

Difference of Function on Vector Space over \mathbb{F}^1

Kenichi Arai Tokyo University of Science Chiba, Japan Ken Wakabayashi Shinshu University Nagano, Japan

Hiroyuki Okazaki Shinshu University Nagano, Japan

Summary. In [11], the definitions of forward difference, backward difference, and central difference as difference operations for functions on \mathbb{R} were formalized. However, the definitions of forward difference, backward difference, and central difference for functions on vector spaces over \mathbb{F} have not been formalized. In cryptology, these definitions are very important in evaluating the security of cryptographic systems [3], [10]. Differential cryptanalysis [4] that undertakes a general purpose attack against block ciphers [13] can be formalized using these definitions. In this article, we formalize the definitions of forward difference, backward difference, and central difference for functions on vector spaces over \mathbb{F} . Moreover, we formalize some facts about these definitions.

MSC: 39A70 15A03 03B35

Keywords: Mizar formalization; difference of function on vector space over \mathbb{F}

MML identifier: VSDIFF_1, version: 8.1.03 5.25.1220

The notation and terminology used in this paper have been introduced in the following articles: [12], [15], [5], [6], [16], [1], [2], [7], [19], [20], [17], [14], [18], [9], [21], and [8].

From now on C denotes a non empty set, G_1 denotes a field, V denotes a vector space over G_1 , v, u denote elements of V, W denotes a subset of V, and f, f_1 , f_2 , f_3 denote partial functions from C to V.

 $^{^1{\}rm This}$ work was supported by JSPS KAKENHI Grant Number 26730067.

Let us consider C, G_1 , and V. Let f be a partial function from C to V and r be an element of G_1 . The functor $r \cdot f$ yielding a partial function from C to V is defined by

(Def. 1) dom it = dom f and for every element c of C such that $c \in \text{dom } it$ holds $it_c = r \cdot f_c$.

Let f be a function from C into V. One can check that $r \cdot f$ is total.

Let us consider v and W. The functor $v \oplus W$ yielding a subset of V is defined by the term

(Def. 2) $\{v + u : u \in W\}.$

Let F, G be fields, V be a vector space over F, W be a vector space over G, f be a partial function from V to W, and h be an element of V. The functor Shift(f,h) yielding a partial function from V to W is defined by

(Def. 3) dom $it = -h \oplus \text{dom } f$ and for every element x of V such that $x \in -h \oplus \text{dom } f$ holds it(x) = f(x+h).

Now we state the proposition:

(1) Let us consider an element x of V and a subset A of V. If A = the carrier of V, then $x \oplus A = A$.

PROOF: For every object $y, y \in x \oplus A$ iff $y \in A$ by [17, (29), (15), (13)]. \square

Let F, G be fields, V be a vector space over F, W be a vector space over G, f be a function from V into W, and h be an element of V. One can verify that the functor Shift(f,h) yields a function from V into W and is defined by

(Def. 4) for every element x of V, it(x) = f(x + h).

Let f be a partial function from V to W. The functor $\Delta_h[f]$ yielding a partial function from V to W is defined by the term

(Def. 5) Shift(f, h) - f.

Let f be a function from V into W. Observe that $\Delta_h[f]$ is quasi total.

Let f be a partial function from V to W. The functor $\nabla_h[f]$ yielding a partial function from V to W is defined by the term

(Def. 6) f - Shift(f, -h).

Let f be a function from V into W. Let us note that $\nabla_h[f]$ is quasi total. Let f be a partial function from V to W. The functor $\delta_h[f]$ yielding a partial function from V to W is defined by the term

(Def. 7) Shift $(f, (2 \cdot 1_F)^{-1} \cdot h)$ - Shift $(f, -(2 \cdot 1_F)^{-1} \cdot h)$.

Let f be a function from V into W. One can check that $\delta_h[f]$ is quasi total. The forward difference of f and h yielding a sequence of partial functions from the carrier of V into the carrier of W is defined by

(Def. 8) it(0) = f and for every natural number n, $it(n+1) = \Delta_h[it(n)]$.

We introduce $\vec{\Delta}_h[f]$ as a synonym of the forward difference of f and h.

From now on F, G denote fields, V denotes a vector space over F, W denotes a vector space over G, f, f_1 , f_2 denote functions from V into W, x, h denote elements of V, and r, r_1 , r_2 denote elements of G.

Now we state the propositions:

- (2) Let us consider a partial function f from V to W. If $x, x + h \in \text{dom } f$, then $(\Delta_h[f])_x = f_{x+h} f_x$.
- (3) Let us consider a natural number n. Then $(\vec{\Delta}_h[f])(n)$ is a function from V into W.

PROOF: Define $\mathcal{X}[\text{natural number}] \equiv (\vec{\Delta}_h[f])(\$_1)$ is a function from V into W. For every natural number k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$. For every natural number n, $\mathcal{X}[n]$ from [1, Sch. 2]. \square

- (4) $(\Delta_h[f])_x = f_{x+h} f_x$. The theorem is a consequence of (2).
- (5) $(\nabla_h[f])_x = f_x f_{x-h}$.
- (6) $(\delta_h[f])_x = f_{x+(2\cdot 1_F)^{-1}\cdot h} f_{x-(2\cdot 1_F)^{-1}\cdot h}.$

From now on n, m, k denote natural numbers.

Now we state the propositions:

- (7) If f is constant, then for every x, $(\vec{\Delta}_h[f])(n+1)_x = 0_W$. PROOF: For every x, $f_{x+h} - f_x = 0_W$ by [17, (15)]. For every x, $(\vec{\Delta}_h[f])(n+1)_x = 0_W$ by (3), (4), [17, (15)]. \square
- (8) $(\vec{\Delta}_h[r \cdot f])(n+1)_x = r \cdot (\vec{\Delta}_h[f])(n+1)_x$. PROOF: Define $\mathcal{X}[\text{natural number}] \equiv \text{for every } x, \ (\vec{\Delta}_h[r \cdot f])(\$_1 + 1)_x = r \cdot (\vec{\Delta}_h[f])(\$_1 + 1)_x$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by (3), (4), [9, (23)]. $\mathcal{X}[0]$ by (4), [9, (23)]. For every n, $\mathcal{X}[n]$ from [1, Sch. 2]. \square
- (9) $(\vec{\Delta}_h[f_1 + f_2])(n+1)_x = (\vec{\Delta}_h[f_1])(n+1)_x + (\vec{\Delta}_h[f_2])(n+1)_x$. PROOF: Define $\mathcal{X}[\text{natural number}] \equiv \text{for every } x, \ (\vec{\Delta}_h[f_1 + f_2])(\$_1 + 1)_x = (\vec{\Delta}_h[f_1])(\$_1 + 1)_x + (\vec{\Delta}_h[f_2])(\$_1 + 1)_x$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by (3), (4), [17, (27), (28)]. $\mathcal{X}[0]$ by (4), [17, (27), (28)]. For every n, $\mathcal{X}[n]$ from [1, Sch. 2]. \square
- (10) $(\vec{\Delta}_h[f_1 f_2])(n+1)_x = (\vec{\Delta}_h[f_1])(n+1)_x (\vec{\Delta}_h[f_2])(n+1)_x.$ PROOF: Define $\mathcal{X}[\text{natural number}] \equiv \text{for every } x, (\vec{\Delta}_h[f_1 - f_2])(\$_1 + 1)_x = (\vec{\Delta}_h[f_1])(\$_1 + 1)_x - (\vec{\Delta}_h[f_2])(\$_1 + 1)_x. \, \mathcal{X}[0] \text{ by (4), [17, (29), (27)]. For every } k \text{ such that } \mathcal{X}[k] \text{ holds } \mathcal{X}[k+1] \text{ by (3), (4), [17, (29)]. For every } n, \, \mathcal{X}[n] \text{ from [1, Sch. 2].} \square$
- (11) $(\vec{\Delta}_h[r_1 \cdot f_1 + r_2 \cdot f_2])(n+1)_x = r_1 \cdot (\vec{\Delta}_h[f_1])(n+1)_x + r_2 \cdot (\vec{\Delta}_h[f_2])(n+1)_x$. The theorem is a consequence of (3), (9), and (8).
- (12) $(\vec{\Delta}_h[f])(1)_x = (\text{Shift}(f,h))_x f_x$. The theorem is a consequence of (4).

Let F, G be fields, V be a vector space over F, h be an element of V, W be a vector space over G, and f be a function from V into W. The backward difference of f and h yielding a sequence of partial functions from the carrier of V into the carrier of W is defined by

(Def. 9) it(0) = f and for every natural number n, $it(n+1) = \nabla_h[it(n)]$.

The backward difference of f and h yielding a sequence of partial functions from the carrier of V into the carrier of W is defined by

- (Def. 10) it(0) = f and for every natural number n, $it(n+1) = \nabla_h[it(n)]$. We introduce $\vec{\nabla}_h[f]$ as a synonym of the backward difference of f and h. Now we state the propositions:
 - (13) Let us consider a natural number n. Then $(\vec{\nabla}_h[f])(n)$ is a function from V into W.

 PROOF: Define $\mathcal{X}[\text{natural number}] \equiv (\vec{\nabla}_h[f])(\$_1)$ is a function from V into W. For every natural number k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$. For every natural number n, $\mathcal{X}[n]$ from [1, Sch. 2]. \square
 - (14) If f is constant, then for every x, $(\vec{\nabla}_h[f])(n+1)_x = 0_W$. PROOF: For every x, $f_x - f_{x-h} = 0_W$ by [17, (15)]. For every x, $(\vec{\nabla}_h[f])(n+1)_x = 0_W$ by (13), (5), [17, (15)]. \square
 - (15) $(\vec{\nabla}_h[r \cdot f])(n+1)_x = r \cdot (\vec{\nabla}_h[f])(n+1)_x$. PROOF: Define $\mathcal{X}[\text{natural number}] \equiv \text{for every } x, (\vec{\nabla}_h[r \cdot f])(\$_1 + 1)_x = r \cdot (\vec{\nabla}_h[f])(\$_1 + 1)_x$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by (13), (5), [9, (23)]. $\mathcal{X}[0]$ by (5), [9, (23)]. For every n, $\mathcal{X}[n]$ from [1, Sch. 2]. \square
 - (16) $(\vec{\nabla}_h[f_1+f_2])(n+1)_x = (\vec{\nabla}_h[f_1])(n+1)_x + (\vec{\nabla}_h[f_2])(n+1)_x.$ PROOF: Define $\mathcal{X}[\text{natural number}] \equiv \text{for every } x, (\vec{\nabla}_h[f_1+f_2])(\$_1+1)_x = (\vec{\nabla}_h[f_1])(\$_1+1)_x + (\vec{\nabla}_h[f_2])(\$_1+1)_x.$ For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by (13), (5), [17, (27), (28)]. $\mathcal{X}[0]$ by (5), [17, (27), (28)]. For every $n, \mathcal{X}[n]$ from [1, Sch. 2]. \square
 - (17) $(\vec{\nabla}_h[f_1 f_2])(n+1)_x = (\vec{\nabla}_h[f_1])(n+1)_x (\vec{\nabla}_h[f_2])(n+1)_x$. PROOF: Define $\mathcal{X}[\text{natural number}] \equiv \text{for every } x, (\vec{\nabla}_h[f_1 - f_2])(\$_1 + 1)_x = (\vec{\nabla}_h[f_1])(\$_1 + 1)_x - (\vec{\nabla}_h[f_2])(\$_1 + 1)_x$. $\mathcal{X}[0]$ by (5), [17, (29), (27)]. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by (13), (5), [17, (29), (27)]. For every n, $\mathcal{X}[n]$ from [1, Sch. 2]. \square
 - (18) $(\vec{\nabla}_h[r_1 \cdot f_1 + r_2 \cdot f_2])(n+1)_x = r_1 \cdot (\vec{\nabla}_h[f_1])(n+1)_x + r_2 \cdot (\vec{\nabla}_h[f_2])(n+1)_x$. The theorem is a consequence of (16) and (15).
 - (19) $(\vec{\nabla}_h[f])(1)_x = f_x (\text{Shift}(f, -h))_x$. The theorem is a consequence of (5). Let F, G be fields, V be a vector space over F, h be an element of V, W be a vector space over G, and f be a partial function from V to W. The central

difference of f and h yielding a sequence of partial functions from the carrier of V into the carrier of W is defined by

- (Def. 11) it(0) = f and for every natural number n, $it(n+1) = \delta_h[it(n)]$. We introduce $\vec{\delta}_h[f]$ as a synonym of the central difference of f and h. Now we state the propositions:
 - (20) Let us consider a natural number n. Then $(\vec{\delta}_h[f])(n)$ is a function from V into W. PROOF: Define $\mathcal{X}[\text{natural number}] \equiv (\vec{\delta}_h[f])(\$_1)$ is a function from V into

W. For every natural number k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$. For every natural number n, $\mathcal{X}[n]$ from [1, Sch. 2]. \square

- (21) If f is constant, then for every x, $(\vec{\delta}_h[f])(n+1)_x = 0_W$. PROOF: Define $\mathcal{X}[\text{natural number}] \equiv \text{for every } x$, $(\vec{\delta}_h[f])(\$_1 + 1)_x = 0_W$. For every x, $f_{x+(2\cdot 1_F)^{-1}\cdot h} - f_{x-(2\cdot 1_F)^{-1}\cdot h} = 0_W$ by [17, (15)]. $\mathcal{X}[0]$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by (20), (6), [17, (13)]. For every n, $\mathcal{X}[n]$ from [1, Sch. 2]. \square
- (22) $(\vec{\delta}_h[r \cdot f])(n+1)_x = r \cdot (\vec{\delta}_h[f])(n+1)_x$. PROOF: Define $\mathcal{X}[\text{natural number}] \equiv \text{for every } x, \ (\vec{\delta}_h[r \cdot f])(\$_1 + 1)_x = r \cdot (\vec{\delta}_h[f])(\$_1 + 1)_x$. For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by (20), (6), [9, (23)]. $\mathcal{X}[0]$ by (6), [9, (23)]. For every n, $\mathcal{X}[n]$ from [1, Sch. 2]. \square
- (23) $(\vec{\delta}_h[f_1 + f_2])(n+1)_x = (\vec{\delta}_h[f_1])(n+1)_x + (\vec{\delta}_h[f_2])(n+1)_x.$ PROOF: Define $\mathcal{X}[\text{natural number}] \equiv \text{for every } x, (\vec{\delta}_h[f_1 + f_2])(\$_1 + 1)_x = (\vec{\delta}_h[f_1])(\$_1 + 1)_x + (\vec{\delta}_h[f_2])(\$_1 + 1)_x.$ For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by (20), (6), [17, (27), (28)]. $\mathcal{X}[0]$ by (6), [17, (27), (28)]. For every n, $\mathcal{X}[n]$ from [1, Sch. 2]. \square
- (24) $(\vec{\delta}_h[f_1 f_2])(n+1)_x = (\vec{\delta}_h[f_1])(n+1)_x (\vec{\delta}_h[f_2])(n+1)_x.$ PROOF: Define $\mathcal{X}[\text{natural number}] \equiv \text{for every } x, (\vec{\delta}_h[f_1 - f_2])(\$_1 + 1)_x = (\vec{\delta}_h[f_1])(\$_1 + 1)_x - (\vec{\delta}_h[f_2])(\$_1 + 1)_x. \ \mathcal{X}[0] \text{ by (6), } [17, (29), (27), (28)]. \text{ For every } k \text{ such that } \mathcal{X}[k] \text{ holds } \mathcal{X}[k+1] \text{ by (20), (6), } [17, (29), (27), (28)].$ For every $n, \mathcal{X}[n]$ from $[1, \text{Sch. 2}]. \square$
- (25) $(\vec{\delta}_h[r_1 \cdot f_1 + r_2 \cdot f_2])(n+1)_x = r_1 \cdot (\vec{\delta}_h[f_1])(n+1)_x + r_2 \cdot (\vec{\delta}_h[f_2])(n+1)_x$. The theorem is a consequence of (23) and (22).
- (26) $(\vec{\delta}_h[f])(1)_x = (\operatorname{Shift}(f, (2 \cdot 1_F)^{-1} \cdot h))_x (\operatorname{Shift}(f, -(2 \cdot 1_F)^{-1} \cdot h))_x$. The theorem is a consequence of (6).
- (27) $(\vec{\Delta}_h[f])(n)_x = (\vec{\nabla}_h[f])(n)_{x+n\cdot h}.$ PROOF: Define $\mathcal{X}[\text{natural number}] \equiv \text{for every } x, \ (\vec{\Delta}_h[f])(\$_1)_x = (\vec{\nabla}_h[f])(\$_1)_{x+\$_1\cdot h}.$ For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by (3), [15, (13), (15)], [17, (4), (15), (28)]. $\mathcal{X}[0]$ by [17, (4)], [15, (12)]. For every n, $\mathcal{X}[n]$ from [1, Sch. 2]. \square

Let us assume that $1_F \neq -1_F$. Now we state the propositions:

- (28) $(\vec{\Delta}_h[f])(2 \cdot n)_x = (\vec{\delta}_h[f])(2 \cdot n)_{x+n \cdot h}.$ PROOF: Define $\mathcal{X}[\text{natural number}] \equiv \text{for every } x, (\vec{\Delta}_h[f])(2 \cdot \$_1)_x = (\vec{\delta}_h[f])(2 \cdot \$_1)_{x+\$_1 \cdot h}.$ For every k such that $\mathcal{X}[k]$ holds $\mathcal{X}[k+1]$ by [15, (13), (15)], [17, (27), (28), (15)]. $\mathcal{X}[0]$ by [17, (4)], [15, (12)]. For every n, $\mathcal{X}[n]$ from [1, Sch. 2]. \square
- (29) $(\vec{\Delta}_h[f])(2 \cdot n + 1)_x = (\vec{\delta}_h[f])(2 \cdot n + 1)_{x+n \cdot h + (2 \cdot 1_F)^{-1} \cdot h}.$ PROOF: $2 \cdot 1_F \neq 0_F$ by [15, (13), (15)]. $(\vec{\delta}_h[f])(2 \cdot n)$ is a function from V into W. $(\vec{\Delta}_h[f])(2 \cdot n)$ is a function from V into W. \square

ACKNOWLEDGEMENT: We sincerely thank Professor Yasunari Shidama for his helpful advices.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [3] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems. *Lecture Notes in Computer Science*, 537:2–21, 1991.
- [4] E. Biham and A. Shamir. Differential cryptanalysis of the full 16-round DES. Lecture Notes in Computer Science, 740:487–496, 1993.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [9] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [10] X. Lai. Higher order derivatives and differential cryptoanalysis. Communications and Cryptography, pages 227–233, 1994.
- [11] Bo Li, Yan Zhang, and Xiquan Liang. Difference and difference quotient. Formalized Mathematics, 14(3):115–119, 2006. doi:10.2478/v10037-006-0014-z.
- [12] Michał Muzalewski and Wojciech Skaba. From loops to Abelian multiplicative groups with zero. Formalized Mathematics, 1(5):833–840, 1990.
- [13] Hiroyuki Okazaki and Yasunari Shidama. Formalization of the data encryption standard. Formalized Mathematics, 20(2):125–146, 2012. doi:10.2478/v10037-012-0016-y.
- [14] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17–21, 1992.
- [15] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559–564, 2001.
- [16] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.

- [20] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
- [21] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, $3(2):171-175,\ 1992.$

Received September 26, 2014
