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Summary. Almost Distributive Lattices (ADL) are structures defined by
Swamy and Rao [14] as a common abstraction of some generalizations of the
Boolean algebra. In our paper, we deal with a certain further generalization
of ADLs, namely the Generalized Almost Distributive Lattices (GADL). Our
main aim was to give the formal counterpart of this structure and we succeeded
formalizing all items from the Section 3 of Rao et al.’s paper [13]. Essentially
among GADLs we can find structures which are neither ∨-commutative nor ∧-
commutative (resp., ∧-commutative); consequently not all forms of absorption
identities hold.

We characterized some necessary and sufficient conditions for commutativity
and distributivity, we also defined the class of GADLs with zero element. We
tried to use as much attributes and cluster registrations as possible, hence many
identities are expressed in terms of adjectives; also some generalizations of well-
known notions from lattice theory [11] formalized within the Mizar Mathematical
Library were proposed. Finally, some important examples from Rao’s paper were
introduced. We construct the example of GADL which is not an ADL. Mecha-
nization of proofs in this specific area could be a good starting point towards
further generalization of lattice theory [10] with the help of automated theorem
provers [8].
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following articles: [3], [15], [4], [5], [22], [16], [17], [6], [2], [19], [21], [9], [18], [1],
and [7].

1. Preliminaries

Now we state the proposition:

(1) Let us consider a non empty 1-sorted structure L and a total binary
relation R on the carrier of L. Then R is reflexive if and only if for every
element x of L, 〈〈x, x〉〉 ∈ R.
Proof: If R is reflexive, then for every element x of L, 〈〈x, x〉〉 ∈ R. For
every object x such that x ∈ fieldR holds 〈〈x, x〉〉 ∈ R by [20, (8)]. �

One can check that every non empty lattice structure which is trivial is also
distributive.

2. Almost Distributive Lattices

Let L be a non empty lattice structure. We say that L is right distributive
over t if and only if

(Def. 1) for every elements x, y, z of L, (x t y) u z = (x u z) t (y u z).
We say that L is right t-absorbing if and only if

(Def. 2) for every elements x, y of L, (x t y) u y = y.

We say that L is left t-absorbing if and only if

(Def. 3) for every elements x, y of L, (x t y) u x = x.

Let us note that every non empty lattice structure which is trivial is also
right distributive over t, right t-absorbing, left t-absorbing, and quasi-meet-
absorbing and every non empty lattice structure which is trivial is also lattice-
like. There exists a lattice which is trivial and there exists a non empty lattice
structure which is right distributive over t, distributive, right t-absorbing, left
t-absorbing, and quasi-meet-absorbing.

An almost distributive lattice is a right distributive over t, distributive,
right t-absorbing, left t-absorbing, quasi-meet-absorbing, non empty lattice
structure.

3. Properties of Almost Distributive Lattices

From now on L denotes an almost distributive lattice and x, y, z denote
elements of L.

Now we state the propositions:

(2) x t y = x if and only if x u y = y.

(3) x t x = x.
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(4) x u x = x. The theorem is a consequence of (18).

(5) (x u y) t y = y. The theorem is a consequence of (19).

(6) x t y = y if and only if x u y = x. The theorem is a consequence of (19)
and (5).

(7) x u (x t y) = x. The theorem is a consequence of (19).

(8) x t (y u x) = x. The theorem is a consequence of (19).

(9) (i) x v x t y, and

(ii) x u y v y.
The theorem is a consequence of (7) and (5).

(10) x v y if and only if x u y = x.

(11) x u (y u x) = y u x. The theorem is a consequence of (5).

(12) (xuy)tx = x if and only if xu(ytx) = x. The theorem is a consequence
of (19).

(13) (y u x) t y = y if and only if y u (x t y) = y.

(14) If (x u y) t x = x, then x u y = y u x. The theorem is a consequence of
(31).

(15) If x u (y t x) = x, then x t y = y t x. The theorem is a consequence of
(7).

(16) If there exists an element z of L such that x v z and y v z, then
x t y = y t x. The theorem is a consequence of (19), (6), and (15).

(17) If x v y, then x t y = y t x. The theorem is a consequence of (18) and
(16).

4. Generalization of Almost Distributive Lattices

Let L be a non empty lattice structure. We say that L is left distributive
over u if and only if

(Def. 4) for every elements x, y, z of L, x t (y u z) = (x t y) u (x t z).
We say that L is t-right-absorbing if and only if

(Def. 5) for every elements x, y of L, x u (y t x) = x.

Let us note that every non empty lattice structure which is trivial is also
meet-associative, distributive, left distributive over u, and left t-absorbing and
there exists a non empty lattice structure which is meet-associative, distributive,
left distributive over u, join-absorbing, left t-absorbing, and meet-absorbing.

A generalized almost distributive lattice is a meet-associative, distributive,
left distributive over u, join-absorbing, left t-absorbing, meet-absorbing, non



260 adam grabowski

empty lattice structure. From now on L denotes a generalized almost distributive
lattice and x, y, z denote elements of L.

Now we state the propositions:

(18) x t x = x.

(19) x u x = x. The theorem is a consequence of (18).

(20) x t (x u y) = x. The theorem is a consequence of (18).

(21) x t (y u x) = x. The theorem is a consequence of (18).

(22) If x u y = y, then x t y = x.

(23) x t y = y if and only if x u y = x.

5. Order Properties of the Generated Relation on GADLs

Now we state the propositions:

(24) x v x. The theorem is a consequence of (19).

(25) If x v y and y v z, then x v z.
Let L be a non empty lattice structure. The functor ¬L yielding a binary

relation is defined by the term

(Def. 6) {〈〈a, b〉〉, where a, b are elements of L : a v b}.

Now we state the proposition:

(26) (i) dom ¬L= the carrier of L, and

(ii) rng ¬L= the carrier of L, and

(iii) field ¬L= the carrier of L.
The theorem is a consequence of (24).

Let us consider L. Observe that the functor ¬L yields a binary relation on
the carrier of L. One can check that ¬L is total as a binary relation on the
carrier of L.

Now we state the proposition:

(27) 〈〈x, y〉〉 ∈¬L if and only if x v y.
Let L be a non empty lattice structure. The functor ΘL yielding a binary

relation is defined by the term

(Def. 7) {〈〈a, b〉〉, where a, b are elements of L : a u b = b}.

Now we state the proposition:

(28) (i) dom ΘL = the carrier of L, and

(ii) rng ΘL = the carrier of L, and

(iii) field ΘL = the carrier of L.
The theorem is a consequence of (19).
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Let us consider L. Let us note that the functor ΘL yields a binary relation
on the carrier of L. One can verify that ΘL is total as a binary relation on the
carrier of L.

Now we state the proposition:

(29) 〈〈x, y〉〉 ∈ ΘL if and only if x u y = y.

Let us consider L. Let us note that ¬L is reflexive and ¬L is transitive and
ΘL is reflexive and ΘL is transitive.

6. Formalization of [13] paper

Now we state the propositions:

(30) x t (x t y) = x t y.
(31) x u (y u x) = y u x.
(32) y u (x u y) = x u y.

Let us consider L. Let a, b be elements of L. We say that there exists the
least upper bound of a and b if and only if

(Def. 8) there exists an element c of L such that a v c and b v c and for every
element x of L such that a v x and b v x holds c v x.

We say that there exists the greatest lower bound of a and b if and only if

(Def. 9) there exists an element c of L such that c v a and c v b and for every
element x of L such that x v a and x v b holds x v c.

Assume there exists the least upper bound of a and b. The functor lub{a, b}
yielding an element of L is defined by

(Def. 10) a v it and b v it and for every element x of L such that a v x and b v x
holds it v x.

Assume there exists the greatest lower bound of a and b. The functor glb{a, b}
yielding an element of L is defined by

(Def. 11) it v a and it v b and for every element x of L such that x v a and x v b
holds x v it .

Now we state the propositions:

(33) (x u y) t x = x if and only if x u (y t x) = x.

(34) (x u y) t x = x if and only if (y u x) t y = y.

(35) (x u y) t x = x if and only if y u (x t y) = y.

(36) (x u y) t x = x if and only if x u y = y u x.
(37) (x u y) t x = x if and only if x t y = y t x.
(38) x v y if and only if x u y = x.

(39) x t y = y t x if and only if y v x t y.
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(40) x t y = y t x if and only if there exists z such that x v z and y v z.
(41) x t y = y t x if and only if there exists the least upper bound of x and
y and x t y = lub{x, y}.

(42) x t y = y t x if and only if x v y t x.
(43) x t y = y t x if and only if there exists the least upper bound of x and
y and y t x = lub{x, y}.

(44) If x u y v x, then there exists z such that z v x and z v y.
(45) x u y = y u x if and only if y u x v y.
(46) x u y = y u x if and only if there exists the greatest lower bound of x

and y and y u x = glb{x, y}. The theorem is a consequence of (45).

(47) x u y = y u x if and only if x u y v x.
(48) x u y = y u x if and only if there exists the greatest lower bound of x

and y and x u y = glb{x, y}.
(49) (x u y) u z = (y u x) u z. The theorem is a consequence of (31).

Let L be a generalized almost distributive lattice. The functor 〈L,¬L〉 yiel-
ding a strict relational structure is defined by the term

(Def. 12) 〈the carrier of L,¬L〉.
Note that 〈L,¬L〉 is reflexive and transitive.
Now we state the propositions:

(50) Let us consider elements a, b of L and elements x, y of 〈L,¬L〉. If a = x
and b = y, then x ¬ y iff a v b.

(51) L is join-commutative if and only if L is lattice-like and distributive.

(52) L is join-commutative if and only if 〈L,¬L〉 is directed. The theorem is
a consequence of (27).

(53) L is join-commutative if and only if L is t-right-absorbing.

(54) L is join-commutative if and only if L is meet-commutative.

(55) L is join-commutative if and only if ΘL is antisymmetric.
Proof: If L is join-commutative, then ΘL is antisymmetric by (29), [12,
(31)]. For every elements x, y of L, x u y = y u x by (49), (19), [12, (31)].
�

(56) L is join-commutative if and only if ΘL is a partial-order. The theorem
is a consequence of (55).

Let L be a join-commutative generalized almost distributive lattice. Let us
note that ΘL is antisymmetric and every generalized almost distributive lattice
which is join-commutative is also t-right-absorbing and every generalized almost
distributive lattice which is t-right-absorbing is also join-commutative. Every
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generalized almost distributive lattice which is join-commutative is also meet-
commutative and every generalized almost distributive lattice which is meet-
commutative is also join-commutative.

Now we state the propositions:

(57) Suppose for every elements a, b, c of L, (a t b) u c = (b t a) u c. Let us
consider elements a, b, c of L. Then (a t b) u c = (a u c) t (b u c). The
theorem is a consequence of (30).

(58) If for every elements a, b, c of L, (a t b) u c = (a u c) t (b u c), then for
every elements a, b of L, (a t b) u b = b. The theorem is a consequence of
(19).

(59) If for every elements a, b of L, (a t b) u b = b, then for every elements
a, b, c of L, (at b)u c = (bt a)u c. The theorem is a consequence of (31)
and (19).

7. Generalized Almost Distributive Lattices with Zero

Let us consider L. We say that L has zero if and only if

(Def. 13) there exists an element x of L such that for every element a of L, xua =
x.

One can check that every non empty generalized almost distributive lattice
which is trivial has also zero and there exists a non empty generalized almost
distributive lattice which has zero.

Let us consider L. Assume L has zero. The functor 0L yielding an element
of L is defined by

(Def. 14) for every element a of L, it u a = it .

From now on L denotes a generalized almost distributive lattice with zero
and x, y denote elements of L.

Now we state the propositions:

(60) x t 0L = x. The theorem is a consequence of (49) and (37).

(61) 0L t x = x.

(62) x u 0L = 0L. The theorem is a consequence of (49).

(63) x u y = 0L if and only if y u x = 0L. The theorem is a consequence of
(19) and (49).

(64) If x u y = 0L, then x t y = y t x. The theorem is a consequence of (63)
and (37).
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8. Constructing Examples of Almost Distributive Lattices

Let x, y be elements of {1, 2, 3}. The functors: xuGAD y and xtGAD y yiel-
ding elements of {1, 2, 3} are defined by terms

(Def. 15)


1, if y = 1 or y = 2 and (x = 1 or x = 3),
2, if x = 2 and y = 2,
3, if y = 3,

(Def. 16)


1, if x = 1 and (y = 1 or y = 3),
2, if x = 2 or x = 1 and y = 2,
3, if x = 3,

respectively. The functors: ∪GAD and ∩GAD yielding binary operations on {1, 2, 3}
are defined by conditions

(Def. 17) for every elements x, y of {1, 2, 3}, ∪GAD(x, y) = xtGAD y,
(Def. 18) for every elements x, y of {1, 2, 3}, ∩GAD(x, y) = xuGAD y,

respectively. Now we state the proposition:

(65) There exists a non empty lattice structure L such that

(i) for every element x of L, x = 1 or x = 2 or x = 3, and

(ii) for every elements x, y of L, (xu y = 1 iff y = 1 or y = 2 and (x = 1
or x = 3)) and (x u y = 2 iff x = 2 and y = 2) and (x u y = 3 iff
y = 3), and

(iii) for every elements x, y of L, (xty = 1 iff x = 1 and (y = 1 or y = 3))
and (xty = 2 iff x = 2 or x = 1 and y = 2) and (xty = 3 iff x = 3),
and

(iv) L is a generalized almost distributive lattice, and

(v) L is not an almost distributive lattice.

Let x, y be elements of {1, 2, 3}. The functors: xuGADL y and xtGADL y
yielding elements of {1, 2, 3} are defined by terms

(Def. 19)


1, if x = 1 and y = 1,
2, if y = 2 or y = 1 and (x = 2 or x = 3),
3, if y = 3,

(Def. 20)


1, if x = 1 or x = 2 and y = 1,
2, if x = 2 and (y = 2 or y = 3),
3, if x = 3,

respectively. The functors: ∪GADL and ∩GADL yielding binary operations on
{1, 2, 3} are defined by conditions

(Def. 21) for every elements x, y of {1, 2, 3}, ∪GADL(x, y) = xtGADL y,
(Def. 22) for every elements x, y of {1, 2, 3}, ∩GADL(x, y) = xuGADL y,
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respectively. Now we state the proposition:

(66) There exists a non empty lattice structure L such that

(i) for every element x of L, x = 1 or x = 2 or x = 3, and

(ii) for every elements x, y of L, (x u y = 1 iff x = 1 and y = 1) and
(x u y = 2 iff y = 2 or y = 1 and (x = 2 or x = 3)) and (x u y = 3 iff
y = 3), and

(iii) for every elements x, y of L, (xt y = 1 iff x = 1 or x = 2 and y = 1)
and (x t y = 2 iff x = 2 and (y = 2 or y = 3)) and (x t y = 3 iff
x = 3), and

(iv) L is a generalized almost distributive lattice.

Let L be a non empty lattice structure.
A sublattice structure of L is a lattice structure and is defined by

(Def. 23) the carrier of it ⊆ the carrier of L and the join operation of it = (the join
operation of L) � (the carrier of it) and the meet operation of it = (the meet
operation of L) � (the carrier of it).

Let us note that there exists a sublattice structure of L which is strict.
Let S be a subset of L. We say that S is meet-closed if and only if

(Def. 24) for every elements p, q of L such that p, q ∈ S holds p u q ∈ S.

We say that S is join-closed if and only if

(Def. 25) for every elements p, q of L such that p, q ∈ S holds p t q ∈ S.

One can verify that there exists a subset of L which is meet-closed, join-
closed, and non empty.

A closed subset of L is a meet-closed, join-closed subset of L. Let P be a
closed subset of L. The functor LLP yielding a strict sublattice structure of L is
defined by

(Def. 26) the carrier of it = P .

Let S be a non empty closed subset of L. Note that LLS is non empty and
there exists a sublattice structure of L which is non empty.

Let us consider a non empty lattice structure L, a non empty sublattice
structure S of L, elements x1, x2 of L, and elements y1, y2 of S.

Let us assume that x1 = y1 and x2 = y2. Now we state the propositions:

(67) x1 t x2 = y1 t y2.
(68) x1 u x2 = y1 u y2.

Now we state the propositions:

(69) Let us consider a non empty lattice structure L and a non empty closed
subset S of L. Then

(i) if L is meet-associative, then LLS is meet-associative, and
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(ii) if L is meet-absorbing, then LLS is meet-absorbing, and

(iii) if L is meet-commutative, then LLS is meet-commutative, and

(iv) if L is join-associative, then LLS is join-associative, and

(v) if L is join-absorbing, then LLS is join-absorbing, and

(vi) if L is join-commutative, then LLS is join-commutative, and

(vii) if L is left t-absorbing, then LLS is left t-absorbing, and

(viii) if L is distributive, then LLS is distributive, and

(ix) if L is left distributive over u, then LLS is left distributive over u.

The theorem is a consequence of (68) and (67).

(70) Let us consider an element a of L and a set X. Suppose X = {x u
a, where x is an element of L}. Then

(i) X = {x, where x is an element of L : x v a}, and

(ii) X is a closed subset of L.

(71) Let us consider an element a of L, a non empty closed subset S of L, and
an element b of LLS . Suppose b = a and S = {xua, where x is an element
of L}. Then

(i) LLS is lattice-like and distributive, and

(ii) for every element c of LLS , b t c = b and c t b = b and c v b.
The theorem is a consequence of (68), (49), (69), (51), (67), and (21).

Acknowledgement: The author wants to express his gratitude to the ano-
nymous referee for his/her work on the last section of this article; although I
did not want to add more concrete examples than the simplest ones, these ad-
ditional constructions proposed by the referee complete the Mizar article as a
faithful translation of the Rao’s results, at the same time suggesting possible
improvements of the Mizar Mathematical Library.
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[12] Eliza Niewiadomska and Adam Grabowski. Introduction to formal preference spaces.
Formalized Mathematics, 21(3):223–233, 2013. doi:10.2478/forma-2013-0024.

[13] G.C. Rao, R.K. Bandaru, and N. Rafi. Generalized almost distributive lattices – I. So-
utheast Asian Bulletin of Mathematics, 33:1175–1188, 2009.

[14] U.M. Swamy and G.C. Rao. Almost distributive lattices. Journal of Australian Mathe-
matical Society, 31:77–91, 1981.

[15] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[16] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[17] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski – Zorn lemma. Formalized
Mathematics, 1(2):387–393, 1990.

[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1

(1):73–83, 1990.
[20] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.
[21] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized
Mathematics, 1(1):85–89, 1990.

[22] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–
222, 1990.

Received September 26, 2014

http://fm.mizar.org/2005-13/pdf13-1/robbins3.pdf
http://dx.doi.org/10.2478/forma-2013-0024
http://fm.mizar.org/1990-1/pdf1-1/enumset1.pdf
http://fm.mizar.org/1990-1/pdf1-2/orders_1.pdf
http://fm.mizar.org/1990-1/pdf1-2/orders_2.pdf
http://fm.mizar.org/1990-1/pdf1-1/subset_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/relat_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/relset_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/relat_2.pdf
http://fm.mizar.org/1990-1/pdf1-1/lattices.pdf

	=0pt Formalization of Generalized Almost Distributive Lattices  By Adam Grabowski  

