the propositions:
(2) Let us consider a set I, and a function F. Suppose $I=\operatorname{dom} F$ and for every object i such that $i \in I$ holds $F(i)$ is a group. Then F is a family of groups of I.
(3) Let us consider a set I, a family F of groups of I, and an element a of ΠF. Then $\operatorname{dom} a=I$.
(4) Let us consider a non empty set I, a family F of groups of I, and an element x of I. Then (the support of $F)(x)=\Omega_{F(x)}$.
(5) Let us consider a non empty set I, a family F of groups of I, a function x, and an element i of I. If $x \in \Pi F$, then $x(i) \in F(i)$. The theorem is a consequence of (4).
(6) Let us consider groups G, H, and a subgroup I of H. Then every homomorphism from G to I is a homomorphism from G to H.

2. Support of Element of Direct Product Group

Let I be a set, F be a family of groups of I, and a be a function. The functor support (a, F) yielding a subset of I is defined by
(Def. 1) for every object $i, i \in$ it iff $a(i) \neq \mathbf{1}_{F(i)}$ and $i \in I$.
Now we state the proposition:
(7) Let us consider a set I, a family F of groups of I, and an element a of $\operatorname{sum} F$. Then there exists a finite subset J of I and there exists a many sorted set b indexed by J such that $J=\operatorname{support}(a, F)$ and $a=\mathbf{1} \prod_{F^{+}} \cdot b$ and for every object j such that $j \in I \backslash J$ holds $a(j)=\mathbf{1}_{F(j)}$ and for every object j such that $j \in J$ holds $a(j)=b(j)$.
Proof: Consider g being an element of Π (the support of $F), J$ being a finite subset of I, b being a many sorted set indexed by J such that $g=\mathbf{1}_{\prod F}$ and $a=g+\cdot b$ and for every set j such that $j \in J$ there exists a group-like, non empty multiplicative magma G such that $G=F(j)$ and
$b(j) \in$ the carrier of G and $b(j) \neq \mathbf{1}_{G} . \operatorname{dom} \mathbf{1}_{\prod_{F}}=I$. For every object j such that $j \in I \backslash J$ holds $a(j)=\mathbf{1}_{F(j)}$ by [13, (11)], [17, (6)]. For every object $j, j \in \operatorname{support}(a, F)$ iff $j \in J$ by [13, (13)].
Let I be a set, F be a family of groups of I, and a be an element of $\operatorname{sum} F$. One can verify that support (a, F) is finite.

Let G be a group and a be a function from I into G. The functor support a yielding a subset of I is defined by
(Def. 2) for every object $i, i \in i t$ iff $a(i) \neq \mathbf{1}_{G}$ and $i \in I$.
We say that a is finite-support if and only if
(Def. 3) support a is finite.
Let us observe that there exists a function from I into G which is finitesupport. Let a be a finite-support function from I into G. One can verify that support a is finite.

The functor Πa yielding an element of G is defined by the term
(Def. 4) $\Pi(a \upharpoonright$ support $a)$.
Now we state the propositions:
(8) Let us consider a set I, a family F of groups of I, and an element a of ΠF. Then $a \in \operatorname{sum} F$ if and only if support (a, F) is finite.
Proof: Reconsider $J=\operatorname{support}(a, F)$ as a finite subset of I. Set $k=a \upharpoonright J$. Set $x=\mathbf{1}_{\prod_{F}+k}$. For every set j such that $j \in J$ there exists a grouplike, non empty multiplicative magma G such that $G=F(j)$ and $k(j) \in$ the carrier of G and $k(j) \neq \mathbf{1}_{G}$ by [10, (49)], (5). dom $x=I$. For every object i such that $i \in \operatorname{dom} x$ holds $x(i)=a(i)$ by [13, (11)], [17, (6)], [13, (13)], [10, (49)]. $x=a$.
(9) Let us consider a set I, a group G, a family H of groups of I, a function x from I into G, and an element y of ΠH. Suppose $x=y$ and for every object i such that $i \in I$ holds $H(i)$ is a subgroup of G. Then support $x=$ support (y, H).
Proof: For every object i such that $i \in I$ holds $\mathbf{1}_{H(i)}=\mathbf{1}_{G}$ by [28, (44)]. For every object $i, i \in \operatorname{support}(y, H)$ iff $i \in \operatorname{support} x$.
(10) Let us consider a set I, a group G, a family F of groups of I, and an object a. Suppose $a \in \operatorname{sum} F$ and for every object i such that $i \in I$ holds $F(i)$ is a subgroup of G. Then a is a finite-support function from I into G.
Proof: Reconsider $b=a$ as an element of ΠF. For every object i such that $i \in I$ holds $\Omega_{F(i)} \subseteq \Omega_{G}$. dom $b=I$. For every object z such that $z \in \operatorname{rng} b$ holds $z \in \Omega_{G}$ by (3), (5), [28, (40)]. support $(b, F)=\operatorname{support} b$.
(11) Let us consider a non empty set I, and a family F of groups of I. Then $\operatorname{support}\left({ }^{\mathbf{1}} \prod_{F}, F\right)$ is empty.
Proof: For every object $i, i \notin \operatorname{support}\left(\mathbf{1}_{\prod_{F}}, F\right)$ by [17, (6)].
(12) Let us consider a non empty set I, a group G, and a function a from I into G. If $a=I \longmapsto \mathbf{1}_{G}$, then support a is empty.
Proof: For every object $i, i \notin \operatorname{support} a$ by [24, (7)].
(13) Let us consider a non empty set I, a group G, and a family F of groups of I. Suppose for every element i of $I, F(i)$ is a subgroup of G. Then $\mathbf{1}{ }^{F}=I \longmapsto \mathbf{1}_{G}$.
Proof: dom $\mathbf{1}_{\prod F}=I$. For every object j such that $j \in I$ holds $\mathbf{1}_{\prod_{F}}(j)=$ $\left(I \longmapsto \mathbf{1}_{G}\right)(j)$ by [17, (6)], [24, (7)], [28, (44)].
(14) Let us consider a non empty set I, a family F of groups of I, a group G, and a finite-support function x from I into G. Suppose support $x=\emptyset$ and for every object i such that $i \in I$ holds $F(i)$ is a subgroup of G. Then $x=\mathbf{1}_{\prod F}$.
Proof: For every set i such that $i \in I$ there exists a group-like, non empty multiplicative magma G such that $G=F(i)$ and $x(i)=\mathbf{1}_{G}$ by [28, (44)].
(15) Let us consider a set I, a group G, and a finite-support function x from I into G. If support $x=\emptyset$, then $\Pi x=\mathbf{1}_{G}$.
(16) Let us consider a non empty set I, a group G, and a finite-support function a from I into G. If $a=I \longmapsto \mathbf{1}_{G}$, then $\Pi a=\mathbf{1}_{G}$. The theorem is a consequence of (12) and (15).
Let us consider a non empty set I, a family F of groups of I, an element x of ΠF, an element i of I, and an element g of $F(i)$. Now we state the propositions:
(17) If $x=\mathbf{1}_{\prod F^{+}} \cdot(i, g)$, then $\operatorname{support}(x, F) \subseteq\{i\}$.

Proof: For every object j such that $j \in \operatorname{support}(x, F)$ holds $j \in\{i\}$ by [20, (1)].
(18) If $x=\mathbf{1}_{\prod_{F}}+\cdot(i, g)$ and $g \neq \mathbf{1}_{F(i)}$, then support $(x, F)=\{i\}$. The theorem is a consequence of (17).
Let us consider a non empty set I, a group G, an element i of I, an element g of G, and a function a from I into G. Now we state the propositions:
(19) If $a=\left(I \longmapsto \mathbf{1}_{G}\right)+\cdot(i, g)$, then support $a \subseteq\{i\}$.

Proof: For every object j such that $j \in \operatorname{support} a$ holds $j \in\{i\}$ by [7, (32)], [24, (7)].
(20) If $a=\left(I \longmapsto \mathbf{1}_{G}\right)+\cdot(i, g)$ and $g \neq \mathbf{1}_{G}$, then support $a=\{i\}$. The theorem is a consequence of (19).
Now we state the propositions:
(21) Let us consider a non empty set I, a group G, a finite-support function a from I into G, an element i of I, and an element g of G. If $a=(I \longmapsto$ $\left.\mathbf{1}_{G}\right)+\cdot(i, g)$, then $\prod a=g$. The theorem is a consequence of (20) and (16).
(22) Let us consider a non empty set I, a family F of groups of I, a function x, an element i of I, and an element g of $F(i)$. Suppose support (x, F) is finite. Then $\operatorname{support}(x+\cdot(i, g), F)$ is finite.
Proof: Reconsider $y=x+\cdot(i, g)$ as a function. For every object j such that $j \in \operatorname{support}(y, F)$ holds $j \in \operatorname{support}(x, F) \cup\{i\}$ by [7, (32)].
(23) Let us consider a non empty set I, a group G, a function a from I into G, an element i of I, and an element g of G. Suppose support a is finite. Then $\operatorname{support}(a+\cdot(i, g))$ is finite.
Proof: Reconsider $b=a+\cdot(i, g)$ as a function from I into G. For every object j such that $j \in \operatorname{support} b$ holds $j \in \operatorname{support} a \cup\{i\}$ by [7, (32)].
Let us consider a non empty set I, a family F of groups of I, a function x, an element i of I, and an element g of $F(i)$. Now we state the propositions:
(24) If $x \in \Pi F$, then $x+\cdot(i, g) \in \Pi F$.

Proof: $\operatorname{dom} x=I$. Set $y=x+\cdot(i, g)$. For every object j such that $j \in \operatorname{dom}($ the support of $F)$ holds $y(j) \in($ the support of $F)(j)$ by [7, (31)], (4), [7, (32)], [2, (9)].
(25) If $x \in \operatorname{sum} F$, then $x+\cdot(i, g) \in \operatorname{sum} F$.

Proof: Set $y=x+\cdot(i, g) . y \in \Pi F$. For every object j such that $j \in$ support (y, F) holds $j \in \operatorname{support}(x, F) \cup\{i\}$ by [7, (32)].
Now we state the propositions:
(26) Let us consider a non empty set I, a group G, a finite-support function a from I into G, an element i of I, and an element g of G. Then $a+\cdot(i, g)$ is a finite-support function from I into G. The theorem is a consequence of (23).
(27) Let us consider a non empty set I, a family F of groups of I, an object i, and functions a, b. Suppose $i \in I$ and $\operatorname{dom} a=I$ and $b=a+\cdot\left(i, \mathbf{1}_{F(i)}\right)$. Then $\operatorname{support}(b, F)=\operatorname{support}(a, F) \backslash\{i\}$.
Proof: For every object $j, j \in \operatorname{support}(b, F)$ iff $j \in \operatorname{support}(a, F) \backslash\{i\}$ by [15, (11), (48)], [7, (32)], [15, (50)].
(28) Let us consider a non empty set I, a group G, an object i, and functions a, b from I into G. Suppose $i \in \operatorname{support} a$ and $b=a+\cdot\left(i, \mathbf{1}_{G}\right)$. Then support $b=$ support $a \backslash\{i\}$.
Proof: For every object $j, j \in \operatorname{support} b$ iff $j \in \operatorname{support} a \backslash\{i\}$ by [15, (11), (48)], [7, (32)], [15, (50)].
(29) Let us consider a non empty set I, a family F of groups of I, an object i, an element a of sum F, and a function b. Suppose $i \in \operatorname{support}(a, F)$ and
$b=a+\cdot\left(i, \mathbf{1}_{F(i)}\right)$. Then $\overline{\overline{\operatorname{support}(b, F)}}=\overline{\overline{\operatorname{support}(a, F)}}-1$. The theorem is a consequence of (3) and (27).
(30) Let us consider a non empty set I, a group G, an object i, a finitesupport function a from I into G, and a function b from I into G. Suppose $i \in$ support a and $b=a+\cdot\left(i, \mathbf{1}_{G}\right)$. Then $\overline{\overline{\text { support } b}}=\overline{\overline{\text { support } a}}-1$. The theorem is a consequence of (28).
Let us consider a non empty set I, a family F of groups of I, and elements a, b of ΠF.

Let us assume that support (a, F) misses support (b, F). Now we state the propositions:

$$
\begin{equation*}
a+\cdot b \upharpoonright \operatorname{support}(b, F)=a \cdot b . \tag{31}
\end{equation*}
$$

Proof: Reconsider $c=a+b \upharpoonright \operatorname{support}(b, F)$ as a function. Reconsider $d=$ $a \cdot b$ as an element of ΠF. dom $a=I . \operatorname{dom} b=I$. dom $d=I$. For every object i such that $i \in I$ holds $c(i)=d(i)$ by (5), [13, (11)], [17, (1)], [13, (13)].
(32) $a \cdot b=b \cdot a$.

Proof: Reconsider $c=a \cdot b$ as an element of ΠF. Reconsider $d=b \cdot a$ as an element of ΠF. dom $c=I$. dom $d=I$. For every object i such that $i \in I$ holds $c(i)=d(i)$ by (5), [17, (1)].
(33) Let us consider a non empty set I, a family F of groups of I, and an element i of I. Then $\operatorname{ProjGroup}(F, i)$ is a subgroup of $\operatorname{sum} F$.
Proof: Set $S=\operatorname{ProjGroup}(F, i)$. Set $G=\operatorname{sum} F$. For every object x such that $x \in \Omega_{S}$ holds $x \in \Omega_{G}$ by [28, (40)], (17), (8).
(34) Let us consider a non empty set I, families F, G of groups of I, and functions x, y. Suppose for every object i such that $i \in I$ there exists a homomorphism h_{1} from $F(i)$ to $G(i)$ such that $y(i)=h_{1}(x(i))$. Then $\operatorname{support}(y, G) \subseteq \operatorname{support}(x, F)$.
Proof: For every object i such that $i \in \operatorname{support}(y, G)$ holds $i \in \operatorname{support}(x, F)$ by [30, (31)].

3. Product Map and Sum Map

Let F, G be non-empty, non empty functions and h be a non empty function. Assume $\operatorname{dom} F=\operatorname{dom} G=\operatorname{dom} h$ and for every object i such that $i \in \operatorname{dom} h$ holds $h(i)$ is a function from $F(i)$ into $G(i)$. The functor $\operatorname{ProductMap}(F, G, h)$ yielding a function from ΠF into ΠG is defined by
(Def. 5) for every element x of ΠF and for every object i such that $i \in \operatorname{dom} h$ there exists a function h_{1} from $F(i)$ into $G(i)$ such that $h_{1}=h(i)$ and $(i t(x))(i)=h_{1}(x(i))$.

Let us consider non-empty, non empty functions F, G and a non empty function h.

Let us assume that $\operatorname{dom} F=\operatorname{dom} G=\operatorname{dom} h$ and for every object i such that $i \in \operatorname{dom} h$ there exists a function h_{1} from $F(i)$ into $G(i)$ such that $h_{1}=h(i)$ and h_{1} is onto. Now we state the propositions:
(35) ProductMap (F, G, h) is onto.

Proof: Set $p=\operatorname{ProductMap}(F, G, h)$. For every object i such that $i \in$ dom h holds $h(i)$ is a function from $F(i)$ into $G(i)$. For every object y such that $y \in \Pi G$ there exists an object x such that $x \in \Pi F$ and $y=p(x)$ by [2, (9)], [11, (11)], [10, (2)].
(36) $\operatorname{ProductMap}(F, G, h)$ is one-to-one.

Proof: Set $p=\operatorname{ProductMap}(F, G, h)$. For every object i such that $i \in$ dom h holds $h(i)$ is a function from $F(i)$ into $G(i)$. For every objects x_{1}, x_{2} such that $x_{1}, x_{2} \in \Pi F$ and $p\left(x_{1}\right)=p\left(x_{2}\right)$ holds $x_{1}=x_{2}$ by [2, (9)], [11, (19)], [10, (2)].
(37) $\operatorname{ProductMap}(F, G, h)$ is bijective. The theorem is a consequence of (35) and (36).
Now we state the proposition:
(38) Let us consider a non empty set I, families F, G of groups of I, a non empty function h, an element x of ΠF, and an element y of ΠG. Suppose $I=\operatorname{dom} h$ and $y=$ (ProductMap(the support of F, the support of $G, h))(x)$ and for every object i such that $i \in I$ holds $h(i)$ is a homomorphism from $F(i)$ to $G(i)$. Let us consider an object i. Suppose $i \in I$. Then there exists a homomorphism h_{1} from $F(i)$ to $G(i)$ such that
(i) $h_{1}=h(i)$, and
(ii) $y(i)=h_{1}(x(i))$.

The theorem is a consequence of (4).
Let I be a non empty set, F, G be families of groups of I, and h be a non empty function. Assume $I=\operatorname{dom} h$ and for every object i such that $i \in I$ holds $h(i)$ is a homomorphism from $F(i)$ to $G(i)$. The functor $\operatorname{ProductMap}(F, G, h)$ yielding a homomorphism from ΠF to ΠG is defined by the term
(Def. 6) ProductMap(the support of F, the support of G, h).
Now we state the propositions:
(39) Let us consider a non empty set I, families F, G of groups of I, a non empty function h, an element x of ΠF, and an element y of ΠG. Suppose $I=\operatorname{dom} h$ and $y=(\operatorname{ProductMap}(F, G, h))(x)$ and for every object i such that $i \in I$ holds $h(i)$ is a homomorphism from $F(i)$ to $G(i)$. Let us consider
an object i. Suppose $i \in I$. Then there exists a homomorphism h_{1} from $F(i)$ to $G(i)$ such that
(i) $h_{1}=h(i)$, and
(ii) $y(i)=h_{1}(x(i))$.

The theorem is a consequence of (38).
(40) Let us consider a non empty set I, families F, G of groups of I, and a non empty function h. Suppose $I=\operatorname{dom} h$ and for every object i such that $i \in I$ there exists a homomorphism h_{1} from $F(i)$ to $G(i)$ such that $h_{1}=h(i)$ and h_{1} is bijective. Then $\operatorname{ProductMap}(F, G, h)$ is bijective. The theorem is a consequence of (4) and (37).
Let I be a non empty set, F be a family of groups of I, and i be an element of I. Observe that the functor $\operatorname{ProjGroup}(F, i)$ yields a strict subgroup of $\operatorname{sum} F$. Let F, G be families of groups of I and h be a non empty function. Assume $I=\operatorname{dom} h$ and for every object i such that $i \in I$ holds $h(i)$ is a homomorphism from $F(i)$ to $G(i)$. The functor $\operatorname{SumMap}(F, G, h)$ yielding a homomorphism from sum F to sum G is defined by the term
(Def. 7) ProductMap $(F, G, h) \upharpoonright \operatorname{sum} F$.
Now we state the propositions:
(41) Let us consider a non empty set I, families F, G of groups of I, and a non empty function h. Suppose $I=\operatorname{dom} h$ and for every object i such that $i \in I$ there exists a homomorphism h_{1} from $F(i)$ to $G(i)$ such that $h_{1}=h(i)$ and h_{1} is bijective. Then $\operatorname{SumMap}(F, G, h)$ is bijective.
Proof: For every object i such that $i \in I$ holds $h(i)$ is a homomorphism from $F(i)$ to $G(i)$. Set $p=\operatorname{ProductMap}(F, G, h)$. Set $s=\operatorname{SumMap}(F, G, h)$. p is bijective. For every object y such that $y \in \Omega_{\operatorname{sum} G}$ holds $y \in \operatorname{rng} s$ by [28, (40)], [30, (61)], (39), [30, (62)].
(42) Let us consider a non empty set I, families F, G of groups of I, and a non empty function h. Suppose $I=\operatorname{dom} h$ and for every object i such that $i \in I$ holds $h(i)$ is a homomorphism from $F(i)$ to $G(i)$. Let us consider an element i of I, an element f of $F(i)$, and a homomorphism h_{1} from $F(i)$ to $G(i)$. Suppose $h_{1}=h(i)$. Then $(\operatorname{SumMap}(F, G, h))((1 \operatorname{ProdHom}(F, i))(f))=$ (1ProdHom $(G, i))\left(h_{1}(f)\right)$.
Proof: Set $x=(1 \operatorname{ProdHom}(F, i))(f)$. Set $y=(\operatorname{SumMap}(F, G, h))(x)$. dom $y=I$. Consider h_{2} being a homomorphism from $F(i)$ to $G(i)$ such that $h_{2}=h(i)$ and $y(i)=h_{2}(x(i))$. For every element j of I such that $j \neq i$ holds $y(j)=\mathbf{1}_{G(j)}$ by [20, (1)], (39), [30, (31)].

4. Definition of Internal and External Direct Sum Decomposition

Now we state the proposition:
(43) Let us consider a non empty set I, a group G, and an object i. Suppose $i \in I$. Then there exists a family F of groups of I and there exists a homomorphism h from sum F to G such that h is bijective and $F=$ $\left(I \longmapsto\{\mathbf{1}\}_{G}\right)+\cdot(\{i\} \longmapsto G)$ and for every object j such that $j \in I$ holds $\mathbf{1}_{F(j)}=\mathbf{1}_{G}$ and for every element x of $\operatorname{sum} F, h(x)=x(i)$ and for every element x of $\operatorname{sum} F$, there exists a finite subset J of I and there exists a many sorted set a indexed by J such that $J \subseteq\{i\}$ and $J=\operatorname{support}(x, F)$ and $(\operatorname{support}(x, F)=\emptyset$ or $\operatorname{support}(x, F)=\{i\})$ and $x=\mathbf{1}_{\prod_{F}}+\cdot a$ and for every object j such that $j \in I \backslash J$ holds $x(j)=\mathbf{1}_{F(j)}$ and for every object j such that $j \in J$ holds $x(j)=a(j)$.
Proof: Set $v=I \longmapsto\{\mathbf{1}\}_{G}$. Set $w=\{i\} \longmapsto G$. Set $F=v+\cdot w$. For every object j such that $j \in I \backslash\{i\}$ holds $F(j)=\{\mathbf{1}\}_{G}$ by [24, (7)]. For every object j such that $j \in I$ holds $F(j)$ is a group. For every object j such that $j \in I$ holds $\mathbf{1}_{F(j)}=\mathbf{1}_{G}$ by [28, (44)]. Define \mathcal{P} [element of sum F, element of $G] \equiv \$_{2}=\$_{1}(i)$. For every element x of sum F, there exists an element y of G such that $\mathcal{P}[x, y]$ by [28, (40)], (5), [24, (13), (7)]. Consider h being a function from sum F into G such that for every element x of $\operatorname{sum} F$, $\mathcal{P}[x, h(x)]$ from [11, Sch. 3]. For every object y such that $y \in \Omega_{G}$ there exists an object x such that $x \in \Omega_{\text {sum }} F$ and $y=h(x)$ by [24, (7)], (24), (17), (8). For every element x of $\operatorname{sum} F, \operatorname{support}(x, F) \subseteq\{i\}$ by [28, (40)], (5), [28, (44)]. For every objects x_{1}, x_{2} such that $x_{1}, x_{2} \in \Omega_{\text {sum } F}$ and $h\left(x_{1}\right)=h\left(x_{2}\right)$ holds $x_{1}=x_{2}$ by [28, (40)], (3), (7), [10, (2)]. For every elements x, y of $\operatorname{sum} F, h(x \cdot y)=h(x) \cdot h(y)$ by [28, (40)], (5), [28, (43)], [17, (1)]. For every element x of $\operatorname{sum} F$, there exists a finite subset J of I and there exists a many sorted set a indexed by J such that $J \subseteq\{i\}$ and $J=\operatorname{support}(x, F)$ and $(\operatorname{support}(x, F)=\emptyset$ or $\operatorname{support}(x, F)=\{i\})$ and $x=\mathbf{1}_{\prod_{F}} \cdot \cdot a$ and for every object j such that $j \in I \backslash J$ holds $x(j)=\mathbf{1}_{F(j)}$ and for every object j such that $j \in J$ holds $x(j)=a(j)$ by [15, (31)], (7).

Let I be a non empty set and G be a group. A direct sum components of G and I is a family of groups of I and is defined by
(Def. 8) there exists a homomorphism h from sum it to G such that h is bijective.
Let F be a direct sum components of G and I. We say that F is internal if and only if
(Def. 9) for every element i of $I, F(i)$ is a subgroup of G and there exists a homomorphism h from sum F to G such that h is bijective and for every
finite-support function x from I into G such that $x \in \operatorname{sum} F$ holds $h(x)=$ $\prod x$.
One can verify that there exists a direct sum components of G and I which is internal.

5. Equivalent Expression of Internal Direct Sum Decomposition

Now we state the propositions:
(44) Let us consider a group G, and a non empty subset A of G. Suppose for every elements x, y of G such that $x, y \in A$ holds $x \cdot y=y \cdot x$. Then $\operatorname{gr}(A)$ is commutative.
Proof: For every elements x, y of G and for every elements i, j of \mathbb{Z} such that $x, y \in A$ holds $x^{i} \cdot y^{j}=y^{j} \cdot x^{i}$ by [27, (39)]. For every element y of G and for every element j of \mathbb{Z} such that $y \in A$ for every finite sequence F of elements of G for every finite sequence I of elements of \mathbb{Z} such that len $F=\operatorname{len} I$ and $\operatorname{rng} F \subseteq A$ holds $\Pi F^{I} \cdot y^{j}=y^{j} \cdot \prod F^{I}$ by [29, (21), (8)], [32, (70)], [6, (4)]. For every elements x, g of G and for every element i of \mathbb{Z} such that $x \in \operatorname{gr}(A)$ and $g \in A$ holds $x \cdot g^{i}=g^{i} \cdot x$ by [29, (28)]. For every element x of G such that $x \in \operatorname{gr}(A)$ for every finite sequence F of elements of G for every finite sequence I of elements of \mathbb{Z} such that len $F=\operatorname{len} I$ and $\operatorname{rng} F \subseteq A$ holds $\Pi F^{I} \cdot x=x \cdot \prod F^{I}$ by [29, (21), (8)], [32, (70)], [6, (4)]. For every elements x, y of $\operatorname{gr}(A), x \cdot y=y \cdot x$ by [28, (41)], [29, (28)], [28, (43)].
(45) Let us consider a group G, a subgroup H of G, a finite sequence a of elements of G, and a finite sequence b of elements of H. If $a=b$, then $\prod a=\prod b$.
Proof: Define \mathcal{P} [natural number] \equiv for every finite sequence a of elements of G for every finite sequence b of elements of H such that len $a=\$_{1}$ and $a=b$ holds $\Pi a=\Pi b . \mathcal{P}[0]$ by [29, (8)], [28, (44)]. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [6, (4), (17)], [26, (55)], [29, (6)]. For every natural number $k, \mathcal{P}[k]$ from [4, Sch. 2].
(46) Let us consider a group G, an element h of G, and a finite sequence F of elements of G. Suppose for every natural number k such that $k \in \operatorname{dom} F$ holds $h \cdot F_{k}=F_{k} \cdot h$. Then $h \cdot \prod F=\Pi F \cdot h$.
Proof: Define \mathcal{P} [natural number] \equiv for every finite sequence F of elements of G such that len $F=\$_{1}$ and for every natural number i such that $i \in \operatorname{dom} F$ holds $h \cdot F_{i}=F_{i} \cdot h$ holds $h \cdot \Pi F=\Pi F \cdot h . \mathcal{P}[0]$ by [29, (8)]. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [6, (4), (17), (5)], [14, (80)]. For every natural number $i, \mathcal{P}[i]$ from [4, Sch. 2].
(47) Let us consider a group G, and finite sequences F, F_{1}, F_{2} of elements of G. Suppose len $F=\operatorname{len} F_{1}$ and len $F=\operatorname{len} F_{2}$ and for every natural numbers i, j such that $i, j \in \operatorname{dom} F$ and $i \neq j$ holds $F_{1 i} \cdot F_{2 j}=F_{2 j} \cdot F_{1 i}$ and for every natural number k such that $k \in \operatorname{dom} F$ holds $F(k)=F_{1 k} \cdot F_{2 k}$. Then $\Pi F=\prod F_{1} \cdot \prod F_{2}$.
Proof: Define \mathcal{P} [natural number] \equiv for every finite sequences F, F_{1}, F_{2} of elements of G such that len $F=\$_{1}$ and len $F=\operatorname{len} F_{1}$ and len $F=\operatorname{len} F_{2}$ and for every natural numbers i, j such that $i, j \in \operatorname{dom} F$ and $i \neq j$ holds $F_{1 i} \cdot F_{2 j}=F_{2 j} \cdot F_{1 i}$ and for every natural number k such that $k \in \operatorname{dom} F$ holds $F(k)=F_{1 k} \cdot F_{2 k}$ holds $\Pi F=\prod F_{1} \cdot \prod F_{2} \cdot \mathcal{P}[0]$ by [29, (8)]. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [6, (4), (17), (5)], [14, (80)]. For every natural number $i, \mathcal{P}[i]$ from [4, Sch. 2].
(48) Let us consider a group G, and a finite sequence a of elements of G. Suppose for every object i such that $i \in \operatorname{dom} a$ holds $a(i)=\mathbf{1}_{G}$. Then $\Pi a=\mathbf{1}_{G}$.
Proof: Set $n=\operatorname{len} a . a=n \mapsto \mathbf{1}_{G}$ by [24, (13)], [9, (57)], [10, (2)].
(49) Let us consider a finite set I, a group G, and a (the carrier of G)-valued, total, I-defined function a. Suppose for every object i such that $i \in I$ holds $a(i)=\mathbf{1}_{G}$. Then $\prod a=\mathbf{1}_{G}$.
Proof: Set $c_{1}=\operatorname{CFS}(I)$. Set $a_{2}=a \cdot c_{1}$. For every object i such that $i \in \operatorname{dom} a_{2}$ holds $a_{2}(i)=\mathbf{1}_{G}$ by [32, (27)], [10, (3), (12)].
(50) Let us consider a finite set A, a non empty set B, and a B-valued, total, A-defined function f. Then $f \cdot \operatorname{CFS}(A)$ is a finite sequence of elements of B.
Let us consider a non empty set I, a group G, a finite-support function a from I into G, and a finite subset W of I. Now we state the propositions:
(51) If support $a \subseteq W$ and for every elements i, j of $I, a(i) \cdot a(j)=a(j) \cdot a(i)$, then $\Pi a=\prod(a \upharpoonright W)$.
Proof: Reconsider $r=\operatorname{rng} a$ as a non empty subset of G. For every elements x, y of G such that $x, y \in r$ holds $x \cdot y=y \cdot x$ by [11, (113)].
(52) Suppose support $a \subseteq W$. Then there exists a finite-support function a_{1} from W into G such that
(i) $a_{1}=a \upharpoonright W$, and
(ii) $\operatorname{support} a=\operatorname{support} a_{1}$, and
(iii) $\prod a=\prod a_{1}$.
(53) Let us consider a non empty set I, a group G, a family F of groups of I, elements s_{1}, s_{2} of $\operatorname{sum} F$, and finite-support functions x, y, x_{3} from I into G. Suppose for every element i of $I, F(i)$ is a subgroup of G and for
every elements i, j of I and for every elements g_{1}, g_{2} of G such that $i \neq j$ and $g_{1} \in F(i)$ and $g_{2} \in F(j)$ holds $g_{1} \cdot g_{2}=g_{2} \cdot g_{1}$ and $s_{1}=x$ and $s_{2}=y$ and $s_{1} \cdot s_{2}=x_{3}$. Then $\prod x_{3}=\Pi x \cdot \Pi y$.
Proof: Reconsider $W=\operatorname{support} x \cup \operatorname{support} y$ as a finite subset of I. For every object i such that $i \in \operatorname{support} x_{3}$ holds $i \in W$ by (5), [28, (40), (43)], [17, (1)]. For every function a from I into G and for every elements i, j of I such that $a \in \Pi F$ holds $a(i) \cdot a(j)=a(j) \cdot a(i) \cdot \Pi x=\prod(x \mid W) . \Pi y=$ $\Pi(y \upharpoonright W) . \Pi x_{3}=\Pi\left(x_{3} \mid W\right)$. Set $c_{1}=\operatorname{CFS}(W)$. Reconsider $w_{1}=(x \upharpoonright W) \cdot c_{1}$ as a finite sequence of elements of G. Reconsider $w_{3}=(y \upharpoonright W) \cdot c_{1}$ as a finite sequence of elements of G. Reconsider $w_{2}=\left(x_{3} \upharpoonright W\right) \cdot c_{1}$ as a finite sequence of elements of G. For every natural numbers i, j such that $i, j \in \operatorname{dom} w_{2}$ and $i \neq j$ holds $w_{1 i} \cdot w_{3 j}=w_{3 j} \cdot w_{1 i}$ by [10, (3), (12), (49)], (5). For every natural number i such that $i \in \operatorname{dom} w_{2}$ holds $w_{2}(i)=w_{1 i} \cdot w_{3 i}$ by [10, (3), (12), (49)], (5). $\Pi w_{2}=\prod w_{1} \cdot \prod w_{3}$.
(54) Let us consider a non empty set I, a group G, and a family F of groups of I. Then F is an internal direct sum components of G and I if and only if for every element i of $I, F(i)$ is a subgroup of G and for every elements i, j of I and for every elements g_{1}, g_{2} of G such that $i \neq j$ and $g_{1} \in F(i)$ and $g_{2} \in F(j)$ holds $g_{1} \cdot g_{2}=g_{2} \cdot g_{1}$ and for every element y of G, there exists a finite-support function x from I into G such that $x \in \operatorname{sum} F$ and $y=\prod x$ and for every finite-support functions x_{1}, x_{2} from I into G such that $x_{1}, x_{2} \in \operatorname{sum} F$ and $\prod x_{1}=\prod x_{2}$ holds $x_{1}=x_{2}$.
Proof: Define \mathcal{P} [object, object] \equiv there exists a finite-support function x from I into G such that $\$_{1}=x$ and $\$_{2}=\Pi x$. For every element x of sum F, there exists an element y of G such that $\mathcal{P}[x, y]$. Consider h being a function from sum F into G such that for every element x of $\operatorname{sum} F$, $\mathcal{P}[x, h(x)]$ from [11, Sch. 3]. For every object y such that $y \in \Omega_{G}$ there exists an object x such that $x \in \Omega_{\text {sum }} F$ and $y=h(x)$. For every objects x_{1}, x_{2} such that $x_{1}, x_{2} \in \Omega_{\text {sum } F}$ and $h\left(x_{1}\right)=h\left(x_{2}\right)$ holds $x_{1}=x_{2}$. For every finite-support function a from I into G such that $a \in \operatorname{sum} F$ holds $h(a)=\prod a$. For every elements x, y of $\operatorname{sum} F, h(x \cdot y)=h(x) \cdot h(y)$.

References

[1] Grzegorz Bancerek. Cardinal numbers Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. König's theorem Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek. Monoids Formalized Mathematics, 3(2):213-225, 1992.
[4] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[7] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions Formalized Mathematics, 5(4):485-492, 1996.
[8] Nicolas Bourbaki. Elements of Mathematics. Algebra I. Chapters 1-3. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989.
[9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[10] Czesław Bylinski. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[11] Czesław Byliński. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[12] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[13] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalızed Mathematics, $1(\mathbf{3}): 521-527,1990$.
[14] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[15] Czesław Byliński. Some basic properties of sets Formalized Mathematics, 1(1):47-53, 1990.
[16] Agata Darmochwał. Finite sets Formalized Mathematics, 1(1):165-167, 1990.
[17] Artur Korniłowicz. The product of the families of the groups Formalized Mathematics, 7(1):127-134, 1998.
[18] Serge Lang. Algebra. Springer, 3rd edition, 2005.
[19] Beata Madras. Product of family of universal algebras Formalized Mathematics, 4(1): 103-108, 1993.
[20] Hiroyuki Okazaki, Kenichi Arai, and Yasunari Shidama. Normal subgroup of product of groups. Formalized Mathematics, 19(1):23-26, 2011. doi 10.2478/v10037-011-0004-7
[21] Hiroyuki Okazaki, Hiroshi Yamazaki, and Yasunari Shidama. Isomorphisms of direct products of finite commutative groups. Formalized Mathematics, 21(1):65-74, 2013. doi 10.2478/forma-2013-0007.
[22] D. Robinson. A Course in the Theory of Groups. Springer New York, 2012.
[23] J.J. Rotman. An Introduction to the Theory of Groups. Springer, 1995.
[24] Andrzej Trybulec. Binary operations applied to functions Formalized Mathematics, 1 (2):329-334, 1990.
[25] Michał J. Trybulec. Integers Formalized Mathematics, 1(3):501-505, 1990.
[26] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.
[27] Wojciech A. Trybulec. Groups Formalized Mathematics, 1(5):821-827, 1990.
[28] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5): 855-864, 1990.
[29] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup Formalized Mathematics, 2(1):41-47, 1991.
[30] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group Formalized Mathematics, 2(4):573-578, 1991.
[31] Zinaida Trybulec. Properties of subsets Formalized Mathematics, 1(1):67-71, 1990.
[32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
[33] Katarzyna Zawadzka. Solvable groups, Formalized Mathematics, 5(1):145-147, 1996.

Received December 31, 2014

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI 22300285.

