Term Context

Grzegorz Bancerek
Association of Mizar Users
Białystok, Poland

Abstract

Summary. Two construction functors: simple term with a variable and compound term with an operation and argument terms and schemes of term induction are introduced. The degree of construction as a number of used operation symbols is defined. Next, the term context is investigated. An x-context is a term which includes a variable x once only. The compound term is x-context iff the argument terms include an x-context once only. The context induction is shown and used many times. As a key concept, the context substitution is introduced. Finally, the translations and endomorphisms are expressed by context substitution.

MSC: 08A35 03B35
Keywords: construction degree; context; translation; endomorphism
MML identifier: MSAFREE5, version: 8.1.03 5.23.1210
The notation and terminology used in this paper have been introduced in the following articles: [1], [2], [3], 4], [6], [43], [24], [22], [26], [53], [33], [45], [27], [28], [29], [8, [25], 9], 51], 39], 46], [47], 41], [48], [23], [10, [11], 49], [36], [37], [12], [13], [14], [15], [31], 50, [34], 555, [56, [16, [38, [54], [17], [18], 19], [20], 21], 35], and 32].

1. Preliminaries

Let Σ be a non empty non void many sorted signature, \mathfrak{A} be a non-empty algebra over Σ, and σ be a sort symbol of Σ.

An element of \mathfrak{A} from σ is an element of (the sorts of $\mathfrak{A})(\sigma)$. From now on a, b denote objects, I, J denote sets, f denotes a function, R denotes a binary relation, i, j, n denote natural numbers, m denotes an element of \mathbb{N}, Σ denotes a non empty non void many sorted signature, $\sigma, \sigma_{1}, \sigma_{2}$ denote sort symbols of Σ, o denotes an operation symbol of Σ, X denotes a non-empty many sorted set
(C) 2014 University of Białystok
indexed by the carrier of Σ, x, x_{1}, x_{2} denote elements of $X(\sigma), x_{11}$ denotes an element of $X\left(\sigma_{1}\right), T$ denotes a free in itself including Σ-terms over X algebra over Σ with all variables and inheriting operations, g denotes a translation in $\mathfrak{F}_{\Sigma}(X)$ from σ_{1} into σ_{2}, and h denotes an endomorphism of $\mathfrak{F}_{\Sigma}(X)$.

Let us consider Σ and X. Let T be an including Σ-terms over X algebra over Σ with all variables and ρ be an element of T. The functor ${ }^{@} \rho$ yielding an element of $\mathfrak{F}_{\Sigma}(X)$ is defined by the term
(Def. 1) ρ.
Let us consider T. Observe that every element of T is finite and every set which is natural-membered is also \subseteq-linear.

In the sequel ρ, ρ_{1}, ρ_{2} denote elements of T and τ, τ_{1}, τ_{2} denote elements of $\mathfrak{F}_{\Sigma}(X)$.

Let us consider Σ. Let \mathfrak{A} be an algebra over Σ. Let us consider a. We say that $a \in \mathfrak{A}$ if and only if
(Def. 2) $\quad a \in \bigcup$ (the sorts of \mathfrak{A}).
Let us consider b. We say that b is a-different if and only if
(Def. 3) $b \neq a$.
Let I be a non trivial set. Note that there exists an element of I which is a-different.

Now we state the proposition:
(1) Let us consider trees τ, τ_{1} and finite sequences p, q of elements of \mathbb{N}. Suppose
(i) $p \in \tau$, and
(ii) $q \in \tau$ with-replacement $\left(p, \tau_{1}\right)$.

Then
(iii) if $p \npreceq q$, then $q \in \tau$, and
(iv) for every finite sequence ρ of elements of \mathbb{N} such that $q=p^{\wedge} \rho$ holds $\rho \in \tau_{1}$.
Proof: If $p \npreceq q$, then $q \in \tau$ by [17, (1)].
Let R be a finite binary relation. Let us consider a. Let us note that $\operatorname{Coim}(R, a)$ is finite.

Let us consider finite sequences p, q, ρ. Now we state the propositions:
(2) If $p^{\wedge} q \preceq \rho$, then $p \preceq \rho$.
(3) If $p^{\wedge} q \preceq p^{\wedge} \rho$, then $q \preceq \rho$.

Now we state the propositions:
(4) Let us consider finite sequences p, q. Suppose $i \leqslant \operatorname{len} p$. Then p^{\wedge} q) $\upharpoonright \operatorname{Seg} i=p \upharpoonright \operatorname{Seg} i$.
(5) Let us consider finite sequences p, q, ρ. If $q \preceq p^{\wedge} \rho$, then $q \preceq p$ or $p \preceq q$. The theorem is a consequence of (4).

Let us consider Σ. We say that Σ is sufficiently rich if and only if
(Def. 4) There exists o such that $\sigma \in \operatorname{rng} \operatorname{Arity}(o)$.
We say that Σ is growable if and only if
(Def. 5) There exists τ such that height $\operatorname{dom} \tau=n$.
Let us consider n. We say that Σ is n-ary operation including if and only if
(Def. 6) There exists o such that len $\operatorname{Arity}(o)=n$.
Let us note that there exists a non empty non void many sorted signature which is n-ary operation including and there exists a non empty non void many sorted signature which is sufficiently rich.

Let us consider R. We say that R is nontrivial if and only if
(Def. 7) If $I \in \operatorname{rng} R$, then I is not trivial.
We say that R is infinite-yielding if and only if
(Def. 8) If $I \in \operatorname{rng} R$, then I is infinite.
Let us observe that every binary relation which is nontrivial is also nonempty and every binary relation which is infinite-yielding is also nontrivial.

Let I be a set. Observe that there exists a many sorted set indexed by I which is infinite-yielding and there exists a finite sequence which is infinite-yielding.

Let I be a non empty set, f be a nontrivial many sorted set indexed by I, and a be an element of I. Let us note that $f(a)$ is non trivial.

Let f be an infinite-yielding many sorted set indexed by I. Note that $f(a)$ is infinite.

Let us consider Σ, X, and o. Let us note that every element of $\operatorname{Args}\left(o, \mathfrak{F}_{\Sigma}(X)\right)$ is decorated tree yielding.

In the sequel Y denotes an infinite-yielding many sorted set indexed by the carrier of Σ, y, y_{1} denote elements of $Y(\sigma), y_{11}$ denotes an element of $Y\left(\sigma_{1}\right)$, Q denotes a free in itself including Σ-terms over Y algebra over Σ with all variables and inheriting operations, q, q_{1} denote elements of $\operatorname{Args}\left(o, \mathfrak{F}_{\Sigma}(Y)\right), u$, $u 1, u 2$ denote elements of Q, v, v_{1}, v_{2} denote elements of $\mathfrak{F}_{\Sigma}(Y), Z$ denotes a nontrivial many sorted set indexed by the carrier of Σ, z, z_{1} denote elements of $Z(\sigma), l, l 1$ denote elements of $\mathfrak{F}_{\Sigma}(Z), R$ denotes a free in itself including Σ-terms over Z algebra over Σ with all variables and inheriting operations, and $k, k 1$ denote elements of $\operatorname{Args}\left(o, \mathfrak{F}_{\Sigma}(Z)\right)$.

Let p be a finite sequence. Note that $p \frown \emptyset$ reduces to p and $\emptyset \frown p$ reduces to p.

Let I be a finite sequence-membered set. The functor $p \frown I$ yielding a set is defined by the term
(Def. 9) $\quad\left\{p^{\frown} q\right.$, where q is an element of $\left.I: q \in I\right\}$.
Let us observe that $p \frown I$ is finite sequence-membered.
Let f be a finite sequence and E be an empty set. One can verify that $f \frown E$ reduces to E.

Let p be a decorated tree yielding finite sequence. Let us consider a. Let us note that $p(a)$ is relation-like and every set which is tree-like is also finite sequence-membered.

Let p be a decorated tree yielding finite sequence. Let us consider a. One can check that $\operatorname{dom}(p(a))$ is finite sequence-membered.

Let τ, τ_{1} be trees. One can check that τ_{1} with-replacement $\left(\varepsilon_{\mathbb{N}}, \tau\right)$ reduces to τ.

Let d, d_{1} be decorated trees. One can check that d_{1} with-replacement $\left(\varepsilon_{\mathbb{N}}, d\right)$ reduces to d.

Now we state the proposition:
(6) Let us consider finite sequences ξ, w of elements of \mathbb{N}, tree yielding finite sequences p, q, and trees d, τ. Suppose
(i) $i<\operatorname{len} p$, and
(ii) $\xi=\langle i\rangle{ }^{\wedge} w$, and
(iii) $d=p(i+1)$, and
(iv) $q=p+\cdot(i+1, d$ with-replacement $(w, \tau))$, and
(v) $\xi \in \overbrace{p}$.

Then \overbrace{p} with-replacement $(\xi, \tau)=\overbrace{q}$. The theorem is a consequence of (2).

Let F be a function yielding function and f be a function. Let us consider a. Note that $F+\cdot(a, f)$ is function yielding.

Now we state the propositions:
(7) Let us consider a function yielding function F and a function f. Then $\operatorname{dom}_{\kappa}(F+\cdot(a, f))(\kappa)=\operatorname{dom}_{\kappa} F(\kappa)+\cdot(a, \operatorname{dom} f)$.
(8) Let us consider finite sequences ξ, w of elements of \mathbb{N}, decorated tree yielding finite sequences p, q, and decorated trees d, τ. Suppose
(i) $i<\operatorname{len} p$, and
(ii) $\xi=\langle i\rangle \wedge w$, and
(iii) $d=p(i+1)$, and
(iv) $q=p+\cdot(i+1, d$ with-replacement $(w, \tau))$, and
(v) $\xi \in \overbrace{\operatorname{dom}_{\kappa} p(\kappa)}$.

Then $(a$-tree $(p))$ with-replacement $(\xi, \tau)=a$-tree (q). The theorem is a consequence of (7), (6), (2), and (3).
(9) Let us consider a set a and a decorated tree yielding finite sequence w. Then $\operatorname{dom}(a-\operatorname{tree}(w))=\{\emptyset\} \cup \bigcup\{\langle i\rangle \frown \operatorname{dom}(w(i+1)): i<\operatorname{len} w\}$. Proof: Set $\mathfrak{A}=\{\langle i\rangle \frown \operatorname{dom}(w(i+1)): i<\operatorname{len} w\} . \operatorname{dom}(a$-tree $(w)) \subseteq\{\emptyset\} \cup \bigcup \mathfrak{A}$ by [20, (11)].

Let p be a decorated tree yielding finite sequence. Let us consider a and I. Note that $p(a)^{-1}(I)$ is finite sequence-membered.

Now we state the proposition:
(10) Let us consider a finite sequence-membered set I and a finite sequence p. Then $\overline{\overline{p-I}}=\overline{\bar{I}}$. Proof: Define $\mathcal{F}($ element of $I)=p^{\wedge} \$_{1}$. Consider f such that $\operatorname{dom} f=I$ and for every element q of I such that $q \in I$ holds $f(q)=\mathcal{F}(q)$ from [7, Sch. 2]. rng $f=p^{\frown} I . f$ is one-to-one by [22, (33)].

Let I be a finite finite sequence-membered set and p be a finite sequence. Note that $p \frown I$ is finite.

Now we state the proposition:
(11) Let us consider finite sequence-membered sets I, J and finite sequences p, q. Suppose
(i) $\operatorname{len} p=\operatorname{len} q$, and
(ii) $p \neq q$.

Then $p \frown I$ misses $q \frown J$.
Let us consider i. Let us note that $\overline{\bar{i}}$ reduces to i. Let us consider j. We identify $i+j$ with $i+j$.

The scheme CardUnion deals with a unary functor \mathcal{I} yielding a set and a finite sequence f of elements of \mathbb{N} and states that
(Sch. 1) $\overline{\bigcup\{\mathcal{I}(i): i<\operatorname{len} f\}}=\sum f$
provided

- for every i and j such that $i<\operatorname{len} f$ and $j<\operatorname{len} f$ and $i \neq j$ holds $\mathcal{I}(i)$ misses $\mathcal{I}(j)$ and
- for every i such that $i<\operatorname{len} f$ holds $\overline{\overline{\mathcal{I}}(i)}=f(i+1)$.

Let f be a finite sequence. Note that $\{f\}$ is finite sequence-membered.
Now we state the propositions:
(12) Let us consider finite sequences f, g. Then $f \frown\{g\}=\{f \frown g\}$.
(13) Let us consider finite sequence-membered sets I, J and a finite sequence f. Then $I \subseteq J$ if and only if $f \frown I \subseteq f \frown J$.
In the sequel c, c_{1}, c_{2} denote sets and d, d_{1} denote decorated trees.
Now we state the proposition:
(14) Leaves(the elementary tree of 0$)=\{\emptyset\}$.

Let us note that sethood property holds for trees.
Now we state the propositions:
(15) Let us consider a non empty tree yielding finite sequence p.

Then Leaves $(\overbrace{p})=\{\langle i\rangle \wedge q$, where q is a finite sequence of elements of \mathbb{N}, d is a tree : $q \in \operatorname{Leaves}(d)$ and $i+1 \in \operatorname{dom} p$ and $d=p(i+1)\}$.

Proof: Set $i_{0}=$ the element of $\operatorname{dom} p$. Leaves $(\overbrace{p}) \subseteq\left\{\langle i\rangle{ }^{\wedge} q\right.$, where q is a finite sequence of elements of \mathbb{N}, d is a tree : $q \in \operatorname{Leaves}(d)$ and $i+1 \in \operatorname{dom} p$ and $d=p(i+1)\}$ by [13, (11), (13)], [52, (25)], [17, (1)].■
(16) Leaves(the root tree of $c)=\{c\}$.
(17) $\operatorname{dom} d \subseteq \operatorname{dom} d_{c \leftarrow d_{1}}$.

Let us consider c and d. Observe that (the root tree of $c)_{c \leftarrow d}$ reduces to d. Now we state the proposition:
(18) Suppose $c_{1} \neq c_{2}$. Then (the root tree of $\left.c_{1}\right)_{c_{2} \leftarrow d}=$ the root tree of c_{1}. Proof: dom(the root tree of $\left.c_{1}\right)_{c_{2} \leftarrow d}=\operatorname{dom}\left(\right.$ the root tree of $\left.c_{1}\right)$ by [20, (3)], [17, (29)], [40, (15)].

Let f be a non empty function yielding function. Note that $\operatorname{dom}_{\kappa} f(\kappa)$ is non empty and $\operatorname{rng}_{\kappa} f(\kappa)$ is non empty.

Now we state the proposition:
(19) Let us consider non empty decorated tree yielding finite sequences p, q. Suppose
(i) $\operatorname{dom} q=\operatorname{dom} p$, and
(ii) for every i and d_{1} such that $i \in \operatorname{dom} p$ and $d_{1}=p(i)$ holds $q(i)=$ $d_{1 c \leftarrow d}$.
Then $(b \text {-tree }(p))_{c \leftarrow d}=b$-tree (q). Proof: Leaves $(\overbrace{\operatorname{dom} p(\kappa)})=\{\langle i\rangle \frown q$, where q is a finite sequence of elements of \mathbb{N}, d is a tree ${ }^{\kappa}: q \in \operatorname{Leaves}(d)$ and $i+1 \in \operatorname{dom}\left(\operatorname{dom}_{\kappa} p(\kappa)\right)$ and $\left.d=\left(\operatorname{dom}_{\kappa} p(\kappa)\right)(i+1)\right\} \cdot \operatorname{dom}(b-\operatorname{tree}(p))_{c \leftarrow d}=$ $\operatorname{dom}(b-\operatorname{tree}(q))$ by [17, (22)], [13, (11), (13)], [52, (25)].
Let us consider Σ and σ. Let \mathfrak{A} be a non empty algebra over Σ and a be an element of \mathfrak{A}. We say that a is σ-sort if and only if
(Def. 10) $\quad a \in($ the sorts of $\mathfrak{A})(\sigma)$.
Let \mathfrak{A} be a non-empty algebra over Σ. One can verify that there exists an element of \mathfrak{A} which is σ-sort and every element of (the sorts of $\mathfrak{A})(\sigma)$ is σ-sort.

Let \mathfrak{A} be a non empty algebra over Σ. Assume \mathfrak{A} is disjoint valued. Let a be an element of \mathfrak{A}. The functor the sort of a yielding a sort symbol of Σ is defined by
(Def. 11) $\quad a \in($ the sorts of $\mathfrak{A})(i t)$.
Now we state the propositions:
(20) Let us consider a disjoint valued non-empty algebra \mathfrak{A} over Σ and a σ-sort element a of \mathfrak{A}. Then the sort of $a=\sigma$.
(21) Let us consider a disjoint valued non empty algebra \mathfrak{A} over Σ. Then every element of \mathfrak{A} is (the sort of a)-sort.
(22) The sort of ${ }^{@} \rho=$ the sort of ρ.
(23) Let us consider an element ρ of (the sorts of $T)(\sigma)$. Then the sort of $\rho=\sigma$.
(24) Let us consider a term u of Σ over X. Suppose $\tau=u$. Then the sort of $\tau=$ the sort of u.

Let us consider Σ, X, o, and T. One can verify that every element of $\operatorname{Args}(o, T)$ is $(\cup($ the sorts of $T))$-valued.

Now we state the proposition:
(25) Let us consider an element q of $\operatorname{Args}(o, T)$. Suppose $i \in \operatorname{dom} q$. Then the sort of $q_{i}=\operatorname{Arity}(o)_{i}$.
Let us consider Σ. Let $\mathfrak{A}, \mathcal{B}$ be non-empty algebras over Σ and f be a many sorted function from \mathfrak{A} into \mathcal{B}. Assume \mathfrak{A} is disjoint valued. Let a be an element of \mathfrak{A}. The functor $f(a)$ yielding an element of \mathcal{B} is defined by the term
(Def. 12) $\quad f$ (the sort of $a)(a)$.
Let us consider a disjoint valued non-empty algebra \mathfrak{A} over Σ, a non-empty algebra \mathcal{B} over Σ, a many sorted function f from \mathfrak{A} into \mathcal{B}, and an element a of (the sorts of $\mathfrak{A})(\sigma)$. Now we state the propositions:
(26) $f(a)=f(\sigma)(a)$.
(27) $f(a)$ is an element of (the sorts of $\mathcal{B})(\sigma)$. The theorem is a consequence of (26).
Now we state the propositions:
(28) Let us consider disjoint valued non-empty algebras $\mathfrak{A}, \mathcal{B}$ over Σ, a many sorted function f from \mathfrak{A} into \mathcal{B}, and an element a of \mathfrak{A}. Then the sort of $f(a)=$ the sort of a.
(29) Let us consider disjoint valued non-empty algebras $\mathfrak{A}, \mathcal{B}$ over Σ, a nonempty algebra \mathcal{C} over Σ, a many sorted function f from \mathfrak{A} into \mathcal{B}, a many sorted function g from \mathcal{B} into \mathcal{C}, and an element a of \mathfrak{A}. Then $(g \circ f)(a)=$ $g(f(a))$. The theorem is a consequence of (28).
(30) Let us consider a disjoint valued non-empty algebra \mathfrak{A} over Σ, a nonempty algebra \mathcal{B} over Σ, and many sorted functions f_{1}, f_{2} from \mathfrak{A} into \mathcal{B}. If for every element a of $\mathfrak{A}, f_{1}(a)=f_{2}(a)$, then $f_{1}=f_{2}$. The theorem is a consequence of (26).
Let us consider Σ. Let $\mathfrak{A}, \mathcal{B}$ be algebras over Σ. Assume there exists a many sorted function h from \mathfrak{A} into \mathcal{B} such that h is a homomorphism of \mathfrak{A} into \mathcal{B}.

A homomorphism from \mathfrak{A} to \mathcal{B} is a many sorted function from \mathfrak{A} into \mathcal{B} and is defined by
(Def. 13) it is a homomorphism of \mathfrak{A} into \mathcal{B}.
Now we state the proposition:
(31) Let us consider a many sorted function h from $\mathfrak{F}_{\Sigma}(X)$ into T. Then h is a homomorphism from $\mathfrak{F}_{\Sigma}(X)$ to T if and only if h is a homomorphism of
$\mathfrak{F}_{\Sigma}(X)$ into T.
Let us consider Σ, X, and T. Observe that the functor the canonical homomorphism of T yields a homomorphism from $\mathfrak{F}_{\Sigma}(X)$ to T. Let us consider ρ. One can check that (the canonical homomorphism of T) ($\left.{ }^{@} \rho\right)$ reduces to ρ.

Now we state the proposition:
(32) Suppose $\tau_{2}=$ (the canonical homomorphism of $\left.T\right)\left(\tau_{1}\right)$.

Then (the canonical homomorphism of $T)\left(\tau_{1}\right)=($ the canonical homomorphism of $T)\left(\tau_{2}\right)$. The theorem is a consequence of (22) and (28).

2. Constructing Terms

In the sequel w denotes an element of $\operatorname{Args}(o, T)$ and p, p_{1} denote elements of $\operatorname{Args}\left(o, \mathfrak{F}_{\Sigma}(X)\right)$.

Let us consider Σ, X, σ, and x. The functor x-term yielding an element of (the sorts of $\left.\mathfrak{F}_{\Sigma}(X)\right)(\sigma)$ is defined by the term
(Def. 14) The root tree of $\langle x, \sigma\rangle$.
Let us consider o and p. The functor o-term p yielding an element of $\mathfrak{F}_{\Sigma}(X)$ from the result sort of o is defined by the term
(Def. 15) $\langle o$, the carrier of $\Sigma\rangle$-tree (p).
Now we state the propositions:
(33) The sort of x-term $=\sigma$.
(34) The sort of o-term $p=$ the result sort of o. The theorem is a consequence of (24).
(35) Let us consider an object i. Then $i \in(\operatorname{FreeGenerator}(T))(\sigma)$ if and only if there exists x such that $i=x$-term.
Let us consider Σ, X, σ, and x. Let us note that x-term is non compound.
Let us consider o and p. One can check that o-term p is compound and (the result sort of o)-sort.

Now we state the propositions:
(36) (i) there exists σ and there exists x such that $\tau=x$-term, or
(ii) there exists o and there exists p such that $\tau=o$-term p.
(37) If τ is not compound, then there exists σ and there exists x such that $\tau=x$-term.
(38) If τ is compound, then there exists o and there exists p such that $\tau=$ o-term p.
(39) $\quad x$-term $\neq o$-term p.

Let us consider Σ. Let X be a non-empty many sorted set indexed by the carrier of Σ. Note that there exists an element of $\mathfrak{F}_{\Sigma}(X)$ which is compound.

Let us consider X. Let e be a compound element of $\mathfrak{F}_{\Sigma}(X)$. Let us note that the functor main-constr e yields an operation symbol of Σ. One can check that the functor args e yields an element of $\operatorname{Args}\left(\right.$ main-constr $\left.e, \mathfrak{F}_{\Sigma}(X)\right)$. Now we state the propositions:
(40) $\operatorname{args}(x-$ term $)=\emptyset$.
(41) Let us consider a compound element τ of $\mathfrak{F}_{\Sigma}(X)$.

Then $\tau=$ main-constr τ-term $\operatorname{args} \tau$. The theorem is a consequence of (38).
(42) x-term $\in T$.

Let us consider Σ, X, T, σ, and x. Note that (the canonical homomorphism of $T)(x$-term $)$ reduces to x-term.

The scheme TermInd deals with a unary predicate \mathcal{P} and a non empty non void many sorted signature Σ and a non-empty many sorted set \mathcal{X} indexed by the carrier of Σ and an element τ of $\mathfrak{F}_{\Sigma}(\mathcal{X})$ and states that
(Sch. 2) $\mathcal{P}[\tau]$
provided

- for every sort symbol σ of Σ and for every element x of $\mathcal{X}(\sigma), \mathcal{P}[x$-term $]$ and
- for every operation symbol o of Σ and for every element p of $\operatorname{Args}\left(o, \mathfrak{F}_{\Sigma}(\mathcal{X})\right)$ such that for every element τ of $\mathfrak{F}_{\Sigma}(\mathcal{X})$ such that $\tau \in \operatorname{rng} p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[o$-term $p]$.

The scheme TermAlgebraInd deals with a unary predicate \mathcal{P} and a non empty non void many sorted signature Σ and a non-empty many sorted set \mathcal{X} indexed by the carrier of Σ and a free in itself including Σ-terms over \mathcal{X} algebra \mathfrak{A} over Σ with all variables and inheriting operations and an element τ of \mathfrak{A} and states that
(Sch. 3) $\mathcal{P}[\tau]$
provided

- for every sort symbol σ of Σ and for every element x of $\mathcal{X}(\sigma)$ and for every element ρ of \mathfrak{A} such that $\rho=x$-term holds $\mathcal{P}[\rho]$ and
- for every operation symbol o of Σ and for every element p of $\operatorname{Args}\left(o, \mathfrak{F}_{\Sigma}(\mathcal{X})\right)$ and for every element ρ of \mathfrak{A} such that $\rho=o$-term p and for every element τ of \mathfrak{A} such that $\tau \in \operatorname{rng} p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[\rho]$.

3. Construction Degree

Let us consider Σ, X, T, and ρ. The functors: the construction degree of ρ and height ρ yielding natural numbers are defined by terms,
(Def. 16) $\overline{\overline{\rho^{-1}(\alpha \times\{\beta\})}}$, where α is the carrier' of Σ and β is the carrier of Σ,
(Def. 17) height $\operatorname{dom} \rho$,
respectively. We introduce $\operatorname{deg} \rho$ as a synonym of the construction degree of ρ.
Now we state the propositions:
(43) $\operatorname{deg}{ }^{@} \rho=\operatorname{deg} \rho$.
(44) height ${ }^{@} \rho=$ height ρ.
(45) $\operatorname{height}(x$-term $)=0$.

One can verify that every set which is natural-membered is also ordinalmembered and finite-membered.

Let I be a finite natural-membered set. One can verify that $\cup I$ is natural.
Let I be a non empty finite natural-membered set. We identify $\cup I$ with $\max I$. Now we state the propositions:
(i) $\left\{\right.$ height $\left.\tau_{1}: \tau_{1} \in \operatorname{rng} p\right\}$ is natural-membered and finite, and
(ii) $\bigcup\{$ height $\tau: \tau \in \operatorname{rng} p\}$ is a natural number.

Proof: Set $I=\{$ height $\tau: \tau \in \operatorname{rng} p\}$. I is natural-membered. Define $\mathcal{F}\left(\right.$ element of $\left.\mathfrak{F}_{\Sigma}(X)\right)=\operatorname{height} \$_{1} .\left\{\mathcal{F}\left(\tau_{1}\right): \tau_{1} \in \operatorname{rng} p\right\}$ is finite from [44, Sch. 21].
(47) $\operatorname{Suppose} \operatorname{Arity}(o) \neq \emptyset$ and $n=\bigcup\left\{\right.$ height $\left.\tau_{1}: \tau_{1} \in \operatorname{rng} p\right\}$.

Then height $(o-\operatorname{term} p)=n+1$. Proof: Set $I=\left\{\right.$ height $\left.\tau_{1}: \tau_{1} \in \operatorname{rng} p\right\}$. I is natural-membered. Define $\mathcal{F}\left(\right.$ element of $\left.\mathfrak{F}_{\Sigma}(X)\right)=\operatorname{height} \$_{1} .\left\{\mathcal{F}\left(\tau_{1}\right)\right.$ $\left.: \tau_{1} \in \operatorname{rng} p\right\}$ is finite from [44, Sch. 21].
(48) If $\operatorname{Arity}(o)=\emptyset$, then $\operatorname{height}(o-\operatorname{term} p)=0$.
(49) $\operatorname{deg}(x-$ term $)=0$.
(50) $\operatorname{deg} \tau \neq 0$ if and only if there exists o and there exists p such that $\tau=o$-term p. Proof: Define $\mathcal{P}\left[\right.$ element of $\left.\mathfrak{F}_{\Sigma}(X)\right] \equiv \operatorname{deg} \$_{1} \neq 0$ iff there exists o and there exists p such that $\$_{1}=o$-term $p . \mathcal{P}[x$-term $] . \mathcal{P}[\tau]$ from TermInd.
Let τ be a decorated tree. Let us consider I. Observe that $\tau^{-1}(I)$ is finite sequence-membered.

Let us consider a. Let J, K be sets. Let us observe that the functor $\operatorname{IFIN}(a, I$, $J, K)$ yields a set. Now we state the propositions:
(51) Suppose $J=\langle o$, the carrier of $\Sigma\rangle$. Then $(o-\operatorname{term} p)^{-1}(I)=\operatorname{IFIN}(J, I,\{\emptyset\}$, Ø) $\cup \bigcup\left\{\langle i\rangle \frown p(i+1)^{-1}(I): i<\operatorname{len} p\right\}$. Proof: Set $X=\left\{\langle i\rangle \frown p(i+1)^{-1}(I)\right.$ $: i<\operatorname{len} p\} .(o-\operatorname{term} p)^{-1}(I) \subseteq \operatorname{IFIN}(J, I,\{\emptyset\}, \emptyset) \cup \cup X$ by [20, (10)], [13, (11), (13)], [52, (25)].
(52) Suppose there exists a finite sequence f of elements of \mathbb{N} such that $i=\sum f$ and $\operatorname{dom} f=\operatorname{dom} \operatorname{Arity}(o)$ and for every i and τ such that $i \in$ dom $\operatorname{Arity}(o)$ and $\tau=p(i)$ holds $f(i)=\operatorname{deg} \tau$. Then $\operatorname{deg}(o-\operatorname{term} p)=i+1$. Proof: Set $\tau=o$-term p. Set $I=$ (the carrier' of $\Sigma) \times\{$ the carrier of $\Sigma\}$. Set $\mathfrak{A}=\left\{\langle i\rangle{ }^{\wedge} p(i+1)^{-1}(I): i<\operatorname{len} p\right\} . \emptyset \notin \bigcup \mathfrak{A} . \tau^{-1}(I)=\{\emptyset\} \cup \bigcup \mathfrak{A}$. Define \mathcal{J} (natural number) $=\left\langle \$_{1}\right\rangle \frown p\left(\$_{1}+1\right)^{-1}(I)$. For every i and j such that $i<\operatorname{len} f$ and $j<\operatorname{len} f$ and $i \neq j$ holds $\mathcal{J}(i)$ misses $\mathcal{J}(j)$ by [22, (40)], (11). For every i such that $i<\operatorname{len} f$ holds $\overline{\overline{\mathcal{J}}(i)}=f(i+1)$ by [13, (12), (13)], [52, (25)], [12, (2)]. $\overline{\bar{\bigcup}\{\mathcal{J}(i): i<\operatorname{len} f\}}=\sum f$ from CardUnion.

Let us consider Σ, X, T, and i. The functor $T \operatorname{deg}_{\leqslant} i$ yielding a subset of T is defined by the term
(Def. 18) $\quad\{\rho: \operatorname{deg} \rho \leqslant i\}$.
The functor T height $_{\leqslant} i$ yielding a subset of T is defined by the term
(Def. 19) $\{\tau: \tau \in T$ and height $\tau \leqslant i\}$.
Now we state the propositions:
(53) $\rho \in T \operatorname{deg}_{\leqslant} i$ if and only if $\operatorname{deg} \rho \leqslant i$.
(54) $T \operatorname{deg}_{\leq} 0=$ the set of all x-term. Proof: $T \operatorname{deg}_{\leq} 0 \subseteq$ the set of all x-term by [10, (39)], (36), (50). Consider σ, x such that $a=x$-term. $\operatorname{deg}(x$-term $)=0 \leqslant 0$ and x-term $\in T$. Reconsider $\rho=x$-term as an element of $T . \operatorname{deg} \rho=\operatorname{deg}{ }^{@} \rho=0$.
(55) T height $_{\leqslant} 0=$ the set of all x-term $\cup\{o$-term $p: o$-term $p \in T$ and $\operatorname{Arity}(o)=\emptyset\}$. The theorem is a consequence of (36), (46), (47), (42), and (48).
(56) $T \operatorname{deg}_{\leqslant} 0=\bigcup$ FreeGenerator (T). Proof: $T \operatorname{deg}_{\leqslant} 0=$ the set of all x-term. $T \operatorname{deg}_{\leqslant} 0 \subseteq \cup$ FreeGenerator (T) by [5, (2)]. Consider b such that $b \in$ dom FreeGenerator (T) and $a \in($ FreeGenerator $(T))(b)$. Consider y being a set such that $y \in X(b)$ and $a=$ the root tree of $\langle y, b\rangle$.
(57) $\rho \in T$ height $_{\leqslant} i$ if and only if height $\rho \leqslant i$.

Let us consider Σ, X, T, and i. One can check that $T \operatorname{deg}_{\leqslant} i$ is non empty and T height $\leqslant i$ is non empty.

Let us assume that $i \leqslant j$. Now we state the propositions:

$$
\begin{equation*}
T \operatorname{deg}_{\leqslant} i \subseteq T \operatorname{deg}_{\leqslant} j \tag{58}
\end{equation*}
$$

$$
\begin{equation*}
T \text { height }_{\leqslant} i \subseteq T \text { height }_{\leqslant} j \tag{59}
\end{equation*}
$$

Now we state the propositions:
(60) $T \operatorname{deg}_{\leqslant}(i+1)=\left(T \operatorname{deg}_{\leqslant} 0\right) \cup\{o-\operatorname{term} p$: there exists a finite sequence f of elements of \mathbb{N} such that $i \geqslant \sum f$ and $\operatorname{dom} f=\operatorname{dom} \operatorname{Arity}(o)$ and for every i and τ such that $i \in \operatorname{dom} \operatorname{Arity}(o)$ and $\tau=p(i)$ holds $f(i)=$ $\operatorname{deg} \tau\} \cap \bigcup($ the sorts of $T)$. Proof: Set $I=\{o-\operatorname{term} p$: there exists a finite sequence f of elements of \mathbb{N} such that $i \geqslant \sum f$ and $\operatorname{dom} f=$
dom $\operatorname{Arity}(o)$ and for every i and τ such that $i \in \operatorname{dom} \operatorname{Arity}(o)$ and $\tau=$ $p(i)$ holds $f(i)=\operatorname{deg} \tau\} . T \operatorname{deg}_{\leqslant}(i+1) \subseteq\left(T \operatorname{deg}_{\leqslant} 0\right) \cup I \cap \cup($ the sorts of $T)$ by [10, (39)], (36), (54), [36, (6)]. $T \operatorname{deg}_{\leqslant} 0 \subseteq T \operatorname{deg}_{\leqslant}(i+1) . I \cap \bigcup$ (the sorts of $T) \subseteq T \operatorname{deg}_{\leqslant}(i+1)$.
(61) T height $_{\leqslant}(i+1)=\left(T\right.$ height $\left._{\leqslant} 0\right) \cup\{o$-term $p: \bigcup\{$ height $\tau: \tau \in \operatorname{rng} p\} \subseteq$ $i\} \cap \bigcup($ the sorts of $T)$. Proof: Set $I=\{o$-term $p: \bigcup\{$ height $\tau: \tau \in$ $\operatorname{rng} p\} \subseteq i\} . T$ height $_{\leqslant}(i+1) \subseteq\left(T\right.$ height $\left._{\leqslant} 0\right) \cup I \cap \bigcup($ the sorts of $T)$ by (36), (55), (46), (47). T height $_{\leqslant} 0 \subseteq T$ height $_{\leqslant}(i+1) . I \cap \bigcup$ (the sorts of $T) \subseteq T$ height $_{\leqslant}(i+1)$ by (46), (47), [13, (39)], (48).
(62) $\operatorname{deg} \tau \geqslant$ height τ. Proof: Define \mathcal{P} [element of $\left.\mathfrak{F}_{\Sigma}(X)\right] \equiv \operatorname{deg} \$_{1} \geqslant$ height $\$_{1}$. For every operation symbol o of Σ and for every element p of $\operatorname{Args}\left(o, \mathfrak{F}_{\Sigma}(X)\right)$ such that for every element τ of $\mathfrak{F}_{\Sigma}(X)$ such that $\tau \in \operatorname{rng} p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[o$-term $p]$ by (48), [36, (6)], (46), [42, (9)]. $\mathcal{P}[\tau]$ from TermInd.
(63) $\cup($ the sorts of $T)=\bigcup\left\{T \operatorname{deg}_{\leqslant} i\right.$: not contradiction $\}$.
(64) $\bigcup($ the sorts of $T)=\bigcup\left\{T\right.$ height $_{\leqslant} i$: not contradiction $\}$. The theorem is a consequence of (57).
(65) $T \operatorname{deg}_{\leqslant} i \subseteq \mathfrak{F}_{\Sigma}(X) \operatorname{deg}_{\leqslant} i$. Proof: Define \mathcal{P} [natural number] $\equiv T \operatorname{deg}_{\leqslant} \$_{1}$ $\subseteq \mathfrak{F}_{\Sigma}(X) \operatorname{deg}_{\leqslant} \$_{1} . T \operatorname{deg}_{\leqslant} 0=\bigcup$ FreeGenerator (T) and $\mathfrak{F}_{\Sigma}(X) \operatorname{deg}_{\leqslant} 0=$ \cup FreeGenerator $\left(\mathfrak{F}_{\Sigma}(X)\right)$. For every $i, \mathcal{P}[i]$ from [13, Sch. 2].

4. Context

Let us consider Σ, X, T, σ, x, and ρ. We say that ρ is x-context if and only if
(Def. 20) $\overline{\overline{\operatorname{Coim}(\rho,\langle x, \sigma\rangle)}}=1$.
We say that ρ is x-omitting if and only if
(Def. 21) $\operatorname{Coim}(\rho,\langle x, \sigma\rangle)=\emptyset$.
The functor vf ρ yielding a set is defined by the term
(Def. 22) $\pi_{1}(\operatorname{rng} \rho \cap(\cup X \times($ the carrier of $\Sigma)))$.
Now we state the propositions:
(66) vf $\rho=\bigcup \operatorname{Var}_{X} \rho$. Proof: vf $\rho \subseteq \cup \operatorname{Var}_{X} \rho$ by [32, (87)], [5, (2)], [10, (44)], [23, (9)].
(67) $\operatorname{vf}(x$-term $)=\{x\}$.
(68) $\operatorname{vf}(o-\operatorname{term} p)=\bigcup\{\operatorname{vf} \tau: \tau \in \operatorname{rng} p\}$. Proof: $\operatorname{vf}(o-\operatorname{term} p) \subseteq \bigcup\{\operatorname{vf} \tau$ $: \tau \in \operatorname{rng} p\}$ by (66), [5, (2)], [23, (13)], [55, (167)].
Let us consider Σ, X, T, and ρ. Note that vf ρ is finite.
Now we state the proposition:
(69) If $x \notin \mathrm{vf} \rho$, then ρ is x-omitting.

Let us consider Σ, X, σ, and τ. We say that τ is σ-context if and only if
(Def. 23) There exists x such that τ is x-context.
Let us consider x. Let us observe that every element of $\mathfrak{F}_{\Sigma}(X)$ which is x-context is also σ-context.

One can verify that x-term is x-context.
One can check that there exists an element of $\mathfrak{F}_{\Sigma}(X)$ which is x-context and non compound and every element of $\mathfrak{F}_{\Sigma}(X)$ which is x-omitting is also non x-context.

Now we state the proposition:
(70) Let us consider sort symbols σ_{1}, σ_{2} of Σ, an element x_{1} of $X\left(\sigma_{1}\right)$, and an element x_{2} of $X\left(\sigma_{2}\right)$. Then $\sigma_{1} \neq \sigma_{2}$ or $x_{1} \neq x_{2}$ if and only if x_{1}-term is x_{2}-omitting.
Let us consider $\Sigma, \sigma, \sigma_{1}, Z$, and z. Let z^{\prime} be a z-different element of $Z\left(\sigma_{1}\right)$. One can check that z^{\prime}-term is z-omitting.

One can check that there exists an element of $\mathfrak{F}_{\Sigma}(Z)$ which is z-omitting.
Let us consider σ_{1}. Let z_{1} be a z-different element of $Z\left(\sigma_{1}\right)$. Observe that there exists an element of $\mathfrak{F}_{\Sigma}(Z)$ which is z-omitting and z_{1}-context.

Let us consider X. Let us consider x.
A context of x is an x-context element of $\mathfrak{F}_{\Sigma}(X)$. Now we state the proposition:
(71) Let us consider a sort symbol ρ of Σ and an element y of $X(\rho)$. Then x-term is a context of y if and only if $\rho=\sigma$ and $x=y$.
Let us consider Σ, X, and σ.
A context of σ and X is a σ-context element of $\mathfrak{F}_{\Sigma}(X)$. In the sequel \mathcal{C} denotes a context of x, \mathcal{C}_{1} denotes a context of y, \mathcal{C}^{\prime} denotes a context of z, \mathcal{C}_{11} denotes a context of x_{11}, \mathcal{C}_{12} denotes a context of y_{11}, and D denotes a context of σ and X.

Now we state the propositions:
(72) \mathcal{C} is a context of σ and X.
(73) $x \in \operatorname{vf} \mathcal{C}$.

Let us consider Σ, o, σ, X, x, and p. We say that p is x-context including once only if and only if
(Def. 24) There exists i such that
(i) $i \in \operatorname{dom} p$, and
(ii) $p(i)$ is a context of x, and
(iii) for every j and τ such that $j \in \operatorname{dom} p$ and $j \neq i$ and $\tau=p(j)$ holds τ is x-omitting.

Let us note that every element of $\operatorname{Args}\left(o, \mathfrak{F}_{\Sigma}(X)\right)$ which is x-context including once only is also non empty.

Now we state the propositions:
(74) p is x-context including once only if and only if o-term p is a context of x. Proof: Set $I=\{\langle x, \sigma\rangle\}$. Set $k=p .(o \text {-term } k)^{-1}(I)=\emptyset \cup \bigcup\{\langle i\rangle \prec k(i+$ $1)^{-1}(I): i<$ len $\left.k\right\}$. If k is x-context including once only, then o-term k is a context of x by [3, (42)], [52, (25)], [13, (10), (13), (11)].
(75) for every i such that $i \in \operatorname{dom} p$ holds p_{i} is x-omitting if and only if o-term p is x-omitting. The theorem is a consequence of (51) and (13).
(76) for every τ such that $\tau \in \operatorname{rng} p$ holds τ is x-omitting if and only if o-term p is x-omitting. The theorem is a consequence of (75).
Let us consider Σ, σ, and o. We say that o is σ-dependent if and only if (Def. 25) $\sigma \in \operatorname{rng} \operatorname{Arity}(o)$.

Let Σ be a sufficiently rich non void non empty many sorted signature and σ be a sort symbol of Σ. Let us note that there exists an operation symbol of Σ which is σ-dependent.

In the sequel Σ^{\prime} denotes a sufficiently rich non empty non void many sorted signature, σ^{\prime} denotes a sort symbol of $\Sigma^{\prime}, o^{\prime}$ denotes a σ^{\prime}-dependent operation symbol of $\Sigma^{\prime}, X^{\prime}$ denotes a nontrivial many sorted set indexed by the carrier of Σ^{\prime}, and x^{\prime} denotes an element of $X^{\prime}\left(\sigma^{\prime}\right)$.

Let us consider $\Sigma^{\prime}, \sigma^{\prime}, o^{\prime}, X^{\prime}$, and x^{\prime}. Let us observe that there exists an element of $\operatorname{Args}\left(o^{\prime}, \mathfrak{F}_{\Sigma^{\prime}}\left(X^{\prime}\right)\right)$ which is x^{\prime}-context including once only.

Let p^{\prime} be an x^{\prime}-context including once only element of $\operatorname{Args}\left(o^{\prime}, \mathfrak{F}_{\Sigma^{\prime}}\left(X^{\prime}\right)\right)$. One can check that o^{\prime}-term p^{\prime} is x^{\prime}-context.

Let us consider Σ, o, σ, X, x, and p. Assume p is x-context including once only. The functor the x-context position in p yielding a natural number is defined by
(Def. 26) $p(i t)$ is a context of x.
The functor the x-context in p yielding a context of x is defined by
(Def. 27) it $\in \operatorname{rng} p$.
Now we state the propositions:
(77) Suppose p is x-context including once only. Then
(i) the x-context position in $p \in \operatorname{dom} p$, and
(ii) the x-context in $p=p$ (the x-context position in p).
(78) Suppose p is x-context including once only and the x-context position in $p \neq i \in \operatorname{dom} p$. Then p_{i} is x-omitting.
Let us assume that p is x-context including once only. Now we state the propositions:
(79) p yields the x-context in p just once. The theorem is a consequence of (77).
(80) $\quad p \leftarrow$ (the x-context in $p)=$ the x-context position in p. The theorem is a consequence of (79).

Now we state the proposition:
(i) $\mathcal{C}=x$-term, or
(ii) there exists o and there exists p such that p is x-context including once only and $\mathcal{C}=o$-term p.
The theorem is a consequence of (36), (71), and (74).
Let us consider $\Sigma^{\prime}, X^{\prime}, \sigma^{\prime}$, and x^{\prime}. One can verify that there exists an element of $\mathfrak{F}_{\Sigma^{\prime}}\left(X^{\prime}\right)$ which is x^{\prime}-context and compound.

The scheme ContextInd deals with a unary predicate \mathcal{P} and a non empty non void many sorted signature Σ and a sort symbol σ of Σ and a non-empty many sorted set \mathcal{X} indexed by the carrier of Σ and an element x of $\mathcal{X}(\sigma)$ and a context \mathcal{C} of x and states that
(Sch. 4) $\mathcal{P}[\mathcal{C}]$
provided

- $\mathcal{P}[x$-term $]$ and
- for every operation symbol o of Σ and for every element w of $\operatorname{Args}\left(o, \mathfrak{F}_{\Sigma}(\mathcal{X})\right)$ such that w is x-context including once only holds if \mathcal{P} [the x-context in $w]$, then for every context \mathcal{C} of x such that $\mathcal{C}=o$-term w holds $\mathcal{P}[\mathcal{C}]$.

Now we state the propositions:
(82) If τ is x-omitting, then $\tau_{\langle x, \sigma\rangle_{\leftarrow \tau_{1}}}=\tau$.
(83) Suppose the sort of $\tau_{1}=\sigma$. Then $\tau_{\langle x, \sigma\rangle_{\leftarrow} \in} \in$ (the sorts of $\mathfrak{F}_{\Sigma}(X)$) (the sort of τ). Proof: Define \mathcal{P} [element of $\left.\mathfrak{F}_{\Sigma}(X)\right] \equiv \$_{1\langle x, \sigma\rangle_{\leftarrow \tau_{1}} \in \text { (the sorts }}$ of $\mathfrak{F}_{\Sigma}(X)$)(the sort of $\left.\$_{1}\right)$. For every σ_{1} and for every element y of $X\left(\sigma_{1}\right)$, $\mathcal{P}[y$-term $]$. For every o and p such that for every τ_{2} such that $\tau_{2} \in \operatorname{rng} p$ holds $\mathcal{P}\left[\tau_{2}\right]$ holds $\mathcal{P}[o$-term $p]$ by [20, (20)], (18), [52, (29)], [12, (2)]. $\mathcal{P}[\tau]$ from TermInd.
Let us consider $\Sigma, X, \sigma, x, \mathcal{C}$, and τ. Assume the sort of $\tau=\sigma$. The functor $\mathcal{C}[\tau]$ yielding an element of (the sorts of $\left.\mathfrak{F}_{\Sigma}(X)\right)$ (the sort of \mathcal{C}) is defined by the term
(Def. 28) $\mathcal{C}_{\langle x, \sigma\rangle \leftarrow \tau}$.
Now we state the proposition:
(84) If the sort of $\tau=\sigma$, then x-term $[\tau]=\tau$.

Let us consider Σ, X, σ, x, and \mathcal{C}. Observe that $\mathcal{C}[x$-term $]$ reduces to \mathcal{C}.
Now we state the propositions:
(85) Let us consider an element w of $\operatorname{Args}\left(o, \mathfrak{F}_{\Sigma}(Z)\right)$ and an element τ of $\mathfrak{F}_{\Sigma}(Z)$. Suppose
(i) w is z-context including once only, and
(ii) the sort of $\tau=\operatorname{Arity}(o)$ (the z-context position in w).

Then $w+\cdot($ the z-context position in $w, \tau) \in \operatorname{Args}\left(o, \mathfrak{F}_{\Sigma}(Z)\right)$.
(86) Suppose the sort of $\mathcal{C}^{\prime}=\sigma_{1}$. Let us consider a z-different element z_{1} of $Z\left(\sigma_{1}\right)$ and a z-omitting context \mathcal{C}_{1} of z_{1}. Then $\mathcal{C}_{1}\left[\mathcal{C}^{\prime}\right]$ is a context of z. Proof: Define \mathcal{P} [element of $\left.\mathfrak{F}_{\Sigma}(Z)\right] \equiv$ if $\$_{1}$ is z-omitting, then $\$_{1}\left\langle z_{1}, \sigma_{1}\right\rangle \leftarrow \mathcal{C}^{\prime}$ is a context of z. For every o and k such that k is z_{1}-context including once only holds if \mathcal{P} [the z_{1}-context in k], then for every context \mathcal{C} of z_{1} such that $\mathcal{C}=o$-term k holds $\mathcal{P}[\mathcal{C}] . \mathcal{P}\left[\mathcal{C}_{1}\right]$ from ContextInd.
(87) Let us consider elements w, p of $\operatorname{Args}\left(o, \mathfrak{F}_{\Sigma}(Z)\right)$ and an element τ of $\mathfrak{F}_{\Sigma}(Z)$. Suppose
(i) w is z-context including once only, and
(ii) $\mathcal{C}^{\prime}=o$-term w, and
(iii) $p=w+\cdot($ the z-context position in w, (the z-context in $w)[\tau]$), and
(iv) the sort of $\tau=\sigma$.

Then $\mathcal{C}^{\prime}[\tau]=o$-term p. The theorem is a consequence of (77), (78), (82), and (19).
(88) The sort of $\mathcal{C}[\tau]=$ the sort of \mathcal{C}.
(89) If $\tau(a)=\langle x, \sigma\rangle$, then $a \in \operatorname{Leaves}(\operatorname{dom} \tau)$. The theorem is a consequence of (36).
(90) Let us consider a sort symbol σ_{0} of Σ and an element x_{0} of $X\left(\sigma_{0}\right)$. Suppose
(i) the sort of $\tau=\sigma$, and
(ii) \mathcal{C} is x_{0}-omitting, and
(iii) τ is x_{0}-omitting.

Then $\mathcal{C}[\tau]$ is x_{0}-omitting. The theorem is a consequence of (89).
(91) Suppose p is x-context including once only. Then the sort of the x-context in $p=\operatorname{Arity}(o)$ (the x-context position in p). The theorem is a consequence of (77).
(92) Let us consider a disjoint valued non-empty algebra \mathfrak{A} over Σ, a nonempty algebra \mathcal{B} over Σ, an operation symbol o of Σ, elements p, q of $\operatorname{Args}(o, \mathfrak{A})$, a many sorted function h from \mathfrak{A} into \mathcal{B}, an element a of \mathfrak{A}, and i. Suppose
(i) $i \in \operatorname{dom} p$, and
(ii) $q=p+\cdot(i, a)$.

Then $h \# q=h \# p+\cdot(i, h(a))$.
(93) Let us consider an element τ of $\mathfrak{F}_{\Sigma}(Z)$. Suppose the sort of $\tau=\sigma$. Then (the canonical homomorphism of $R)\left(\mathcal{C}^{\prime}[\tau]\right)=($ the canonical homomorphism of $R)\left(\mathcal{C}^{\prime}\left[{ }^{@}((\right.\right.$ the canonical homomorphism of $\left.\left.R)(\tau))\right]\right)$. Proof: Set $H=$
the canonical homomorphism of R. Define $\mathcal{P}[$ context of $z] \equiv H\left(\$_{1}[\tau]\right)=$ $H\left(\$_{1}\left[{ }^{@}(H(\tau))\right]\right)$. The sort of ${ }^{@}(H(\tau))=$ the sort of $H(\tau) . \mathcal{P}[z$-term $]$ by (84), [10, (48)], [28, (15)]. $\mathcal{P}\left[\mathcal{C}^{\prime}\right]$ from ContextInd.

Let us consider Σ, X, T, σ, and x. Let h be a many sorted function from $\mathfrak{F}_{\Sigma}(X)$ into T. We say that h is x-constant if and only if
(Def. 29) (i) $h(x$-term $)=x$-term, and
(ii) for every σ_{1} and for every element x_{1} of $X\left(\sigma_{1}\right)$ such that $x_{1} \neq x$ or $\sigma \neq \sigma_{1}$ holds $h\left(x_{1}\right.$-term) is x-omitting.
Now we state the proposition:
(94) The canonical homomorphism of T is x-constant. The theorem is a consequence of (70).
Let us consider Σ, X, T, σ, and x. Note that there exists a homomorphism from $\mathfrak{F}_{\Sigma}(X)$ to T which is x-constant.

From now on h_{1} denotes an x-constant homomorphism from $\mathfrak{F}_{\Sigma}(X)$ to T and h_{2} denotes a y-constant homomorphism from $\mathfrak{F}_{\Sigma}(Y)$ to Q.

Let x, y be objects. The functor $x \leftrightarrow y$ yielding a function is defined by the term
(Def. 30) $\quad\{\langle x, y\rangle,\langle y, x\rangle\}$.
Let us observe that the functor is commutative.
Now we state the proposition:
(i) $\operatorname{dom}(a \leftrightarrow b)=\{a, b\}$, and
(ii) $(a \leftrightarrow b)(a)=b$, and
(iii) $(a \leftrightarrow b)(b)=a$, and
(iv) $\operatorname{rng}(a \leftrightarrow b)=\{a, b\}$.

Let \mathfrak{A} be a non empty set and a, b be elements of \mathfrak{A}. One can verify that $a \leftrightarrow b$ is \mathfrak{A}-valued and \mathfrak{A}-defined.

Let \mathfrak{A} be a set, \mathcal{B} be a non empty set, f be a function from \mathfrak{A} into \mathcal{B}, and g be a \mathfrak{A}-defined \mathcal{B}-valued function. Let us note that the functor $f+g$ yields a function from \mathfrak{A} into \mathcal{B}. Let I be a non empty set, $\mathfrak{A}, \mathcal{B}$ be many sorted sets indexed by I, f be a many sorted function from \mathfrak{A} into \mathcal{B}, x be an element of I, and g be a function from $\mathfrak{A}(x)$ into $\mathcal{B}(x)$. One can verify that the functor $f+\cdot(x, g)$ yields a many sorted function from \mathfrak{A} into \mathcal{B}. Let us consider Σ, X, T, σ, x_{1}, and x_{2}. The functor $\operatorname{Hom}\left(T, x_{1}, x_{2}\right)$ yielding an endomorphism of T is defined by
(Def. 31) (i) $i t(\sigma)\left(x_{1}\right.$-term $)=x_{2}$-term, and
(ii) $i t(\sigma)\left(x_{2}\right.$-term $)=x_{1}$-term, and
(iii) for every σ_{1} and for every element y of $X\left(\sigma_{1}\right)$ such that $\sigma_{1} \neq \sigma$ or $y \neq x_{1}$ and $y \neq x_{2}$ holds $i t\left(\sigma_{1}\right)(y$-term $)=y$-term.
Now we state the propositions:
(96) Let us consider an endomorphism h of T. Suppose $h(\sigma)(x$-term $)=$ x-term. Then $h=\operatorname{id}_{\alpha}$, where α is the sorts of T. Proof: $h \upharpoonright$ FreeGenerator $(T)=\mathrm{id}_{\alpha} \upharpoonright \operatorname{FreeGenerator}(T)$, where α is the sorts of T by [27, (49), (18)].
(97) $\operatorname{Hom}(T, x, x)=\operatorname{id}_{\alpha}$, where α is the sorts of T. The theorem is a consequence of (96).
(98) $\operatorname{Hom}\left(T, x_{1}, x_{2}\right)=\operatorname{Hom}\left(T, x_{2}, x_{1}\right)$.
(99) $\operatorname{Hom}\left(T, x_{1}, x_{2}\right) \circ \operatorname{Hom}\left(T, x_{1}, x_{2}\right)=\mathrm{id}_{\alpha}$, where α is the sorts of T. Proof: Set $h=\operatorname{Hom}\left(T, x_{1}, x_{2}\right)$. For every σ and $x,(h \circ h)(\sigma)(x$-term $)=x$-term by [28, (15)], [36, (2)].
(100) If ρ is x_{1}-omitting and x_{2}-omitting, then $\left(\operatorname{Hom}\left(T, x_{1}, x_{2}\right)\right)(\rho)=\rho$. Proof: Define \mathcal{P} [element of $T] \equiv$ if $\$_{1}$ is x_{1}-omitting and x_{2}-omitting, then $\left(\operatorname{Hom}\left(T, x_{1}, x_{2}\right)\right)\left(\right.$ the sort of $\left.\$_{1}\right)\left(\$_{1}\right)=\$_{1}$. For every σ, x, and ρ such that $\rho=x$-term holds $\mathcal{P}[\rho]$. For every o, p, and ρ such that $\rho=o$-term p and for every element τ of T such that $\tau \in \operatorname{rng} p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[\rho]$ by (22), (34), [10, (13)], [36, (6)]. $\mathcal{P}[\rho]$ from TermAlgebraInd. \square

Let us consider Σ, X, T, σ, and x. Let us observe that (the canonical homomorphism of $T)(\sigma)(x$-term $)$ reduces to x-term.

Now we state the propositions:
(101) (The canonical homomorphism of $T) \circ \operatorname{Hom}\left(\mathfrak{F}_{\Sigma}(X), x, x_{1}\right)=\operatorname{Hom}(T, x$, $\left.x_{1}\right) \circ($ the canonical homomorphism of $T)$. Proof: Set $H=$ the canonical homomorphism of T. Set $h=\operatorname{Hom}\left(T, x, x_{1}\right)$. Set $g=\operatorname{Hom}\left(\mathfrak{F}_{\Sigma}(X), x, x_{1}\right)$. Define $\mathcal{P}\left[\right.$ element of $\left.\mathfrak{F}_{\Sigma}(X)\right] \equiv(H \circ g)\left(\$_{1}\right)=(h \circ H)\left(\$_{1}\right)$. For every σ and $x, \mathcal{P}[x$-term] by [36, (2)], [28, (15)]. For every operation symbol o of Σ and for every element p of $\operatorname{Args}\left(o, \mathfrak{F}_{\Sigma}(X)\right)$ such that for every element τ of $\mathfrak{F}_{\Sigma}(X)$ such that $\tau \in \operatorname{rng} p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[o-\operatorname{term} p]$ by [10, (13)], (34), [36, (6)], [52, (29), (25)]. $(H \circ g)(\sigma)=(h \circ H)(\sigma)$.
(102) Let us consider an element ρ of T from σ. Then $\left(\operatorname{Hom}\left(T, x_{1}, x_{2}\right)\right)(\sigma)(\rho)=$ $\left((\right.$ the canonical homomorphism of $\left.T) \circ \operatorname{Hom}\left(\mathfrak{F}_{\Sigma}(X), x_{1}, x_{2}\right)\right)(\sigma)(\rho)$. The theorem is a consequence of (101).
(103) If $x_{1} \neq x_{2}$ and τ is x_{2}-omitting, then $\left(\operatorname{Hom}\left(\mathfrak{F}_{\Sigma}(X), x_{1}, x_{2}\right)\right)(\tau)$ is x_{1-} omitting. Proof: Set $T=\mathfrak{F}_{\Sigma}(X)$. Set $h=\operatorname{Hom}\left(T, x_{1}, x_{2}\right)$. Define \mathcal{P} [element of $T] \equiv$ if $\$_{1}$ is x_{2}-omitting, then $h\left(\$_{1}\right)$ is x_{1}-omitting. For every σ and x, $\mathcal{P}[x$-term $]$. For every o and p such that for every element τ of T such that $\tau \in \operatorname{rng} p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[o$-term $p]$ by (34), [10, (13)], [36, (6)], [12, (2)]. $\mathcal{P}[\tau]$ from TermInd.
(104) Let us consider a finite subset \mathfrak{A} of \bigcup (the sorts of $\left.\mathfrak{F}_{\Sigma}(Y)\right)$. Then there exists y such that for every v such that $v \in \mathfrak{A}$ holds v is y-omitting. Proof: Define $\mathcal{F}\left(\right.$ element of $\left.\mathfrak{F}_{\Sigma}(Y)\right)=\operatorname{vf} \$_{1} .\{\mathcal{F}(v): v \in \mathfrak{A}\}$ is finite from [44, Sch. 21].

Let us consider Σ, X, and T. We say that T is structure-invariant if and only if
(Def. 32) Let us consider an element p of $\operatorname{Args}(o, T)$. Suppose $(\operatorname{Den}(o, T))(p)=$ $\left(\operatorname{Den}\left(o, \mathfrak{F}_{\Sigma}(X)\right)\right)(p) .(\operatorname{Den}(o, T))\left(\operatorname{Hom}\left(T, x_{1}, x_{2}\right) \# p\right)=$ $\left(\operatorname{Den}\left(o, \mathfrak{F}_{\Sigma}(X)\right)\right)\left(\operatorname{Hom}\left(T, x_{1}, x_{2}\right) \# p\right)$.
Now we state the propositions:
(105) Suppose T is structure-invariant. Let us consider an element ρ of T from σ. Then $\left(\operatorname{Hom}\left(T, x_{1}, x_{2}\right)\right)(\sigma)(\rho)=\left(\operatorname{Hom}\left(\mathfrak{F}_{\Sigma}(X), x_{1}, x_{2}\right)\right)(\sigma)(\rho)$. Proof: Set $h=\operatorname{Hom}\left(T, x_{1}, x_{2}\right)$. Set $g=\operatorname{Hom}\left(\mathfrak{F}_{\Sigma}(X), x_{1}, x_{2}\right)$. Define \mathcal{P} [element of $T] \equiv h\left(\right.$ the sort of $\left.\$_{1}\right)\left(\$_{1}\right)=g\left(\right.$ the sort of $\left.\$_{1}\right)\left(\$_{1}\right)$. For every σ, x, and ρ such that $\rho=x$-term holds $\mathcal{P}[\rho]$. For every o, p, and ρ such that $\rho=o$-term p and for every element τ of T such that $\tau \in \operatorname{rng} p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[\rho]$ by [10, (13)], (22), [36, (6)], [52, (29), (25)]. $\mathcal{P}[\rho]$ from TermAlgebraInd.
(106) If T is structure-invariant and $x_{1} \neq x_{2}$ and ρ is x_{2}-omitting, then $\left(\operatorname{Hom}\left(T, x_{1}, x_{2}\right)\right)(\rho)$ is x_{1}-omitting. Proof: Set $h=\operatorname{Hom}\left(T, x_{1}, x_{2}\right)$. Define \mathcal{P} [element of $T] \equiv$ if $\$_{1}$ is x_{2}-omitting, then $h\left(\$_{1}\right)$ is x_{1}-omitting. For every σ, x, and ρ such that $\rho=x$-term holds $\mathcal{P}[\rho]$. For every o, p, and ρ such that $\rho=o$-term p and for every element τ of T such that $\tau \in \operatorname{rng} p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[\rho]$ by (22), (34), [10, (13), (41)]. $\mathcal{P}[\rho]$ from TermAlgebraInd.
(107) Suppose Q is structure-invariant and v is y-omitting. Then (the canonical homomorphism of $Q)(v)$ is y-omitting. The theorem is a consequence of (104), (29), (101), (100), (98), and (106).
(108) Suppose Q is structure-invariant. Let us consider an element p of $\operatorname{Args}(o, Q)$. Suppose an element τ of Q. If $\tau \in \operatorname{rng} p$, then τ is y-omitting. Let us consider an element τ of Q. If $\tau=(\operatorname{Den}(o, Q))(p)$, then τ is y-omitting. The theorem is a consequence of (76), (34), and (107).
(109) If Q is structure-invariant and v is y-omitting, then $h_{2}(v)$ is y-omitting. Proof: Define \mathcal{P} [element of $\left.\mathfrak{F}_{\Sigma}(Y)\right] \equiv$ if $\$_{1}$ is y-omitting, then $h_{2}\left(\$_{1}\right)$ is y-omitting. For every σ and $y, \mathcal{P}[y$-term $]$. For every o and q such that for every v such that $v \in \operatorname{rng} q$ holds $\mathcal{P}[v]$ holds $\mathcal{P}[o$-term $q]$ by (34), [10, (13)], [36, (6)], [12, (2)]. $\mathcal{P}[v]$ from TermInd.

Let us consider a terminating invariant stable many sorted relation R indexed by $\mathfrak{F}_{\Sigma}(X)$ with NF-variables and unique normal form property. Now we state the propositions:
(i) for every element τ of the algebra of normal forms of $R,\left(\operatorname{Hom}\left(\mathfrak{F}_{\Sigma}(X)\right.\right.$, $\left.\left.x_{1}, x_{2}\right)\right)($ the sort of $\tau)(\tau)=(\operatorname{Hom}($ the algebra of normal forms of $\left.\left.R, x_{1}, x_{2}\right)\right)(\tau)$, and
(ii) $\operatorname{Hom}\left(\mathfrak{F}_{\Sigma}(X), x_{1}, x_{2}\right) \upharpoonright \operatorname{NForms}(R)=\operatorname{Hom}($ the algebra of normal
forms of $\left.R, x_{1}, x_{2}\right)$.
Proof: Set $F=\mathfrak{F}_{\Sigma}(X)$. Set $T=$ the algebra of normal forms of R. Set $H_{3}=\operatorname{Hom}\left(F, x_{1}, x_{2}\right)$. Set $H_{2}=\operatorname{Hom}\left(T, x_{1}, x_{2}\right)$. Define $\mathcal{P}[$ element of $T] \equiv$ H_{3} (the sort of $\left.\$_{1}\right)\left(\$_{1}\right)=H_{2}\left(\$_{1}\right)$. For every sort symbol σ of Σ and for every element x of $X(\sigma)$ and for every element ρ of T such that $\rho=x$-term holds $\mathcal{P}[\rho]$. For every operation symbol o of Σ and for every element p of $\operatorname{Args}\left(o, \mathfrak{F}_{\Sigma}(X)\right)$ and for every element ρ of T such that $\rho=o$-term p and for every element τ of T such that $\tau \in \operatorname{rng} p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[\rho]$ by (22), (34), [10, (13)], [16, (54)]. $\left(\operatorname{Hom}\left(\mathfrak{F}_{\Sigma}(X), x_{1}, x_{2}\right) \upharpoonright \operatorname{NForms}(R)\right)(\sigma)=$ (Hom(the algebra of normal forms of $\left.\left.R, x_{1}, x_{2}\right)\right)(\sigma)$ by [27, (49)].
(111) Suppose $i \in \operatorname{dom} p$ and $R\left(\operatorname{Arity}(o)_{i}\right)$ reduces τ_{1} to τ_{2}. Then $R($ the result sort of o) reduces $\left(\operatorname{Den}\left(o, \mathfrak{F}_{\Sigma}(X)\right)\right)\left(p+\cdot\left(i, \tau_{1}\right)\right)$ to $\left(\operatorname{Den}\left(o, \mathfrak{F}_{\Sigma}(X)\right)\right)(p+$. $\left.\left(i, \tau_{2}\right)\right)$. Proof: Consider ρ being a reduction sequence w.r.t. $R\left(\operatorname{Arity}(o)_{i}\right)$ such that $\rho(1)=\tau_{1}$ and $\rho(\operatorname{len} \rho)=\tau_{2}$. Define $\mathcal{P}[$ natural number $] \equiv$ if $\$_{1} \leqslant \operatorname{len} \rho$, then $R($ the result sort of $o)$ reduces $\left(\operatorname{Den}\left(o, \mathfrak{F}_{\Sigma}(X)\right)\right)\left(p+\cdot\left(i, \tau_{1}\right)\right)$ to $\left(\operatorname{Den}\left(o, \mathfrak{F}_{\Sigma}(X)\right)\right)\left(p+\cdot\left(i, \rho\left(\$_{1}\right)\right)\right)$. For every i such that $1 \leqslant i$ and $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$ by [13, (13)], [52, (25)], [32, (87)], [12, (7), (2)]. For every i such that $i \geqslant 1$ holds $\mathcal{P}[i]$ from [13, Sch. 8].
Now we state the propositions:
(112) Let us consider a terminating invariant stable many sorted relation R indexed by $\mathfrak{F}_{\Sigma}(X)$ with NF-variables and unique normal form property and τ. Then $R($ the sort of $\tau)$ reduces τ to (the canonical homomorphism of the algebra of normal forms of $R)(\tau)$. Proof: Set $T=$ the algebra of normal forms of R. Set $H=$ the canonical homomorphism of T. Define \mathcal{P} [element of $\left.\mathfrak{F}_{\Sigma}(X)\right] \equiv R\left(\right.$ the sort of $\left.\$_{1}\right)$ reduces $\$_{1}$ to $H\left(\$_{1}\right)$. For every o and p such that for every τ such that $\tau \in \operatorname{rng} p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[o-\operatorname{term} p]$ by [10, (13)], (34), [16, (54)], [12, (2)]. $\mathcal{P}[\tau]$ from TermInd.
(113) Let us consider a terminating invariant stable many sorted relation R indexed by $\mathfrak{F}_{\Sigma}(X)$ with NF-variables and unique normal form property, o, and p. Then R (the result sort of o) reduces o-term p to (Den (o, the algebra of normal forms of $R)$)((the canonical homomorphism of the algebra of normal forms of $R) \# p$). The theorem is a consequence of (34) and (112).
(114) Let us consider a terminating invariant stable many sorted relation R indexed by $\mathfrak{F}_{\Sigma}(X)$ with NF-variables and unique normal form property, o, p, and an element q of $\operatorname{Args}(o$, the algebra of normal forms of $R)$. Suppose $p=q$. Then $R($ the result sort of o) reduces o-term p to (Den(o, the algebra of normal forms of $R))(q)$. The theorem is a consequence of (113).
Let us consider Σ and X. Let R be a terminating invariant stable many sorted relation indexed by $\mathfrak{F}_{\Sigma}(X)$ with NF-variables and unique normal form property. Observe that the algebra of normal forms of R is structure-invariant.

Let us note that there exists a free in itself including Σ-terms over X algebra
over Σ with all variables and inheriting operations which is structure-invariant.

5. Context vs. Translations

Let us consider Σ, σ_{1}, and σ_{2}. We say that σ_{2} is σ_{1}-reachable if and only if (Def. 33) $\operatorname{TranslRel}(\Sigma)$ reduces σ_{1} to σ_{2}.

One can verify that there exists a sort symbol of Σ which is σ_{1}-reachable.
From now on σ_{2} denotes a σ_{1}-reachable sort symbol of Σ and g_{1} denotes a translation in $\mathfrak{F}_{\Sigma}(Y)$ from σ_{1} into σ_{2}.

Now we state the proposition:
(115) TranslRel (Σ) reduces σ to the sort of \mathcal{C}^{\prime}. Proof: Define \mathcal{P} [element of $\left.\mathfrak{F}_{\Sigma}(Z)\right] \equiv \operatorname{TranslRel}(\Sigma)$ reduces σ to the sort of $\$_{1} \cdot \mathcal{P}\left[\mathcal{C}^{\prime}\right]$ from ContextInd.

Let us consider Σ, X, σ, x, and \mathcal{C}. Observe that the sort of \mathcal{C} is σ-reachable.
Let us consider σ_{1}, σ_{2}, and g. Let τ be an element of (the sorts of $\left.\mathfrak{F}_{\Sigma}(X)\right)\left(\sigma_{1}\right)$.
One can check that the functor $g(\tau)$ yields an element of (the sorts of $\left.\mathfrak{F}_{\Sigma}(X)\right)\left(\sigma_{2}\right)$. Let us consider σ, x, and \mathcal{C}. We say that \mathcal{C} is basic if and only if
(Def. 34) There exists o and there exists p such that $\mathcal{C}=o$-term p and the x-context in $p=x$-term.
The functor transl \mathcal{C} yielding a function from (the sorts of $\left.\mathfrak{F}_{\Sigma}(X)\right)(\sigma)$ into (the sorts of $\left.\mathfrak{F}_{\Sigma}(X)\right)$ (the sort of \mathcal{C}) is defined by
(Def. 35) If the sort of $\tau=\sigma$, then $i t(\tau)=\mathcal{C}[\tau]$.
Now we state the propositions:
(116) If $\mathcal{C}=x$-term, then $\operatorname{transl} \mathcal{C}=\operatorname{id}_{\alpha(\sigma)}$, where α is the sorts of $\mathfrak{F}_{\Sigma}(X)$. The theorem is a consequence of (84).
(117) Suppose $\mathcal{C}^{\prime}=o$-term k and the z-context in $k=z$-term and $k 1=$ $k+\cdot($ the z-context position in $k, l)$. Then $\mathcal{C}^{\prime}[l]=o$-term $k 1$. The theorem is a consequence of (74), (77), (84), and (87).
(118) If \mathcal{C}^{\prime} is basic, then transl \mathcal{C}^{\prime} is an elementary translation in $\mathfrak{F}_{\Sigma}(Z)$ from σ into the sort of \mathcal{C}^{\prime}. The theorem is a consequence of (34), (74), (77), and (117).
(119) Let us consider a finite set V. Suppose
(i) $m \in \operatorname{dom} q$, and
(ii) $\operatorname{Arity}(o)_{m}=\sigma$.

Then there exists y and there exists \mathcal{C}_{1} and there exists q_{1} such that $y \notin V$ and $\mathcal{C}_{1}=o$-term q_{1} and $q_{1}=q+\cdot(m, y$-term $)$ and q_{1} is y-context including once only and $m=$ the y-context position in q_{1} and the y-context in $q_{1}=$ y-term. Proof: Set $y=$ the element of $Y(\sigma) \backslash\left(V \cup \pi_{1}(\operatorname{rng}(o\right.$-term $\left.q))\right)$.

Reconsider $q_{1}=q+\cdot(m, y$-term $)$ as an element of $\operatorname{Args}\left(o, \mathfrak{F}_{\Sigma}(Y)\right) . q_{1}$ is y-context including once only by [25, (30), (31), (32)], [52, (25)].
(120) Let us consider sort symbols σ_{1}, σ_{2} of Σ and a finite set V. Suppose
(i) $m \in \operatorname{dom} q$, and
(ii) $\sigma_{1}=\operatorname{Arity}(o)_{m}$.

Then there exists an element y of $Y\left(\sigma_{1}\right)$ and there exists a context \mathcal{C} of y and there exists q_{1} such that $y \notin V$ and $q_{1}=q+\cdot(m, y$-term $)$ and q_{1} is y-context including once only and the y-context in $q_{1}=y$-term and $\mathcal{C}=o$-term q_{1} and $m=$ the y-context position in q_{1} and transl $\mathcal{C}=$ $o_{m}^{\mathcal{F}_{\Sigma}(Y)}(q,-)$. The theorem is a consequence of (119) and (117).
Let us consider Σ, X, τ, and a. One can verify that $\operatorname{Coim}(\tau, a)$ is finite sequence-membered.

Now we state the propositions:
(121) Suppose X is nontrivial and the sort of $\tau=\sigma$. Then $\overline{\overline{\operatorname{Coim}(\tau, a)}} \subseteq$ $\overline{\overline{\operatorname{Coim}(\mathcal{C}[\tau], a)}}$. Proof: Define $\mathcal{P}[$ context of $x] \equiv$ for every \mathcal{C} such that $\mathcal{C}=\$_{1}$ holds $\overline{\operatorname{Coim}(\tau, a)} \subseteq \overline{\overline{\operatorname{Coim}(\mathcal{C}[\tau], a)}} . \mathcal{P}[x$-term $]$. For every o and p such that p is x-context including once only holds if \mathcal{P} [the x-context in p], then for every context \mathcal{C} of x such that $\mathcal{C}=o$-term p holds $\mathcal{P}[\mathcal{C}]$ by (77), [36, (6)], [13, (10)], [52, (25)]. $\mathcal{P}[\mathcal{C}]$ from ContextInd.
(122) If p is x-context including once only and $i \in \operatorname{dom} p$, then p_{i} is not x omitting iff p_{i} is x-context.
Let us assume that X is nontrivial and the sort of $\mathcal{C}=\sigma_{1}$. Now we state the propositions:
(123) Let us consider an element x_{1} of $X\left(\sigma_{1}\right)$, a context \mathcal{C}_{1} of x_{1}, and a context \mathcal{C}_{2} of x. Suppose $\mathcal{C}_{2}=\mathcal{C}_{1}[\mathcal{C}]$. If the sort of $\tau=\sigma$, then $\mathcal{C}_{2}[\tau]=\mathcal{C}_{1}[\mathcal{C}[\tau]]$. Proof: Define \mathcal{P} [context of $\left.x_{1}\right] \equiv$ for every context \mathcal{C}_{1} of x_{1} for every context \mathcal{C}_{2} of x such that $\mathcal{C}_{1}=\$_{1}$ and $\mathcal{C}_{2}=\mathcal{C}_{1}[\mathcal{C}]$ holds $\mathcal{C}_{2}[\tau]=\mathcal{C}_{1}[\mathcal{C}[\tau]]$. $\mathcal{P}\left[x_{1}\right.$-term $]$. For every o and for every element w of $\operatorname{Args}\left(o, \mathfrak{F}_{\Sigma}(X)\right)$ such that w is x_{1}-context including once only holds if \mathcal{P} [the x_{1}-context in $\left.w\right]$, then for every context \mathcal{C} of x_{1} such that $\mathcal{C}=o$-term w holds $\mathcal{P}[\mathcal{C}]$ by (77), [36, (6)], [12, (2), (7)]. $\mathcal{P}\left[\mathcal{C}_{1}\right]$ from ContextInd.
(124) Let us consider an element x_{1} of $X\left(\sigma_{1}\right)$, a context \mathcal{C}_{1} of x_{1}, and a context \mathcal{C}_{2} of x. Suppose $\mathcal{C}_{2}=\mathcal{C}_{1}[\mathcal{C}]$. Then transl $\mathcal{C}_{2}=\operatorname{transl} \mathcal{C}_{1} \cdot \operatorname{transl} \mathcal{C}$. Proof: Reconsider $f=\operatorname{transl} \mathcal{C}$ as a function from (the sorts of $\left.\mathfrak{F}_{\Sigma}(X)\right)(\sigma)$ into (the sorts of $\left.\mathfrak{F}_{\Sigma}(X)\right)\left(\sigma_{1}\right)$. transl $\mathcal{C}_{2}=\operatorname{transl} \mathcal{C}_{1} \cdot f$ by [28, (15)], (123).
Now we state the proposition:
(125) There exists y_{11} and there exists \mathcal{C}_{12} such that the sort of $\mathcal{C}_{12}=\sigma_{2}$ and $g_{1}=\operatorname{transl} \mathcal{C}_{12}$. Proof: Define $\mathcal{P}[$ function, sort symbol of Σ, sort symbol of $\Sigma] \equiv$ for every finite set V, there exists an element x of $Y\left(\$_{2}\right)$ and
there exists a context \mathcal{C} of x such that $x \notin V$ and the sort of $\mathcal{C}=\$_{3}$ and $\$_{1}=\operatorname{transl} \mathcal{C}$. For every $\sigma, \mathcal{P}\left[\operatorname{id}_{\alpha(\sigma)}, \sigma, \sigma\right]$, where α is the sorts of $\mathfrak{F}_{\Sigma}(Y)$. For every sort symbols $\sigma_{1}, \sigma_{2}, \sigma_{3}$ of Σ such that $\operatorname{TranslRel}(\Sigma)$ reduces σ_{1} to σ_{2} for every translation τ in $\mathfrak{F}_{\Sigma}(Y)$ from σ_{1} into σ_{2} such that $\mathcal{P}\left[\tau, \sigma_{1}, \sigma_{2}\right]$ for every function f such that f is an elementary translation in $\mathfrak{F}_{\Sigma}(Y)$ from σ_{2} into σ_{3} holds $\mathcal{P}\left[f \cdot \tau, \sigma_{1}, \sigma_{3}\right]$ by [12, (2)], (120), (73), (69). For every sort symbols σ_{1}, σ_{2} of Σ such that $\operatorname{TranslRel}(\Sigma)$ reduces σ_{1} to σ_{2} for every translation τ in $\mathfrak{F}_{\Sigma}(Y)$ from σ_{1} into $\sigma_{2}, \mathcal{P}\left[\tau, \sigma_{1}, \sigma_{2}\right]$ from [12, Sch. 1].

The scheme LambdaTerm deals with a non empty non void many sorted signature Σ and a non-empty many sorted set \mathcal{X} indexed by the carrier of Σ and including Σ-terms over \mathcal{X} algebras T_{1}, T_{2} over Σ with all variables and inheriting operations and a unary functor \mathcal{F} yielding an element of T_{2} and states that
(Sch. 5) There exists a many sorted function f from T_{1} into T_{2} such that for every element τ of $T_{1}, f(\tau)=\mathcal{F}(\tau)$
provided

- for every element τ of T_{1}, the sort of $\tau=$ the sort of $\mathcal{F}(\tau)$.

Now we state the propositions:
(126) There exists an endomorphism g of T such that
(i) (the canonical homomorphism of T) $\circ h=$
$g \circ($ the canonical homomorphism of $T)$, and
(ii) for every element τ of $T, g(\tau)=$ (the canonical homomorphism of $T)\left(h\left({ }^{@} \tau\right)\right)$.
The theorem is a consequence of (29).
(127) (The canonical homomorphism of $T)(h(\tau))=$ (the canonical homomorphism of $T)\left(h\left({ }^{@}(\right.\right.$ (the canonical homomorphism of $T)(\tau)))$). The theorem is a consequence of (126) and (29).

6. Context vs. Endomorphism

Let us consider Σ. Let \mathcal{B} be a non empty finite sequence of elements of the carrier of Σ and i be an element of $\operatorname{dom} \mathcal{B}$. Note that the functor $\mathcal{B}(i)$ yields a sort symbol of Σ. Let us consider X. Let \mathcal{B} be a finite sequence of elements of the carrier of Σ and V be a finite sequence of elements of $\cup X$. We say that V is \mathcal{B}-sorting if and only if
(i) $\operatorname{dom} V=\operatorname{dom} \mathcal{B}$, and
(ii) for every i such that $i \in \operatorname{dom} \mathcal{B}$ holds $V(i) \in X(\mathcal{B}(i))$.

Let us observe that there exists a finite sequence of elements of $\cup X$ which is \mathcal{B}-sorting.

Let \mathcal{B} be a non empty finite sequence of elements of the carrier of Σ. One can check that every finite sequence of elements of $\cup X$ which is \mathcal{B}-sorting is also non empty.

Let V be a \mathcal{B}-sorting finite sequence of elements of $\cup X$ and i be an element of $\operatorname{dom} \mathcal{B}$. Note that the functor $V(i)$ yields an element of $X(\mathcal{B}(i))$. Let \mathcal{B} be a finite sequence of elements of the carrier of Σ and D be a finite sequence of elements of $\mathfrak{F}_{\Sigma}(X)$. We say that D is \mathcal{B}-sorting if and only if
(i) $\operatorname{dom} D=\operatorname{dom} \mathcal{B}$, and
(ii) for every i such that $i \in \operatorname{dom} \mathcal{B}$ holds $D(i) \in\left(\right.$ the sorts of $\left.\mathfrak{F}_{\Sigma}(X)\right)(\mathcal{B}(i))$.

Note that there exists a finite sequence of elements of $\mathfrak{F}_{\Sigma}(X)$ which is \mathcal{B} sorting.

Let \mathcal{B} be a non empty finite sequence of elements of the carrier of Σ. One can verify that every finite sequence of elements of $\mathfrak{F}_{\Sigma}(X)$ which is \mathcal{B}-sorting is also non empty.

Let D be a \mathcal{B}-sorting finite sequence of elements of $\mathfrak{F}_{\Sigma}(X)$ and i be an element of $\operatorname{dom} \mathcal{B}$. Let us note that the functor $D(i)$ yields an element of (the sorts of $\left.\mathfrak{F}_{\Sigma}(X)\right)(\mathcal{B}(i))$. Let V be a \mathcal{B}-sorting finite sequence of elements of $\cup X$ and F be a finite sequence of elements of $\mathfrak{F}_{\Sigma}(X)$. We say that F is V-context sequence if and only if
(Def. 38) (i) $\operatorname{dom} F=\operatorname{dom} \mathcal{B}$, and
(ii) for every element i of $\operatorname{dom} \mathcal{B}, F(i)$ is a context of $V(i)$.

Let us observe that every finite sequence of elements of $\mathfrak{F}_{\Sigma}(X)$ which is V-context sequence is also non empty.

The scheme FinSeqLambda deals with a non empty finite sequence \mathcal{B} and a unary functor \mathcal{F} yielding an object and states that
(Sch. 6) There exists a non empty finite sequence p such that $\operatorname{dom} p=\operatorname{dom} \mathcal{B}$ and for every element i of $\operatorname{dom} \mathcal{B}, p(i)=\mathcal{F}(i)$.
The scheme FinSeqRecLambda deals with a non empty finite sequence \mathcal{B} and an object \mathfrak{A} and a binary functor \mathcal{F} yielding a set and states that
(Sch. 7) There exists a non empty finite sequence p such that $\operatorname{dom} p=\operatorname{dom} \mathcal{B}$ and $p(1)=\mathfrak{A}$ and for every elements i, j of $\operatorname{dom} \mathcal{B}$ such that $j=i+1$ holds $p(j)=\mathcal{F}(i, p(i))$.
The scheme FinSeqRec2Lambda deals with a non empty finite sequence \mathcal{B} and a decorated tree \mathfrak{A} and a binary functor \mathcal{F} yielding a decorated tree and states that
(Sch. 8) There exists a non empty decorated tree yielding finite sequence p such that $\operatorname{dom} p=\operatorname{dom} \mathcal{B}$ and $p(1)=\mathfrak{A}$ and for every elements i, j of $\operatorname{dom} \mathcal{B}$
such that $j=i+1$ for every decorated tree d such that $d=p(i)$ holds $p(j)=\mathcal{F}(i, d)$.
Let us consider Σ and X. Let \mathcal{B} be a non empty finite sequence of elements of the carrier of Σ and V be a \mathcal{B}-sorting finite sequence of elements of $\cup X$. One can check that there exists a finite sequence of elements of $\mathfrak{F}_{\Sigma}(X)$ which is V-context sequence.

Let F be a V-context sequence finite sequence of elements of $\mathfrak{F}_{\Sigma}(X)$ and i be an element of dom \mathcal{B}. One can verify that the functor $F(i)$ yields a context of $V(i)$. Let V_{1}, V_{2} be \mathcal{B}-sorting finite sequences of elements of $\cup X$. We say that V_{2} is V_{1}-omitting if and only if
(Def. 39) rng V_{1} misses rng V_{2}.
Let D be a \mathcal{B}-sorting finite sequence of elements of $\mathfrak{F}_{\Sigma}(X)$ and F be a $V_{2^{-}}$ context sequence finite sequence of elements of $\mathfrak{F}_{\Sigma}(X)$. We say that F is $\left(V_{1}\right.$, $\left.V_{2}, D\right)$-consequent context sequence if and only if
(Def. 40) Let us consider elements i, j of dom \mathcal{B}. If $i+1=j$, then $F(j)\left[V_{1}(j)\right.$-term $]=$ $F(i)[D(i)]$.
Let V be a \mathcal{B}-sorting finite sequence of elements of $\cup X$. We say that V is D-omitting if and only if
(Def. 41) If $\tau \in \operatorname{rng} D$, then $\operatorname{vf} \tau$ misses $\operatorname{rng} V$.
Now we state the proposition:
(128) Let us consider a non empty finite sequence \mathcal{B} of elements of the carrier of Σ a \mathcal{B}-sorting finite sequence D of elements of $\mathfrak{F}_{\Sigma}(X)$ a \mathcal{B}-sorting finite sequence V of elements of $\bigcup X$. Suppose V is D-omitting. Let us consider elements b_{1}, b_{2} of dom \mathcal{B}. Then $D\left(b_{1}\right)$ is $\left(V\left(b_{2}\right)\right)$-omitting. The theorem is a consequence of (69).
Let us consider Σ and Y. Let \mathcal{B} be a non empty finite sequence of elements of the carrier of Σ, V be a \mathcal{B}-sorting finite sequence of elements of $\cup Y$, and D be a \mathcal{B}-sorting finite sequence of elements of $\mathfrak{F}_{\Sigma}(Y)$. Let us observe that there exists a \mathcal{B}-sorting finite sequence of elements of $\cup Y$ which is one-to-one, V-omitting, and D-omitting.

Let us consider X and τ.
A vf-sequence of τ is a finite sequence and is defined by
(Def. 42) There exists a one-to-one finite sequence f such that
(i) $\operatorname{rng} f=\{\xi$, where ξ is an element of $\operatorname{dom} \tau$: there exists σ and there exists x such that $\tau(\xi)=\langle x, \sigma\rangle\}$, and
(ii) dom it $=\operatorname{dom} f$, and
(iii) for every i such that $i \in \operatorname{dom}$ it holds $i t(i)=\tau(f(i))$.

Let f be a finite sequence. Let us observe that $\operatorname{pr} 1(f)$ is finite sequence-like and $\operatorname{pr2}(f)$ is finite sequence-like.

Now we state the propositions:
(129) Let us consider a vf-sequence f of τ. Then $\operatorname{pr} 2(f)$ is a finite sequence of elements of the carrier of Σ.
(130) Let us consider a vf-sequence f of τ and a finite sequence \mathcal{B} of elements of the carrier of Σ. Suppose $\mathcal{B}=\operatorname{pr} 2(f)$. Then $\operatorname{pr} 1(f)$ is a \mathcal{B}-sorting finite sequence of elements of $\cup X$.
Let f be a non empty finite sequence. One can verify that $1(\in \operatorname{dom} f)$ reduces to 1 and $(\operatorname{len} f)(\in \operatorname{dom} f)$ reduces to len f.

Now we state the propositions:
(131) Let us consider an element ξ of dom τ. Suppose $\tau(\xi)=\langle x, \sigma\rangle$. Suppose the sort of $\tau_{1}=\sigma$. Then τ with-replacement $\left(\xi, \tau_{1}\right)$ is an element of $\mathfrak{F}_{\Sigma}(X)$ from the sort of τ. Proof: Define \mathcal{P} [element of $\left.\mathfrak{F}_{\Sigma}(X)\right] \equiv$ for every element ξ of dom $\$_{1}$ for every x_{1} and τ such that $\$_{1}(\xi)=\left\langle x_{1}, \sigma\right\rangle$ and $\tau=\$_{1}$ holds $\$_{1}$ with-replacement $\left(\xi, \tau_{1}\right)$ is an element of $\mathfrak{F}_{\Sigma}(X)$ from the sort of τ. $\mathcal{P}\left[x_{11}\right.$-term] by [20, (3)], [17, (29)]. For every o and p such that for every τ such that $\tau \in \operatorname{rng} p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[o$-term $p]$ by [20, (10)], [13, (12), (13)], [52, (25)]. $\mathcal{P}[\tau]$ from TermInd.
(132) Suppose X is nontrivial. Let us consider an element ξ of dom \mathcal{C}. Suppose $\mathcal{C}(\xi)=\langle x, \sigma\rangle$. If the sort of $\tau=\sigma$, then $\mathcal{C}[\tau]=\mathcal{C}$ with-replacement (ξ, τ). Proof: Define $\mathcal{P}\left[\right.$ element of $\left.\mathfrak{F}_{\Sigma}(X)\right] \equiv$ for every context \mathcal{C} of x such that $\mathcal{C}=\$_{1}$ for every element ξ of $\operatorname{dom} \mathcal{C}$ such that $\mathcal{C}(\xi)=\langle x, \sigma\rangle$ holds $\mathcal{C}[\tau]=\mathcal{C}$ with-replacement $(\xi, \tau) . \mathcal{P}[x$-term] by [17, (29)], [20, (3)], (84). For every operation symbol o of Σ and for every element w of $\operatorname{Args}\left(o, \mathfrak{F}_{\Sigma}(X)\right)$ such that w is x-context including once only holds if \mathcal{P} [the x-context in $w]$, then for every context \mathcal{C} of x such that $\mathcal{C}=o-$ term w holds $\mathcal{P}[\mathcal{C}]$ by [20, (10)], [19, (38)], [13, (12), (13)]. $\mathcal{P}[\mathcal{C}]$ from ContextInd.
(133) Let us consider finite sequences ξ_{1}, ξ_{2}. Suppose
(i) $\xi_{1} \neq \xi_{2}$, and
(ii) $\xi_{1}, \xi_{2} \in \operatorname{dom} \tau$.

Let us consider sort symbols σ_{1}, σ_{2} of Σ, an element x_{1} of $X\left(\sigma_{1}\right)$, and an element x_{2} of $X\left(\sigma_{2}\right)$. Suppose $\tau\left(\xi_{1}\right)=\left\langle x_{1}, \sigma_{1}\right\rangle$. Then $\xi_{1} \npreceq \xi_{2}$. The theorem is a consequence of (36).
Let us consider τ, τ_{1}, and an element ξ of $\operatorname{dom} \tau$. Now we state the propositions:
(134) If $\tau_{1}=\tau$ with-replacement $\left(\xi, x\right.$-term) and τ is x-omitting, then τ_{1} is a context of x Proof: $\operatorname{Coim}\left(\tau_{1},\langle x, \sigma\rangle\right)=\{\xi\}$ by [17, (1), (29)], [20, (3)], [22, (87)].
(135) If $\tau(\xi)=\langle x, \sigma\rangle$, then $\operatorname{dom} \tau \subseteq \operatorname{dom}\left(\tau\right.$ with-replacement $\left.\left(\xi, \tau_{1}\right)\right)$. The theorem is a consequence of (89).
Now we state the propositions:
(136) Let us consider an element ξ of dom τ. Suppose $\tau(\xi)=\langle x, \sigma\rangle$. Then $\operatorname{dom} \tau=\operatorname{dom}\left(\tau\right.$ with-replacement $\left(\xi, x_{1}\right.$-term)). Proof: $\operatorname{dom} \tau \subseteq \operatorname{dom}$ (τ with-replacement $\left(\xi, x_{1}\right.$-term $)$). $\operatorname{dom}\left(\tau\right.$ with-replacement $\left(\xi, x_{1}\right.$-term $) \subseteq$ $\operatorname{dom} \tau$ by [17, (29)], [20, (3)].
(137) Let us consider trees τ, τ_{1} and an element ξ of τ.

Then (τ with-replacement $\left.\left(\xi, \tau_{1}\right)\right) \upharpoonright \xi=\tau_{1}$. The theorem is a consequence of (1).
(138) Let us consider decorated trees τ, τ_{1} and a node ξ of τ. Then (τ with-replacement $\left.\left(\xi, \tau_{1}\right)\right) \upharpoonright \xi=\tau_{1}$. The theorem is a consequence of (137).

Let us consider a node ξ of τ. Now we state the propositions:
(139) If $\tau_{1}=\tau \upharpoonright \xi$, then $h(\tau) \upharpoonright \xi=h\left(\tau_{1}\right)$. Proof: Define $\mathcal{P}\left[\right.$ element of $\left.\mathfrak{F}_{\Sigma}(X)\right] \equiv$ for every node ξ of $\$_{1}$ for every τ_{1} such that $\tau_{1}=\$_{1} \upharpoonright \xi$ holds $h\left(\$_{1}\right) \upharpoonright \xi=h\left(\tau_{1}\right)$ and $\xi \in \operatorname{dom}\left(h\left(\$_{1}\right)\right) . \mathcal{P}[x$-term] by [17, (29)], [20, (3)], [21, (1)], [17, (22)]. For every o and p such that for every τ such that $\tau \in \operatorname{rng} p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[o$-term p] by [20, (11)], [21, (1)], [17, (22)], [21, (3)]. $\mathcal{P}[\tau]$ from TermInd.
(140) If $\tau(\xi)=\langle x, \sigma\rangle$, then $\tau \upharpoonright \xi=x$-term. The theorem is a consequence of (36).

Now we state the propositions:
(141) Let us consider trees τ, τ_{1} and elements ξ, ν of τ. Suppose
(i) $\xi \nsubseteq \nu$, and
(ii) $\nu \nsubseteq \xi$.

Then (τ with-replacement $\left.\left(\xi, \tau_{1}\right)\right) \upharpoonright \nu=\tau \upharpoonright \nu$. The theorem is a consequence of (2) and (5).
(142) Let us consider decorated trees τ, τ_{1} and nodes ξ, ν of τ. Suppose
(i) $\xi \nsubseteq \nu$, and
(ii) $\nu \nsubseteq \xi$.

Then (τ with-replacement $\left.\left(\xi, \tau_{1}\right)\right) \upharpoonright \nu=\tau \upharpoonright \nu$. The theorem is a consequence of (141) and (5).
(143) If $\tau \subseteq \tau_{1}$, then $\tau=\tau_{1}$. Proof: Define $\mathcal{P}\left[\right.$ element of $\left.\mathfrak{F}_{\Sigma}(X)\right] \equiv$ for every τ_{1} such that $\$_{1} \subseteq \tau_{1}$ holds $\$_{1}=\tau_{1} . \mathcal{P}[x$-term] by [17, (22)], [30, (2)], [20, (3)], (36). For every o and p such that for every τ such that $\tau \in \operatorname{rng} p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[o$-term $p]$ by [17, (22)], [30, (2)], (36), [20, (3)]. $\mathcal{P}[\tau]$ from TermInd.
(144) Let us consider an endomorphism h of $\mathfrak{F}_{\Sigma}(X)$. Then
(i) $\operatorname{dom} \tau \subseteq \operatorname{dom}(h(\tau))$, and
(ii) for every I such that $I=\{\xi$, where ξ is an element of $\operatorname{dom} \tau$: there exists σ and there exists x such that $\tau(\xi)=\langle x, \sigma\rangle\}$ holds $\tau\lceil(\operatorname{dom} \tau \backslash$ $I)=h(\tau) \upharpoonright(\operatorname{dom} \tau \backslash I)$.
Proof: Define $\mathcal{P}\left[\right.$ element of $\left.\mathfrak{F}_{\Sigma}(X)\right] \equiv \operatorname{dom} \$_{1} \subseteq \operatorname{dom}\left(h\left(\$_{1}\right)\right)$ and for every I such that $I=\left\{\xi\right.$, where ξ is an element of dom $\$_{1}$: there exists σ and there exists x such that $\left.\$_{1}(\xi)=\langle x, \sigma\rangle\right\}$ holds $\$_{1} \upharpoonright\left(\operatorname{dom} \$_{1} \backslash I\right)=$ $h(\$ 1)\left\lceil\left(\operatorname{dom} \$_{1} \backslash I\right) . \mathcal{P}[x\right.$-term] by [17, (22)], [20, (3)], [17, (29)]. For every o and p such that for every τ such that $\tau \in \operatorname{rng} p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[o$-term $p]$ by (34), [10, (13)], [20, (11)], [17, (22)]. $\mathcal{P}[\tau]$ from TermInd.
(145) Suppose $I=\{\xi$, where ξ is an element of $\operatorname{dom} \tau$: there exists σ and there exists x such that $\tau(\xi)=\langle x, \sigma\rangle\}$. Let us consider a node ξ of $h(\tau)$. Then
(i) $\xi \in \operatorname{dom} \tau \backslash I$, or
(ii) there exists an element ν of $\operatorname{dom} \tau$ such that $\nu \in I$ and there exists a node μ of $h(\tau) \upharpoonright \nu$ such that $\xi=\nu^{\wedge} \mu$.
Proof: Define $\mathcal{P}\left[\right.$ element of $\left.\mathfrak{F}_{\Sigma}(X)\right] \equiv$ for every I such that $I=\{\xi$, where ξ is an element of dom $\$_{1}$: there exists σ and there exists x such that $\left.\$_{1}(\xi)=\langle x, \sigma\rangle\right\}$ for every node ξ of $h\left(\$_{1}\right), \xi \in \operatorname{dom} \$_{1} \backslash I$ or there exists an element ν of $\operatorname{dom} \$_{1}$ such that $\nu \in I$ and there exists a node μ of $h\left(\$_{1}\right) \upharpoonright \nu$ such that $\xi=\nu^{\wedge} \mu . \mathcal{P}[x$-term] by [17, (22)], [20, (3)], [21, (1)]. For every o and p such that for every τ such that $\tau \in \operatorname{rng} p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[o-\operatorname{term} p]$ by (34), [10, (13)], [20, (11)], [17, (22)]. $\mathcal{P}[\tau]$ from TermInd.
(146) Let us consider an endomorphism h of $\mathfrak{F}_{\Sigma}(Y)$ a one-to-one finite sequence g of elements of dom v. Suppose
(i) $\operatorname{rng} g=\{\xi$, where ξ is an element of $\operatorname{dom} v$: there exists σ and there exists y such that $v(\xi)=\langle y, \sigma\rangle\}$, and
(ii) $\operatorname{dom} v \subseteq \operatorname{dom} v_{1}$, and
(iii) $v \upharpoonright(\operatorname{dom} v \backslash \operatorname{rng} g)=v_{1} \upharpoonright(\operatorname{dom} v \backslash \operatorname{rng} g)$, and
(iv) for every i such that $i \in \operatorname{dom} g$ holds $h(v) \upharpoonright\left(g_{i}\right.$ qua node of $\left.v\right)=$ $v_{1} \upharpoonright\left(g_{i}\right.$ qua node of $\left.v\right)$.
Then $h(v)=v_{1}$. Proof: $h(v) \upharpoonright(\operatorname{dom} v \backslash \operatorname{rng} g)=v_{1} \upharpoonright(\operatorname{dom} v \backslash \operatorname{rng} g) . h(v) \subseteq$ v_{1} by [27, (1)], (145), [27, (49)], (144).
(147) Let us consider an endomorphism h of $\mathfrak{F}_{\Sigma}(Y)$ and a vf-sequence f of v. Suppose $f \neq \emptyset$. Then there exists a non empty finite sequence \mathcal{B} of elements of the carrier of Σ and there exists a \mathcal{B}-sorting finite sequence V_{1} of elements of $\bigcup Y$ such that $\operatorname{dom} \mathcal{B}=\operatorname{dom} f$ and $\mathcal{B}=\operatorname{pr2}(f)$ and $V_{1}=\operatorname{pr} 1(f)$ and there exists a \mathcal{B}-sorting finite sequence D of elements
of $\mathfrak{F}_{\Sigma}(Y)$ and there exists a V_{1}-omitting D-omitting \mathcal{B}-sorting finite sequence V_{2} of elements of $\bigcup Y$ such that for every element i of $\operatorname{dom} \mathcal{B}$, $D(i)=h\left(V_{1}(i)\right.$-term $)$ and there exists a V_{2}-context sequence finite sequence F of elements of $\mathfrak{F}_{\Sigma}(Y)$ such that F is $\left(V_{1}, V_{2}, D\right)$-consequent context sequence and $F(1(\in \operatorname{dom} \mathcal{B}))\left[V_{1}(1(\in \operatorname{dom} \mathcal{B}))\right.$-term $]=v$ and $h(v)=F((\operatorname{len} \mathcal{B})(\in \operatorname{dom} \mathcal{B}))[D((\operatorname{len} \mathcal{B})(\in \operatorname{dom} \mathcal{B}))]$. Proof: Reconsider $\mathcal{B}=\operatorname{pr} 2(f)$ as a non empty finite sequence of elements of the carrier of Σ. Consider g being a one-to-one finite sequence such that $\operatorname{rng} g=\{\xi$, where ξ is an element of $\operatorname{dom} v$: there exists σ and there exists y such that $v(\xi)=\langle y, \sigma\rangle\}$ and $\operatorname{dom} f=\operatorname{dom} g$ and for every i such that $i \in \operatorname{dom} f$ holds $f(i)=v(g(i))$. $\operatorname{rng} g \subseteq \operatorname{dom} v$. Reconsider $V_{1}=\operatorname{pr} 1(f)$ as a \mathcal{B} sorting finite sequence of elements of $\bigcup Y$. Define $\mathcal{F}($ element of $\operatorname{dom} \mathcal{B})=$ $h\left(V_{1}\left(\$_{1}\right)\right.$-term $)$. Consider D being a non empty finite sequence such that $\operatorname{dom} D=\operatorname{dom} \mathcal{B}$ and for every element i of $\operatorname{dom} \mathcal{B}, D(i)=\mathcal{F}(i)$ from FinSeqLambda. D is a finite sequence of elements of $\mathfrak{F}_{\Sigma}(Y)$. D is \mathcal{B}-sorting. Set $V_{2}=$ the one-to-one V_{1}-omitting D-omitting \mathcal{B}-sorting finite sequence of elements of $\cup Y$. Define $\mathcal{H}($ element of dom \mathcal{B}, decorated tree $)=\left(\$_{2}\right.$ withreplacement $\left(\left(\left(g_{\$_{1}}\right.\right.\right.$ qua element of $\left.\operatorname{dom} v\right)$ qua finite sequence of elements of $\left.\mathbb{N}), D\left(\$_{1}\right)\right)$) with-replacement $\left(\left(\left(g_{\$_{1}+1}\right.\right.\right.$ qua element of $\left.\operatorname{dom} v\right)$ qua finite sequence of elements of $\mathbb{N})$, the root tree of $\left.\left\langle V_{2}\left(\$_{1}+1\right), \mathcal{B}\left(\$_{1}+1\right)\right\rangle\right)$. Consider F being a non empty decorated tree yielding finite sequence such that $\operatorname{dom} F=\operatorname{dom} \mathcal{B}$ and $F(1)=v$ with-replacement $\left(\left(g_{1}\right.\right.$ qua element of $\operatorname{dom} v$) qua finite sequence of elements of $\mathbb{N})$, the root tree of $\left\langle V_{2}(1)\right.$, $\mathcal{B}(1)\rangle)$ and for every elements i, j of $\operatorname{dom} \mathcal{B}$ such that $j=i+1$ for every decorated tree d such that $d=F(i)$ holds $F(j)=\mathcal{H}(i, d)$ from FinSeq Rec2Lambda. rng $F \subseteq \bigcup\left(\right.$ the sorts of $\left.\mathfrak{F}_{\Sigma}(Y)\right)$ by (131), [22, (87)], [20, (3)], (133). Define $\mathcal{Q}[$ natural number \equiv for every element b of dom \mathcal{B} such that $\$_{1}=b$ holds $F(b)$ is a context of $V_{2}(b)$ and $\operatorname{dom} v \subseteq \operatorname{dom}(F(b))$ and $F(b)\left(g_{b}\right)=\left\langle V_{2}(b), \mathcal{B}(b)\right\rangle$ and for every element b_{1} of $\operatorname{dom} \mathcal{B}$ such that $b_{1}>b$ holds F_{b} is $\left(V_{2}\left(b_{1}\right)\right)$-omitting and $F(b)\left(g_{b_{1}}\right)=\left\langle V_{1}\left(b_{1}\right), \mathcal{B}\left(b_{1}\right)\right\rangle . \mathcal{Q}[1]$ by [27, (102)], (134), (135), [22, (87)]. For every i such that $1 \leqslant i$ and $\mathcal{Q}[i]$ holds $\mathcal{Q}[i+1]$ by [52, (25)], [13, (13)], [27, (102)], (132). For every i such that $i \geqslant 1$ holds $\mathcal{Q}[i]$ from [13, Sch. 8]. F is V_{2}-context sequence by [52, (25)]. F is $\left(V_{1}, V_{2}, D\right)$-consequent context sequence by [52, (25)], [13, (12), (13)], (132). Set $b=1(\in \operatorname{dom} \mathcal{B})$. Reconsider $\nu=g_{b}, \xi=g_{\text {len } \mathcal{B}}$ as a node of v. Consider μ being a node of v such that $\nu=\mu$ and there exists σ and there exists y such that $v(\mu)=\langle y, \sigma\rangle$. $\operatorname{dom}(F(b))=\operatorname{dom} v$. Reconsider $\tau=V_{1}(b)$-term as an element of $\mathfrak{F}_{\Sigma}(Y)$. Consider μ being a finite sequence of elements of \mathbb{N} such that $\mu \in \operatorname{dom}\left(V_{2}(b)\right.$-term $)$ and $\nu=\nu^{\wedge} \mu$ and $F(b)(\nu)=V_{2}(b)-\operatorname{term}(\mu) . F(b)[\tau]=F(b)$ with-replacement (ν, τ). Define $\Sigma[$ natural number $] \equiv$ for every elements b, b_{1} of dom \mathcal{B} such that $\$_{1}=b$ and $b_{1} \leqslant b$ holds $(F(b)[D(b)]) \upharpoonright\left(g_{b_{1}}\right.$ qua node of $\left.v\right)=h(v) \upharpoonright\left(g_{b_{1}}\right.$ qua node of
$v)$ and $(F(b)[D(b)]) \upharpoonright(\operatorname{dom} v \backslash \operatorname{rng} g)=v \upharpoonright(\operatorname{dom} v \backslash \operatorname{rng} g) . \Sigma[1]$ by [52, (25)], (132), (138), (140). For every i such that $i \geqslant 1$ and $\Sigma[i]$ holds $\Sigma[i+1]$ by [52, (25)], [13, (13)], (132), (135). Set $b=(\operatorname{len} \mathcal{B})(\in \operatorname{dom} \mathcal{B})$. Set $v_{1}=$ $F(b)[D(b)]$. For every i such that $i \geqslant 1$ holds $\Sigma[i]$ from [13, Sch. 8]. $v_{1}=$ $F(b)$ with-replacement $\left(\left(g_{b}\right.\right.$ qua node of $\left.\left.v\right), D(b)\right) . \operatorname{dom}(F(b)) \subseteq \operatorname{dom} v_{1}$.

References

[1] Grzegorz Bancerek. Towards the construction of a model of Mizar concepts. Formalized Mathematics, 16(2):207-230, 2008. doi 10.2478/v10037-008-0027-x.
[2] Grzegorz Bancerek. Cardinal numbers Formalized Mathematics, 1(2):377-382, 1990.
[3] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.
[4] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[5] Grzegorz Bancerek. On powers of cardinals. Formalized Mathematics, 3(1):89-93, 1992.
[6] Grzegorz Bancerek. Algebra of morphisms, Formalized Mathematics, 6(2):303-310, 1997.
[7] Grzegorz Bancerek. Tarski's classes and ranks. Formalized Mathematics, 1(3):563-567, 1990.
[8] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547552, 1991.
[9] Grzegorz Bancerek. Institution of many sorted algebras. Part I: Signature reduct of an algebra. Formalized Mathematics, 6(2):279-287, 1997.
[10] Grzegorz Bancerek. Free term algebras. Formalized Mathematics, 20(3):239-256, 2012. doi 10.2478/v10037-012-0029-6
[11] Grzegorz Bancerek. Terms over many sorted universal algebra. Formalized Mathematics, 5(2):191-198, 1996.
[12] Grzegorz Bancerek. Translations, endomorphisms, and stable equational theories Formalized Mathematics, 5(4):553-564, 1996.
[13] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[14] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[15] Grzegorz Bancerek. Veblen hierarchy. Formalized Mathematics, 19(2):83-92, 2011. doi $10.2478 / \mathrm{v} 10037-011-0014-5$
[16] Grzegorz Bancerek. Reduction relations, Formalized Mathematics, 5(4):469-478, 1996.
[17] Grzegorz Bancerek. Introduction to trees Formalized Mathematics, 1(2):421-427, 1990.
[18] Grzegorz Bancerek. König's lemma Formalized Mathematics, 2(3):397-402, 1991.
[19] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees Formalized Mathematics, 3(2):195-204, 1992.
[20] Grzegorz Bancerek. Joining of decorated trees Formalized Mathematics, 4(1):77-82, 1993.
[21] Grzegorz Bancerek. Subtrees. Formalized Mathematics, 5(2):185-190, 1996.
[22] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[23] Grzegorz Bancerek and Artur Korniłowicz. Yet another construction of free algebra Formalized Mathematics, 9(4):779-785, 2001.
[24] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees Formalized Mathematics, 4(1):91-101, 1993.
[25] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions Formalized Mathematics, 5(4):485-492, 1996.
[26] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, $1(3): 529-536,1990$.
[27] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
[28] Czesław Byliński. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[29] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function Formalızed Mathematıcs, 1(3):521-527, 1990.
[30] Czesław Byliński. Graphs of functions Formalized Mathematics, 1(1):169-173, 1990.
[31] Czesław Byliński. Partial functions Formalized Mathematics, 1(2):357-367, 1990.
[32] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[33] Agata Darmochwał. Finite sets Formalized Mathematics, 1(1):165-167, 1990.
[34] Andrzej Kondracki. Basic properties of rational numbers Formalized Mathematics, 1(5): 841-845, 1990.
[35] Andrzej Kondracki. The Chinese Remainder Theorem Formalized Mathematics, 6(4): 573-577, 1997.
[36] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras Formalized Mathematics, 5(1):61-65, 1996.
[37] Małgorzata Korolkiewicz. Many sorted quotient algebra. Formalized Mathematics, 5(1): 79-84, 1996.
[38] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematıcs, 1(3):477-481, 1990.
[39] Yatsuka Nakamura. Determinant of some matrices of field elements. Formalized Mathematics, 14(1):1-5, 2006. doi 10.2478/v10037-006-0001-4.
[40] Hiroyuki Okazaki, Yuichi Futa, and Yasunari Shidama. Constructing binary Huffman tree. Formalized Mathematics, 21(2):133-143, 2013. doi 10.2478/forma-2013-0015.
[41] Beata Perkowska. Free many sorted universal algebra Formalized Mathematics, 5(1): 67-74, 1996.
[42] Karol Pak. Abstract simplicial complexes. Formalized Mathematics, 18(1):95-106, 2010. doi $10.2478 / \mathrm{v} 10037-010-0013-\mathrm{y}$.
[43] Andrzej Trybulec. Domains and their Cartesian products Formalized Mathematics, 1(1): 115-122, 1990.
[44] Andrzej Trybulec. Function domains and Frænkel operator Formalized Mathematics, 1 (3):495-500, 1990.
[45] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.
[46] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[47] Andrzej Trybulec. On the sets inhabited by numbers Formalized Mathematics, 11(4): 341-347, 2003.
[48] Andrzej Trybulec. A scheme for extensions of homomorphisms of many sorted algebras Formalized Mathematıcs, 5(2):205-209, 1996.
[49] Andrzej Trybulec. Many sorted algebras, Formalized Mathematics, 5(1):37-42, 1996.
[50] Andrzej Trybulec. Many sorted sets Formalized Mathematics, 4(1):15-22, 1993.
[51] Michał J. Trybulec. Integers Formalized Mathematics, 1(3):501-505, 1990.
[52] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences Formalized Mathematics, 1(3):569-573, 1990.
[53] Wojciech A. Trybulec. Pigeon hole principle Formalized Mathematics, 1(3):575-579, 1990.
[54] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[55] Edmund Woronowicz. Relations and their basic properties Formalized Mathematics, 1 (1):73-83, 1990.
[56] Edmund Woronowicz. Relations defined on sets Formalized Mathematics, 1(1):181-186, 1990.

