

## Torsion $\mathbb{Z}$ -module and Torsion-free $\mathbb{Z}$ -module<sup>1</sup>

Yuichi Futa Japan Advanced Institute of Science and Technology Ishikawa, Japan Hiroyuki Okazaki Shinshu University Nagano, Japan

Kazuhisa Nakasho Shinshu University Nagano, Japan Yasunari Shidama Shinshu University Nagano, Japan

**Summary.** In this article, we formalize a torsion  $\mathbb{Z}$ -module and a torsion-free  $\mathbb{Z}$ -module. Especially, we prove formally that finitely generated torsion-free  $\mathbb{Z}$ -modules are finite rank free. We also formalize properties related to rank of finite rank free  $\mathbb{Z}$ -modules. The notion of  $\mathbb{Z}$ -module is necessary for solving lattice problems, LLL (Lenstra, Lenstra, and Lovász) base reduction algorithm [20], cryptographic systems with lattice [21], and coding theory [11].

MSC: 13C10 15A04 03B35

Keywords: free Z-module; rank of Z-module; homomorphism of Z-module;

linearly independent; linear combination

MML identifier: ZMODULO6, version: 8.1.04 5.32.1237

The notation and terminology used in this paper have been introduced in the following articles: [24], [5], [1], [26], [10], [6], [7], [15], [28], [27], [25], [3], [4], [8], [17], [33], [34], [29], [32], [18], [31], [9], [12], [13], [14], and [22].

<sup>&</sup>lt;sup>1</sup>This work was supported by JSPS KAKENHI 21240001 and 22300285.

## 1. Torsion Z-module and Torsion-free Z-module

Now we state the proposition:

(1) Let us consider a  $\mathbb{Z}$ -module V, and a submodule W of V. Then  $1_{\mathbb{Z}^R} \circ W = \Omega_W$ .

Let us consider a  $\mathbb{Z}$ -module V and submodules  $W_1$ ,  $W_2$ ,  $W_3$  of V. Now we state the propositions:

- (2)  $W_1 \cap W_2$  is a submodule of  $(W_1 + W_3) \cap W_2$ . PROOF: For every vector v of V such that  $v \in W_1 \cap W_2$  holds  $v \in (W_1 + W_3) \cap W_2$  by [12, (94), (93)].  $\square$
- (3) If  $W_1 \cap W_2 \neq \mathbf{0}_V$ , then  $(W_1 + W_3) \cap W_2 \neq \mathbf{0}_V$ .
- (4) Let us consider a  $\mathbb{Z}$ -module V, and linearly independent subsets I,  $I_1$  of V. If  $I_1 \subseteq I$ , then  $\operatorname{Lin}(I \setminus I_1) \cap \operatorname{Lin}(I_1) = \mathbf{0}_V$ .

From now on V denotes a  $\mathbb{Z}$ -module, W denotes a submodule of V, v, u denote vectors of V, and i denotes an element of  $\mathbb{Z}^{\mathbb{R}}$ . Let V be a  $\mathbb{Z}$ -module and v be a vector of V. We say that v is torsion if and only if

(Def. 1) there exists an element i of  $\mathbb{Z}^{\mathbb{R}}$  such that  $i \neq 0_{\mathbb{Z}^{\mathbb{R}}}$  and  $i \cdot v = 0_V$ .

One can verify that  $0_V$  is torsion.

Now we state the propositions:

- (5) If v is torsion and u is torsion, then v + u is torsion.
- (6) If v is torsion, then -v is torsion.
- (7) If v is torsion and u is torsion, then v u is torsion.
- (8) If v is torsion, then  $i \cdot v$  is torsion.
- (9) Let us consider a vector v of V, and a vector w of W. If v = w, then v is torsion iff w is torsion.

Let V be a  $\mathbb{Z}$ -module. One can verify that there exists a vector of V which is torsion.

Now we state the propositions:

- (10) If v is not torsion, then -v is not torsion.
- (11) If v is not torsion and  $i \neq 0$ , then  $i \cdot v$  is not torsion.
- (12) v is not torsion if and only if  $\{v\}$  is linearly independent. PROOF: If v is not torsion, then  $\{v\}$  is linearly independent by [9, (33)], [13, (24)]. If  $\{v\}$  is linearly independent, then v is not torsion by [14, (1)], [13, (8), (29), (53)].  $\square$

Let V be a  $\mathbb{Z}$ -module. We say that V is torsion if and only if (Def. 2) every vector of V is torsion.

Let us note that  $\mathbf{0}_V$  is torsion and there exists a  $\mathbb{Z}$ -module which is torsion. Now we state the propositions:

- (13) Let us consider an element v of  $\mathbb{Z}^{\mathbb{R}}$ , and an integer  $v_1$ . Suppose  $v = v_1$ . Let us consider a natural number n. Then (Nat-mult-left  $\mathbb{Z}^{\mathbb{R}}$ ) $(n, v) = n \cdot v_1$ . PROOF: Define  $\mathcal{P}[\text{natural number}] \equiv (\text{Nat-mult-left }\mathbb{Z}^{\mathbb{R}})(\$_1, v) = \$_1 \cdot v_1$ . For every natural number n such that  $\mathcal{P}[n]$  holds  $\mathcal{P}[n+1]$ . For every natural number n,  $\mathcal{P}[n]$  from [3, Sch. 2].  $\square$
- (14) Let us consider an element x of  $\mathbb{Z}^{R}$ , an element v of  $\mathbb{Z}^{R}$ , and an integer  $v_{1}$ . Suppose  $v = v_{1}$ . Then (the left integer multiplication of  $(\mathbb{Z}^{R})$ ) $(x, v) = x \cdot v_{1}$ . The theorem is a consequence of (13).

Note that there exists a Z-module which is non torsion.

Let V be a non torsion  $\mathbb{Z}$ -module. Let us observe that there exists a vector of V which is non torsion.

Let V be a  $\mathbb{Z}$ -module. We say that V is torsion-free if and only if

(Def. 3) for every vector v of V such that  $v \neq 0_V$  holds v is not torsion.

Now we state the proposition:

(15) V is cancelable on multiplication if and only if V is torsion-free.

One can verify that every cancelable on multiplication  $\mathbb{Z}$ -module is torsion-free and every torsion-free  $\mathbb{Z}$ -module is cancelable on multiplication and every free  $\mathbb{Z}$ -module is torsion-free and there exists a  $\mathbb{Z}$ -module which is torsion-free and free.

Now we state the proposition:

(16) Let us consider a torsion-free  $\mathbb{Z}$ -module V, and a vector v of V. Then v is torsion if and only if  $v = 0_V$ .

Let V be a torsion-free  $\mathbb{Z}$ -module. Note that every submodule of V is torsion-free.

Let V be a  $\mathbb{Z}$ -module. Observe that  $\mathbf{0}_V$  is trivial and every non trivial, torsion-free  $\mathbb{Z}$ -module is non torsion and there exists a  $\mathbb{Z}$ -module which is trivial.

Let V be a non trivial  $\mathbb{Z}$ -module. Let us note that there exists a vector of V which is non zero.

Now we state the proposition:

(17) v is not torsion if and only if  $Lin(\{v\})$  is free and  $v \neq 0_V$ . The theorem is a consequence of (12) and (9).

Let V be a non torsion  $\mathbb{Z}$ -module and v be a non torsion vector of V. Let us note that  $\text{Lin}(\{v\})$  is free.

Now we state the propositions:

(18) Let us consider a  $\mathbb{Z}$ -module V, a subset A of V, and a vector v of V. If A is linearly independent and  $v \in A$ , then v is not torsion. The theorem

is a consequence of (12).

- (19) Let us consider an object u. Suppose  $u \in \text{Lin}(\{v\})$ . Then there exists an element i of  $\mathbb{Z}^{\mathbb{R}}$  such that  $u = i \cdot v$ .
- $(20) \quad v \in \operatorname{Lin}(\{v\}).$
- $(21) \quad i \cdot v \in \operatorname{Lin}(\{v\}).$
- (22)  $\operatorname{Lin}(\{0_V\}) = \mathbf{0}_V.$

PROOF: For every object 
$$x, x \in \text{Lin}(\{0_V\})$$
 iff  $x \in \mathbf{0}_V$  by [13, (64), (21)], [12, (1)], [13, (66)].  $\square$ 

Let V be a torsion-free  $\mathbb{Z}$ -module and v be a vector of V. Let us note that  $\text{Lin}(\{v\})$  is free. Now we state the propositions:

- (23) Let us consider subsets  $A_1$ ,  $A_2$  of V. Suppose  $A_1$  is linearly independent and  $A_2$  is linearly independent and  $A_1 \cap A_2 = \emptyset$  and  $A_1 \cup A_2$  is linearly dependent. Then  $\text{Lin}(A_1) \cap \text{Lin}(A_2) \neq \mathbf{0}_V$ .
- (24) Let us consider a  $\mathbb{Z}$ -module V, a free submodule W of V, a subset I of V, and a vector v of V. Suppose I is linearly independent and  $\text{Lin}(I) = \Omega_W$  and  $v \in I$ . Then
  - (i)  $\Omega_W = \operatorname{Lin}(I \setminus \{v\}) + \operatorname{Lin}(\{v\})$ , and
  - (ii)  $\operatorname{Lin}(I \setminus \{v\}) \cap \operatorname{Lin}(\{v\}) = \mathbf{0}_V$ , and
  - (iii)  $\operatorname{Lin}(I \setminus \{v\})$  is free, and
  - (iv)  $Lin(\{v\})$  is free, and
  - (v)  $v \neq 0_V$ .

PROOF: v is not torsion.  $Lin(I \setminus \{v\}) \cap Lin(\{v\}) = \mathbf{0}_V$  by [16, (24)], [12, (94)], [13, (64), (23), (10)].  $\square$ 

- (25) Let us consider a  $\mathbb{Z}$ -module V, and a free submodule W of V. Then there exists a subset A of V such that
  - (i) A is subset of W and linearly independent, and
  - (ii)  $\operatorname{Lin}(A) = \Omega_W$ .
- (26) Let us consider a  $\mathbb{Z}$ -module V, and a finite rank, free submodule W of V. Then there exists a finite subset A of V such that
  - (i) A is finite subset of W and linearly independent, and
  - (ii)  $Lin(A) = \Omega_W$ , and
  - (iii)  $\overline{\overline{A}} = \operatorname{rank} W$ .

Let us consider a torsion-free  $\mathbb{Z}$ -module V and vectors  $v_1, v_2$  of V.

Let us assume that  $v_1 \neq 0_V$  and  $v_2 \neq 0_V$  and  $\text{Lin}(\{v_1\}) \cap \text{Lin}(\{v_2\}) \neq \mathbf{0}_V$ . Now we state the propositions:

- (27) There exists a vector u of V such that
  - (i)  $u \neq 0_V$ , and
  - (ii)  $Lin(\{v_1\}) \cap Lin(\{v_2\}) = Lin(\{u\}).$

PROOF: Consider x being a vector of V such that  $x \in \text{Lin}(\{v_1\}) \cap \text{Lin}(\{v_2\})$  and  $x \neq 0_V$ . Consider  $i_3$  being an element of  $\mathbb{Z}^R$  such that  $x = i_3 \cdot v_1$ . Consider  $i_4$  being an element of  $\mathbb{Z}^R$  such that  $x = i_4 \cdot v_2$ . Consider  $i_1, i_2$  being integers such that  $i_3 = (\gcd(i_3, i_4)) \cdot i_1$  and  $i_4 = (\gcd(i_3, i_4)) \cdot i_2$  and  $i_1$  and  $i_2$  are relatively prime. Reconsider  $I_1 = i_1, I_2 = i_2$  as an element of  $\mathbb{Z}^R$ .  $I_1 \cdot v_1 \in \text{Lin}(\{v_1\})$  and  $I_2 \cdot v_2 \in \text{Lin}(\{v_2\})$ . For every vector y of V such that  $y \in \text{Lin}(\{I_1 \cdot v_1\})$  holds  $y \in \text{Lin}(\{v_1\}) \cap \text{Lin}(\{v_2\})$  by (19), [12, (37)].  $\text{Lin}(\{I_1 \cdot v_1\}) = \text{Lin}(\{v_1\}) \cap \text{Lin}(\{v_2\})$  by [12, (46), (94)], (19), [12, (37), (36)].  $\square$ 

- (28) There exists a vector u of V such that
  - (i)  $u \neq 0_V$ , and
  - (ii)  $\operatorname{Lin}(\{v_1\}) + \operatorname{Lin}(\{v_2\}) = \operatorname{Lin}(\{u\}).$

PROOF: Consider x being a vector of V such that  $x \neq 0_V$  and  $\operatorname{Lin}(\{v_1\}) \cap \operatorname{Lin}(\{v_2\}) = \operatorname{Lin}(\{x\})$ . Consider  $i_1$  being an element of  $\mathbb{Z}^R$  such that  $x = i_1 \cdot v_1$ . Consider  $i_2$  being an element of  $\mathbb{Z}^R$  such that  $x = i_2 \cdot v_2$ .  $\operatorname{gcd}(|i_1|, |i_2|) = 1$  by [19, (5)], [23, (2)], [12, (1)], [3, (25)]. Consider  $j_1, j_2$  being elements of  $\mathbb{Z}^R$  such that  $i_1 \cdot j_1 + i_2 \cdot j_2 = 1$ . Reconsider  $J_1 = j_1, J_2 = j_2$  as an element of  $\mathbb{Z}^R$ . Reconsider  $u = J_1 \cdot v_2 + J_2 \cdot v_1$  as a vector of V.  $\operatorname{Lin}(\{v_1\}) + \operatorname{Lin}(\{v_2\}) = \operatorname{Lin}(\{u\})$  by (19), [12, (37), (92), (36)].  $\square$ 

- (29) Let us consider a torsion-free  $\mathbb{Z}$ -module V, a finite rank, free submodule W of V, and vectors v, u of V. Suppose  $v \neq 0_V$  and  $u \neq 0_V$  and  $W \cap \operatorname{Lin}(\{v\}) = \mathbf{0}_V$  and  $(W + \operatorname{Lin}(\{u\})) \cap \operatorname{Lin}(\{v\}) \neq \mathbf{0}_V$  and  $\operatorname{Lin}(\{u\}) \cap \operatorname{Lin}(\{v\}) = \mathbf{0}_V$ . Then there exist vectors  $w_1$ ,  $w_2$  of V such that
  - (i)  $w_1 \neq 0_V$ , and
  - (ii)  $w_2 \neq 0_V$ , and
  - (iii)  $W + \text{Lin}(\{u\}) + \text{Lin}(\{v\}) = W + \text{Lin}(\{w_1\}) + \text{Lin}(\{w_2\})$ , and
  - (iv)  $W \cap \operatorname{Lin}(\{w_1\}) \neq \mathbf{0}_V$ , and
  - (v)  $(W + \text{Lin}(\{w_1\})) \cap \text{Lin}(\{w_2\}) = \mathbf{0}_V$ , and
  - (vi)  $u, v \in \text{Lin}(\{w_1\}) + \text{Lin}(\{w_2\})$ , and
  - (vii)  $w_1, w_2 \in \text{Lin}(\{u\}) + \text{Lin}(\{v\}).$

PROOF: Consider x being a vector of V such that  $x \in (W + \operatorname{Lin}(\{u\})) \cap \operatorname{Lin}(\{v\})$  and  $x \neq 0_V$ . Consider  $x_1, x_2$  being vectors of V such that  $x_1 \in W$  and  $x_2 \in \operatorname{Lin}(\{u\})$  and  $x = x_1 + x_2$ . Consider  $i_4$  being an element of  $\mathbb{Z}^R$ 

such that  $x = i_4 \cdot v$ . Consider  $i_3$  being an element of  $\mathbb{Z}^R$  such that  $x_2 = i_3 \cdot u$ . Consider  $i_2$ ,  $i_1$  being integers such that  $i_4 = (\gcd(i_4, i_3)) \cdot i_2$  and  $i_3 =$  $(\gcd(i_4,i_3)) \cdot i_1$  and  $i_2$  and  $i_1$  are relatively prime. Consider  $J_4$ ,  $J_3$  being elements of  $\mathbb{Z}^{\mathbb{R}}$  such that  $i_2 \cdot J_4 + i_1 \cdot J_3 = 1$ . Reconsider  $j_4 = J_4$ ,  $j_3 = J_3$  as an element of  $\mathbb{Z}^{\mathbb{R}}$ . Set  $w_1 = i_2 \cdot v - i_1 \cdot u$ . Set  $w_2 = j_4 \cdot u + j_3 \cdot v$ .  $w_1 \neq 0_V$  by [29, (21)], [12, (37)], (20), [12, (94), (1)]. Reconsider  $i_6 = \gcd(i_4, i_3)$  as an element of  $\mathbb{Z}^{\mathbb{R}}$ .  $i_6 \cdot w_1 \in W$  by [12, (8)].  $W \cap \text{Lin}(\{w_1\}) \neq \mathbf{0}_V$  by [12, (37)], (20), [12, (94)], [13, (66)].  $u = i_2 \cdot w_2 - j_3 \cdot w_1$  by [12, (8)], [29, (29), (28), (15)].  $v = j_4 \cdot w_1 + i_1 \cdot w_2$  by [12, (8)], [29, (28), (15)].  $u \in \text{Lin}(\{w_1\}) +$  $\operatorname{Lin}(\{w_2\})$  by  $[12, (37)], (20), [12, (38), (92)], v \in \operatorname{Lin}(\{w_1\}) + \operatorname{Lin}(\{w_2\})$  by  $[12, (37)], (20), [12, (92)]. w_1 \in \text{Lin}(\{u\}) + \text{Lin}(\{v\}) \text{ by } [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), [12, (37)], (20), (20), [12, (37)], (20), (20), [12, (37)], (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20), (20),$ (38), (92)].  $w_2 \in \text{Lin}(\{u\}) + \text{Lin}(\{v\})$  by [12, (37)], (20), [12, (92)]. For every object x such that  $x \in W + \text{Lin}(\{u\}) + \text{Lin}(\{v\})$  holds  $x \in W + \text{Lin}(\{w_1\}) + \text{Lin}(\{v\})$  $\text{Lin}(\{w_2\})$  by [12, (92)], (19), [12, (37), (36), (96)]. For every object x such that  $x \in W + \text{Lin}(\{w_1\}) + \text{Lin}(\{w_2\})$  holds  $x \in W + \text{Lin}(\{u\}) + \text{Lin}(\{v\})$ by [12, (92)], (19), [12, (37), (36), (96)].  $w_2 \neq 0_V$  by [29, (6)], [12, (37)],  $(20), [12, (38), (94), (1)]. (W + Lin(\{w_1\})) \cap Lin(\{w_2\}) = \mathbf{0}_V \text{ by } [16, (24)],$  $[12, (94), (92)], (19). \square$ 

(30) Let us consider a torsion-free  $\mathbb{Z}$ -module V, a finite rank, free submodule W of V, and a vector v of V. Suppose  $v \neq 0_V$  and  $W \cap \text{Lin}(\{v\}) \neq \mathbf{0}_V$ . Then  $W + \text{Lin}(\{v\})$  is free.

PROOF: Define  $\mathcal{P}[\text{natural number}] \equiv \text{for every finite rank, free submodule } W \text{ of } V \text{ for every vector } v \text{ of } V \text{ such that } v \neq 0_V \text{ and } W \cap \text{Lin}(\{v\}) \neq \mathbf{0}_V \text{ and rank } W = \$_1 + 1 \text{ holds } W + \text{Lin}(\{v\}) \text{ is free. } \mathcal{P}[0] \text{ by } [22, (5)], [12, (25)], [14, (20)], [16, (22), (23)]. For every natural number <math>n$  such that  $\mathcal{P}[n] \text{ holds } \mathcal{P}[n+1] \text{ by } [16, (33)], [12, (25)], [14, (20)], [12, (97), (51), (94)].$  For every natural number n,  $\mathcal{P}[n] \text{ from } [3, \text{Sch. 2}]. \text{ Set } r_1 = \text{rank } W. r_1 - 1 \text{ is a natural number by } [22, (1)], [12, (51)], [16, (23)], [12, (107)]. \square$ 

Let V be a torsion-free  $\mathbb{Z}$ -module, v be a vector of V, and W be a finite rank, free submodule of V. Let us note that  $W + \text{Lin}(\{v\})$  is free.

Let V be a  $\mathbb{Z}$ -module and W be a finitely generated submodule of V. One can verify that  $W + \text{Lin}(\{v\})$  is finitely generated.

Let  $W_1$ ,  $W_2$  be finitely generated submodules of V. Observe that  $W_1 + W_2$  is finitely generated. Now we state the proposition:

(31) Let us consider a  $\mathbb{Z}$ -module V, a submodule W of V, submodules  $W_6$ ,  $W_8$  of W, and submodules  $W_1$ ,  $W_2$  of V. If  $W_6 = W_1$  and  $W_8 = W_2$ , then  $W_6 + W_8 = W_1 + W_2$ .

PROOF: Reconsider  $S = W_6 + W_8$  as a strict submodule of V. For every vector v of V,  $v \in S$  iff  $v \in W_1 + W_2$  by [12, (92), (28)].  $\square$ 

Let V be a torsion-free  $\mathbb{Z}$ -module and  $U_1$ ,  $U_2$  be finite rank, free submodules of V. Note that  $U_1+U_2$  is free and every finitely generated, torsion-free  $\mathbb{Z}$ -module is free.

## 2. Rank of Finite Rank Free Z-module

Now we state the propositions:

- (32) Let us consider a torsion-free  $\mathbb{Z}$ -module V, and finite rank, free submodules  $W_1$ ,  $W_2$  of V. Suppose  $W_1 \cap W_2 = \mathbf{0}_V$ . Then  $\operatorname{rank}(W_1 + W_2) = \operatorname{rank} W_1 + \operatorname{rank} W_2$ .
- (33) Let us consider a finite rank, free  $\mathbb{Z}$ -module V, and finite rank, free submodules  $W_1$ ,  $W_2$  of V. Suppose V is the direct sum of  $W_1$  and  $W_2$ . Then rank  $V = \operatorname{rank} W_1 + \operatorname{rank} W_2$ . The theorem is a consequence of (32).
- (34) Let us consider a torsion-free  $\mathbb{Z}$ -module V, and finite rank, free submodules  $W_1$ ,  $W_2$  of V. Then  $\operatorname{rank}(W_1 \cap W_2) \leqslant \operatorname{rank} W_1$ .
- (35) Let us consider a torsion-free  $\mathbb{Z}$ -module V, and a vector v of V. If  $v \neq 0_V$ , then rank  $\text{Lin}(\{v\}) = 1$ .
- (36) Let us consider a  $\mathbb{Z}$ -module V. Then rank  $\mathbf{0}_V = 0$ .
- (37) Let us consider a torsion-free  $\mathbb{Z}$ -module V, and vectors v, u of V. Suppose  $v \neq 0_V$  and  $u \neq 0_V$  and  $\text{Lin}(\{v\}) \cap \text{Lin}(\{u\}) \neq \mathbf{0}_V$ . Then  $\text{rank}(\text{Lin}(\{v\}) + \text{Lin}(\{u\})) = 1$ . The theorem is a consequence of (28).
- (38) Let us consider a torsion-free  $\mathbb{Z}$ -module V, a finite rank, free submodule W of V, and a vector v of V. Suppose  $v \neq 0_V$  and  $W \cap \text{Lin}(\{v\}) \neq \mathbf{0}_V$ . Then  $\text{rank}(W + \text{Lin}(\{v\})) = \text{rank}\,W$ .

  PROOF: Define  $\mathcal{P}[\text{natural number}] \equiv \text{for every finite rank, free submodule } W \text{ of } V \text{ for every vector } v \text{ of } V \text{ such that } v \neq 0_V \text{ and } W \cap \text{Lin}(\{v\}) \neq \mathbf{0}_V \text{ and } \text{rank}\,W = \$_1 + 1 \text{ holds } \text{rank}(W + \text{Lin}(\{v\})) = \text{rank}\,W. \,\mathcal{P}[0] \text{ by } [22, (5)], [12, (25), (26), (42)]. \text{ For every natural number } n \text{ such that } \mathcal{P}[n] \text{ holds } \mathcal{P}[n+1] \text{ by } (26), (24), [9, (31)], [2, (44)]. \text{ For every natural number } n, \mathcal{P}[n] \text{ from } [3, \text{Sch. 2}]. \text{ Set } r_1 = \text{rank}\,W. \, r_1 1 \text{ is a natural number by } [22, (1)], [12, (51)], [16, (23)], [12, (107)]. \, \square$
- (39) Let us consider a torsion-free  $\mathbb{Z}$ -module V, finite rank, free submodules  $W_1, W_2$  of V, and a vector v of V. Suppose  $W_1 \cap \text{Lin}(\{v\}) \neq \mathbf{0}_V$  and  $W_2 \cap \text{Lin}(\{v\}) \neq \mathbf{0}_V$ . Then  $(W_1 \cap W_2) \cap \text{Lin}(\{v\}) \neq \mathbf{0}_V$ . The theorem is a consequence of (19).
- (40) Let us consider  $\mathbb{Z}$ -modules V, W, a linear transformation T from V to W, and a subset A of V. Then  $T^{\circ}$  (the carrier of Lin(A))  $\subseteq$  the carrier of  $\text{Lin}(T^{\circ}A)$ .

PROOF: For every object y such that  $y \in T^{\circ}$  (the carrier of Lin(A)) holds  $y \in$  the carrier of Lin( $T^{\circ}A$ ) by [7, (65)], [13, (64)], [22, (44), (46)].  $\square$ 

Let us consider  $\mathbb{Z}$ -modules X, Y and a linear transformation L from X to Y. Now we state the propositions:

- (41)  $L(0_X) = 0_Y$ .
- (42) If L is bijective, then there exists a linear transformation K from Y to X such that  $K = L^{-1}$  and K is bijective. PROOF: Reconsider  $K = L^{-1}$  as a function from Y into X. K is additive by [7, (113)], [6, (34)]. For every element r of  $\mathbb{Z}^R$  and for every element x

of Y,  $K(r \cdot x) = r \cdot K(x)$  by [7, (113)], [6, (34)].  $\square$ 

- (43) Let us consider  $\mathbb{Z}$ -modules X, Y, a linear combination l of X, and a linear transformation L from X to Y. If L is bijective, then  $L @*l = l \cdot L^{-1}$ . PROOF: Reconsider  $K = L^{-1}$  as a function from Y into X. For every element a of Y,  $(L @*l)(a) = (l \cdot K)(a)$  by [6, (35)], [7, (35)], [6, (12), (34)].  $\square$
- (44) Let us consider  $\mathbb{Z}$ -modules X, Y, a subset  $X_0$  of X, a linear transformation L from X to Y, and a linear combination l of  $L^{\circ}X_0$ . Suppose  $X_0$  = the carrier of X and L is one-to-one. Then  $L\#l = l \cdot L$ .
- (45) Let us consider  $\mathbb{Z}$ -modules X, Y, a subset A of X, and a linear transformation L from X to Y. Suppose L is bijective. Then A is linearly independent if and only if  $L^{\circ}A$  is linearly independent. The theorem is a consequence of (42).
- (46) Let us consider  $\mathbb{Z}$ -modules X, Y, a subset A of X, and a linear transformation T from X to Y. Suppose T is bijective. Then  $T^{\circ}$  (the carrier of Lin(A)) = the carrier of  $\text{Lin}(T^{\circ}A)$ . The theorem is a consequence of (40) and (42).
- (47) Let us consider a  $\mathbb{Z}$ -module Y, and a subset A of Y. Then Lin(A) is a strict submodule of  $\Omega_Y$ .
- (48) Let us consider  $\mathbb{Z}$ -modules X, Y, and a linear transformation T from X to Y. If T is bijective, then X is free iff Y is free. The theorem is a consequence of (42).
- (49) Let us consider free  $\mathbb{Z}$ -modules X, Y, a linear transformation T from X to Y, and a subset A of X. Suppose T is bijective. Then A is a basis of X if and only if  $T^{\circ}A$  is a basis of Y. The theorem is a consequence of (42).
- (50) Let us consider free  $\mathbb{Z}$ -modules X, Y, and a linear transformation T from X to Y. If T is bijective, then X is finite rank iff Y is finite rank. The theorem is a consequence of (42).
- (51) Let us consider finite rank, free  $\mathbb{Z}$ -modules X, Y, and a linear transfor-

mation T from X to Y. If T is bijective, then rank  $X = \operatorname{rank} Y$ . PROOF: For every basis I of X, rank  $Y = \overline{I}$  by [1, (5), (33)], (49).  $\square$ 

- (52) Let us consider a  $\mathbb{Z}$ -module V, a finite rank, free submodule W of V, and an element a of  $\mathbb{Z}^R$ . If  $a \neq 0_{\mathbb{Z}^R}$ , then  $\operatorname{rank}(a \circ W) = \operatorname{rank} W$ . PROOF: Define  $\mathcal{P}[\text{element of } W, \text{object}] \equiv \$_2 = a \cdot \$_1$ . For every element x of W, there exists an element y of  $a \circ W$  such that  $\mathcal{P}[x, y]$ . Consider F being a function from W into  $a \circ W$  such that for every element x of W,  $\mathcal{P}[x, F(x)]$  from [7, Sch. 3]. For every objects  $x_1, x_2$  such that  $x_1, x_2 \in$  the carrier of W and  $F(x_1) = F(x_2)$  holds  $x_1 = x_2$  by [12, (10)]. For every object y such that  $y \in$  the carrier of  $a \circ W$  holds  $y \in$  rng F by [7, (4)]. F is additive by [12, (28)]. For every element r of  $\mathbb{Z}^R$  and for every element x of W,  $F(r \cdot x) = r \cdot F(x)$  by [12, (29)].  $\square$
- (53) Let us consider a  $\mathbb{Z}$ -module V, finite rank, free submodules  $W_1$ ,  $W_2$ ,  $W_3$  of V, and an element a of  $\mathbb{Z}^{\mathbb{R}}$ . Suppose  $a \neq 0_{\mathbb{Z}^{\mathbb{R}}}$  and  $W_3 = a \circ W_1$ . Then rank $(W_3 \cap W_2) = \operatorname{rank}(W_1 \cap W_2)$ .

  PROOF:  $W_3 \cap W_2$  is a submodule of  $W_1 \cap W_2$  by [12, (105), (42)], [13, (75)].  $a \circ (W_1 \cap W_2)$  is a submodule of  $W_3 \cap W_2$  by [12, (42), (25), (94)].  $\operatorname{rank}(W_1 \cap W_2) \leqslant \operatorname{rank}(W_3 \cap W_2)$ .  $\square$
- (54) Let us consider a torsion-free  $\mathbb{Z}$ -module V, finite rank, free submodules  $W_1, W_2, W_3$  of V, and an element a of  $\mathbb{Z}^R$ . Suppose  $a \neq 0_{\mathbb{Z}^R}$  and  $W_3 = a \circ W_1$ . Then rank $(W_3 + W_2) = \operatorname{rank}(W_1 + W_2)$ .

  PROOF: For every vector v of V such that  $v \in W_3 + W_2$  holds  $v \in W_1 + W_2$  by [12, (92)]. For every vector v of V such that  $v \in a \circ (W_1 + W_2)$  holds  $v \in W_3 + W_2$  by [12, (25), (92), (29)].  $\operatorname{rank}(W_1 + W_2) \leqslant \operatorname{rank}(W_3 + W_2)$ .

Let us consider a torsion-free  $\mathbb{Z}$ -module V, finite rank, free submodules  $W_1$ ,  $W_2$  of V, and a basis I of  $W_1$ . Now we state the propositions:

- (55) Suppose for every vector v of V such that  $v \in I$  holds  $(W_1 \cap W_2) \cap \text{Lin}(\{v\}) \neq \mathbf{0}_V$ . Then  $\text{rank}(W_1 \cap W_2) = \text{rank} W_1$ . PROOF: Define  $\mathcal{P}[\text{natural number}] \equiv \text{for every finite rank, free submodules}$   $W_1, W_2$  of V for every basis I of  $W_1$  such that for every vector v of V such that  $v \in I$  holds  $(W_1 \cap W_2) \cap \text{Lin}(\{v\}) \neq \mathbf{0}_V$  and  $\text{rank}(W_1 = \$_1 \text{ holds})$  rank  $(W_1 \cap W_2) = \text{rank} W_1$ .  $\mathcal{P}[0]$ . For every natural number n such that  $\mathcal{P}[n]$  holds  $\mathcal{P}[n+1]$  by [12, (25)], [14, (15)], [13, (56)], [14, (20)]. For every natural number n,  $\mathcal{P}[n]$  from [3, Sch. 2].  $\square$
- (56) Suppose rank $(W_1 \cap W_2)$  < rank  $W_1$ . Then there exists a vector v of V such that
  - (i)  $v \in I$ , and
  - (ii)  $(W_1 \cap W_2) \cap \text{Lin}(\{v\}) = \mathbf{0}_V$ .

- (57) Let us consider a torsion-free  $\mathbb{Z}$ -module V, finite rank, free submodules  $W_1$ ,  $W_2$  of V, and a basis I of  $W_1$ . Suppose  $\operatorname{rank}(W_1 \cap W_2) = \operatorname{rank} W_1$ . Let us consider a vector v of V. If  $v \in I$ , then  $(W_1 \cap W_2) \cap \operatorname{Lin}(\{v\}) \neq \mathbf{0}_V$ . The theorem is a consequence of (24), (32), and (35).
- (58) Let us consider a torsion-free  $\mathbb{Z}$ -module V, finite rank, free submodules  $W_1, W_2$  of V, and a basis I of  $W_1$ . Suppose for every vector v of V such that  $v \in I$  holds  $(W_1 \cap W_2) \cap \text{Lin}(\{v\}) \neq \mathbf{0}_V$ . Then  $\text{rank}(W_1 + W_2) = \text{rank} W_2$ . PROOF: Define  $\mathcal{P}[\text{natural number}] \equiv \text{for every finite rank, free submodules}$   $W_1, W_2$  of V for every basis I of  $W_1$  such that for every vector v of V such that  $v \in I$  holds  $(W_1 \cap W_2) \cap \text{Lin}(\{v\}) \neq \mathbf{0}_V$  and  $\text{rank} W_1 = \$_1$  holds  $\text{rank}(W_1 + W_2) = \text{rank} W_2$ .  $\mathcal{P}[0]$  by [22, (1)], [12, (51), (42)], [16, (22)]. For every natural number n such that  $\mathcal{P}[n]$  holds  $\mathcal{P}[n+1]$  by [12, (25)], [14, (15)], [13, (56)], [14, (20)]. For every natural number n,  $\mathcal{P}[n]$  from [3, Sch. 2].  $\square$
- (59) Let us consider a torsion-free  $\mathbb{Z}$ -module V, and finite rank, free submodules  $W_1$ ,  $W_2$  of V. Suppose rank $(W_1 \cap W_2) = \operatorname{rank} W_1$ . Then rank $(W_1 + W_2) = \operatorname{rank} W_2$ . The theorem is a consequence of (57) and (58).
- (60) Let us consider a field G, a vector space V over G, and a subset A of V. If A is linearly independent, then A is a basis of Lin(A).
- (61) Let us consider a cancelable on multiplication, finite rank, free  $\mathbb{Z}$ -module V, and finite rank, free submodules  $W_1$ ,  $W_2$  of V. Then rank $(W_1 + W_2) +$  $\operatorname{rank}(W_1 \cap W_2) = \operatorname{rank} W_1 + \operatorname{rank} W_2.$ PROOF: Consider  $I_1$  being a finite subset of V such that  $I_1$  is finite subset of  $W_1$  and linearly independent and  $\operatorname{Lin}(I_1) = \Omega_{W_1}$  and  $\overline{I_1} = \operatorname{rank} W_1$ . Consider  $I_2$  being a finite subset of V such that  $I_2$  is finite subset of  $W_2$ and linearly independent and  $\text{Lin}(I_2) = \Omega_{W_2}$  and  $\overline{I_2} = \text{rank } W_2$ . Consider  $I_4$  being a finite subset of V such that  $I_4$  is finite subset of  $W_1 + W_2$ and linearly independent and  $\operatorname{Lin}(I_4) = \Omega_{W_1 + W_2}$  and  $\overline{I_4} = \operatorname{rank}(W_1 + W_2)$  $W_2$ ). Consider  $I_3$  being a finite subset of V such that  $I_3$  is finite subset of  $W_1 \cap W_2$  and linearly independent and  $\operatorname{Lin}(I_3) = \Omega_{W_1 \cap W_2}$  and  $\overline{I_3} =$  $\operatorname{rank}(W_1 \cap W_2)$ . Set  $I_6 = (\operatorname{MorphsZQ} V)^{\circ} I_1$ . Set  $I_8 = (\operatorname{MorphsZQ} V)^{\circ} I_2$ . Set  $I_5 = (MorphsZQV)^{\circ}I_4$ . Set  $I_7 = (MorphsZQV)^{\circ}I_3$ . For every vector v of Z MQ VectSp V,  $v \in \text{Lin}(I_6) + \text{Lin}(I_8)$  iff  $v \in \text{Lin}(I_5)$  by [30, (1)], [31, (7), [16, (9), (10)]. For every vector v of Z MQ VectSp V,  $v \in Lin(I_6) \cap$  $\operatorname{Lin}(I_8)$  iff  $v \in \operatorname{Lin}(I_7)$  by  $[30, (3)], [31, (7)], [16, (9), (10)]. \square$

Let us consider a torsion-free  $\mathbb{Z}$ -module V and finite rank, free submodules  $W_1$ ,  $W_2$  of V. Now we state the propositions:

(62)  $\operatorname{rank}(W_1 + W_2) + \operatorname{rank}(W_1 \cap W_2) = \operatorname{rank} W_1 + \operatorname{rank} W_2.$ PROOF: Set  $W_5 = W_1 + W_2$ . Reconsider  $W_4 = W_1$  as a finite rank, free submodule of  $W_5$ . Reconsider  $W_7 = W_2$  as a finite rank, free submodule of  $W_5$ . rank $(W_4 + W_7) + \text{rank}(W_4 \cap W_7) = \text{rank } W_4 + \text{rank } W_7$ . For every vector v of V,  $v \in W_4 + W_7$  iff  $v \in W_1 + W_2$  by [12, (92), (25), (28)]. For every vector v of V,  $v \in W_4 \cap W_7$  iff  $v \in W_1 \cap W_2$  by [12, (94)].  $\square$ 

- (63) If  $\operatorname{rank}(W_1 + W_2) = \operatorname{rank} W_2$ , then  $\operatorname{rank}(W_1 \cap W_2) = \operatorname{rank} W_1$ . The theorem is a consequence of (62).
- (64) Let us consider a torsion-free  $\mathbb{Z}$ -module V, finite rank, free submodules  $W_1, W_2$  of V, and a vector v of V. Suppose  $v \neq 0_V$  and  $W_1 \cap \text{Lin}(\{v\}) = \mathbf{0}_V$  and  $(W_1 + W_2) \cap \text{Lin}(\{v\}) = \mathbf{0}_V$ . Then  $\text{rank}((W_1 + \text{Lin}(\{v\})) \cap W_2) = \text{rank}(W_1 \cap W_2)$ .

PROOF: For every vector u of V such that  $u \in W_1 \cap W_2$  holds  $u \in (W_1 + \operatorname{Lin}(\{v\})) \cap W_2$  by [12, (94), (93)]. There exists a vector u of V such that  $u \in (W_1 + \operatorname{Lin}(\{v\})) \cap W_2$  and  $u \notin W_1 \cap W_2$  by [12, (44)], [22, (2)]. Consider u being a vector of V such that  $u \in (W_1 + \operatorname{Lin}(\{v\})) \cap W_2$  and  $u \notin W_1 \cap W_2$ . Consider  $u_1, u_2$  being vectors of V such that  $u_1 \in W_1$  and  $u_2 \in \operatorname{Lin}(\{v\})$  and  $u = u_1 + u_2$ .  $\square$ 

Let us consider a torsion-free  $\mathbb{Z}$ -module V, a finite rank, free submodule W of V, and a vector v of V.

Let us assume that  $v \neq 0_V$  and  $W \cap \text{Lin}(\{v\}) \neq \mathbf{0}_V$ . Now we state the propositions:

- (65)  $\operatorname{rank}(W \cap \operatorname{Lin}(\{v\})) = 1.$ PROOF:  $\operatorname{rank}\operatorname{Lin}(\{v\}) = 1.$   $\operatorname{rank}(W \cap \operatorname{Lin}(\{v\})) \neq 0$  by [22, (1)], [12, (51)].
- (66) There exists a vector u of V such that
  - (i)  $u \neq 0_V$ , and
  - (ii)  $W \cap \operatorname{Lin}(\{v\}) = \operatorname{Lin}(\{u\}).$

The theorem is a consequence of (65).

- (67) Let us consider a torsion-free  $\mathbb{Z}$ -module V, a finite rank, free submodule W of V, and vectors u, v of V. Suppose  $W \cap \text{Lin}(\{v\}) = \mathbf{0}_V$  and  $(W + \text{Lin}(\{u\})) \cap \text{Lin}(\{v\}) \neq \mathbf{0}_V$ . Then  $W \cap \text{Lin}(\{u\}) = \mathbf{0}_V$ . The theorem is a consequence of (19).
- (68) Let us consider a torsion-free  $\mathbb{Z}$ -module V, finite rank, free submodules  $W_1, W_2$  of V, and a vector v of V. Suppose  $\operatorname{rank}(W_1 \cap W_2) = \operatorname{rank} W_1$  and  $(W_1 + W_2) \cap \operatorname{Lin}(\{v\}) \neq \mathbf{0}_V$ . Then  $W_2 \cap \operatorname{Lin}(\{v\}) \neq \mathbf{0}_V$ . PROOF: Define  $\mathcal{P}[\operatorname{natural number}] \equiv \text{for every finite rank, free submodules } W_1, W_2 \text{ of } V \text{ for every vector } v \text{ of } V \text{ such that } \operatorname{rank}(W_1 \cap W_2) = \operatorname{rank} W_1 \text{ and } (W_1 + W_2) \cap \operatorname{Lin}(\{v\}) \neq \mathbf{0}_V \text{ and } \operatorname{rank} W_1 = \$_1 \text{ holds } W_2 \cap \operatorname{Lin}(\{v\}) \neq \mathbf{0}_V$ .  $\mathcal{P}[0]$  by [22, (1)], [12, (51), (42)], [16, (22)]. For every natural number

- n such that  $\mathcal{P}[n]$  holds  $\mathcal{P}[n+1]$  by (26), [14, (20), (16)], (24). For every natural number n,  $\mathcal{P}[n]$  from [3, Sch. 2].  $\square$
- (69) Let us consider a torsion-free  $\mathbb{Z}$ -module V, and finite rank, free submodules  $W_1$ ,  $W_2$ ,  $W_3$  of V. Suppose  $\operatorname{rank}(W_1 + W_2) = \operatorname{rank} W_2$  and  $W_3$  is a submodule of  $W_1$ . Then  $\operatorname{rank}(W_3 + W_2) = \operatorname{rank} W_2$ .
  - PROOF: For every vector v of V such that  $v \in W_3 + W_2$  holds  $v \in W_1 + W_2$  by [12, (92), (23)].  $\square$
- (70) Let us consider a torsion-free  $\mathbb{Z}$ -module V, finite rank, free submodules  $W_1, W_2$  of V, and a basis I of  $W_1$ . Suppose  $\operatorname{rank}(W_1 + W_2) = \operatorname{rank} W_2$ . Let us consider a vector v of V. If  $v \in I$ , then  $(W_1 \cap W_2) \cap \operatorname{Lin}(\{v\}) \neq \mathbf{0}_V$ . PROOF: For every vector v of V such that  $v \in I$  holds  $(W_1 \cap W_2) \cap \operatorname{Lin}(\{v\}) \neq \mathbf{0}_V$  by [14, (15)], [13, (57), (65)], [9, (31)].  $\square$
- (71) Let us consider a torsion-free  $\mathbb{Z}$ -module V, and finite rank, free submodules  $W_1$ ,  $W_2$  of V. Suppose  $\operatorname{rank}(W_1 \cap W_2) = \operatorname{rank} W_1$ . Then there exists an element a of  $\mathbb{Z}^R$  such that  $a \circ W_1$  is a submodule of  $W_2$ .
  - PROOF: Define  $\mathcal{P}[\text{natural number}] \equiv \text{for every finite rank, free submodules} W_1, W_2 \text{ of } V \text{ such that } \text{rank}(W_1 \cap W_2) = \text{rank } W_1 \text{ and } \text{rank } W_1 = \$_1 \text{ there} \text{ exists an element } a \text{ of } \mathbb{Z}^{\mathbb{R}} \text{ such that } a \circ W_1 \text{ is a submodule of } W_2. \mathcal{P}[0] \text{ by } [22, (1)], [12, (55)], (1). \text{ For every natural number } n \text{ such that } \mathcal{P}[n] \text{ holds} \mathcal{P}[n+1] \text{ by } [12, (25)], [14, (15)], [13, (56)], [14, (20)]. \text{ For every natural number } n, \mathcal{P}[n] \text{ from } [3, \text{Sch. 2}]. \square$

## References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543–547, 1990.
- [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [11] Wolfgang Ebeling. Lattices and Codes. Advanced Lectures in Mathematics. Springer Fachmedien Wiesbaden, 2013.
- [12] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Z-modules. Formalized Mathematics, 20(1):47–59, 2012. doi:10.2478/v10037-012-0007-z.
- [13] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Quotient module of Z-module. Formalized Mathematics, 20(3):205–214, 2012. doi:10.2478/v10037-012-0024-y.

- [14] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Free Z-module. Formalized Mathematics, 20(4):275–280, 2012. doi:10.2478/v10037-012-0033-x.
- [15] Yuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, and Yasunari Shidama. Gaussian integers. Formalized Mathematics, 21(2):115–125, 2013. doi:10.2478/forma-2013-0013.
- [16] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Submodule of free Z-module. Formalized Mathematics, 21(4):273–282, 2013. doi:10.2478/forma-2013-0029.
- [17] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841–845, 1990.
- [18] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [19] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829–832, 1990.
- [20] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational coefficients. *Mathematische Annalen*, 261(4), 1982.
- [21] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a cryptographic perspective. The International Series in Engineering and Computer Science, 2002.
- [22] Kazuhisa Nakasho, Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Rank of submodule, linear transformations and linearly independent subsets of Z-module. Formalized Mathematics, 22(3):189–198, 2014. doi:10.2478/forma-2014-0021.
- [23] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [24] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001.
- [25] Christoph Schwarzweller. The ring of integers, Euclidean rings and modulo integers. Formalized Mathematics, 8(1):29–34, 1999.
- [26] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115–122, 1990.
- [27] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [28] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [29] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [30] Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics, 1(5):871–876, 1990.
- [31] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883–885, 1990.
- [32] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [33] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.
- [34] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received November 29, 2014