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Summary. In this article, we deal with dual spaces and the Hahn-Banach
Theorem. At the first, we defined dual spaces of real linear spaces and proved
related basic properties. Next, we defined dual spaces of real normed spaces. We
formed the definitions based on dual spaces of real linear spaces. In addition,
we proved properties of the norm about elements of dual spaces. For the proof
we referred to descriptions in the article [21]. Finally, applying theorems of the
second section, we proved the Hahn-Banach extension theorem in real normed
spaces. We have used extensively used [17].
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The notation and terminology used in this paper have been introduced in the
following articles: [5], [16], [23], [18], [6], [7], [17], [15], [21], [24], [1], [2], [20], [3],
[8], [4], [28], [25], [26], [10], [22], [12], [13], [27], [14], and [9].

1. Dual Spaces of Real Linear Spaces

From now on V denotes a non empty real linear space.
Let X be a real linear space. The functor MultFReal∗X yielding a function

from (the carrier of RF)× (the carrier of X) into the carrier of X is defined by
the term

(Def. 1) The external multiplication of X.

1This work was supported by JSPS KAKENHI 22300285, 23500029.
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Now we state the proposition:

(1) Let us consider a real linear spaceX. Then 〈the carrier ofX, the addition
of X, the zero of X,MultFReal∗X〉 is a vector space over RF.

Let X be a real linear space. The functor RLSp2RVSpX yielding a vector
space over RF is defined by the term

(Def. 2) 〈the carrier of X, the addition of X, the zero of X,MultFReal∗X〉.
Let X be a vector space structure over RF. The functor MultReal∗X yielding

a function from R × (the carrier of X) into the carrier of X is defined by the
term

(Def. 3) The left multiplication of X.

Now we state the proposition:

(2) Let us consider a vector spaceX over RF. Then 〈the carrier ofX, the zero
of X, the addition of X,MultReal∗X〉 is a real linear space.

Let X be a vector space over RF. The functor RVSp2RLSpX yielding a real
linear space is defined by the term

(Def. 4) 〈the carrier of X, the zero of X, the addition of X,MultReal∗X〉.
Now we state the propositions:

(3) Let us consider a real linear space X, elements v, w of X, and elements
v1, w1 of RLSp2RVSpX. If v = v1 and w = w1, then v+w = v1+w1 and
v − w = v1 − w1.

(4) Let us consider a vector space X over RF, elements v, w of X, and
elements v1, w1 of RVSp2RLSpX. If v = v1 and w = w1, then v + w =
v1 + w1 and v − w = v1 − w1.

Let V be a non empty real linear space. The functor V yielding a strict non
empty real linear space is defined by

(Def. 5) There exists a non empty vector space X over RF such that

(i) X = RLSp2RVSpV , and

(ii) it = RVSp2RLSp X .

Now we state the proposition:

(5) Let us consider an object x. Then x ∈ the carrier of V if and only if x
is a linear functional in V .

Let V be a non empty real linear space. One can check that V is constituted
functions.

Let f be an element of V and v be a vector of V . Note that the functor f(v)
yields an element of R. Now we state the propositions:

(6) Let us consider a non empty real linear space V and vectors f , g, h of V .
Then h = f + g if and only if for every vector x of V , h(x) = f(x) + g(x).
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(7) Let us consider a non empty real linear space V , vectors f , h of V , and
a real number a. Then h = a · f if and only if for every vector x of V ,
h(x) = a · f(x).

(8) Let us consider a non empty real linear space V . Then 0V = (the carrier
of V ) 7−→ 0.

(9) Let us consider a real linear space X. Then (the carrier of X) 7−→ 0 is
a linear functional in X. Proof: Set f = (the carrier of X) 7−→ 0. f is
additive by [23, (7)]. f is homogeneous by [23, (7)]. �

Let X be a real linear space. The linear functionals of X yielding a subset
of R(the carrier of X)R is defined by

(Def. 6) Let us consider an object x. Then x ∈ it if and only if x is a linear
functional in X.

Let X be a real normed space. One can verify that the linear functionals of
X is non empty.

Let X be a real linear space. One can verify that the linear functionals of X
is non empty and functional.

Let us consider a real linear space X. Now we state the propositions:

(10) The linear functionals ofX is linearly closed. Proof: SetW = the linear
functionals of X. For every vectors v, u of Rα

R such that v, u ∈ the linear
functionals of X holds v + u ∈ the linear functionals of X, where α is the
carrier of X by [7, (66)], [18, (1)]. For every real number a and for every
vector v of Rα

R such that v ∈W holds a · v ∈W , where α is the carrier of
X by [7, (66)], [18, (4)]. �

(11) 〈the linear functionals of X,Zero(the linear functionals of X,Rα
R),Add

(the linear functionals of X,Rα
R),Mult(the linear functionals of X,Rα

R)〉 is
a subspace of Rα

R, where α is the carrier of X.

Let X be a real linear space. Note that 〈the linear functionals of X,Zero
(the linear functionals of X,R(the carrier of X)R ),Add(the linear functionals of

X,R(the carrier of X)R ),Mult(the linear functionals of X,R(the carrier of X)R )〉 is Abe-
lian add-associative right zeroed right complementable scalar distributive vector
distributive scalar associative and scalar unital.

The functor X yielding a strict real linear space is defined by the term

(Def. 7) 〈the linear functionals of X,Zero(the linear functionals of X,Rα
R),Add

(the linear functionals of X,Rα
R),Mult(the linear functionals of X,Rα

R)〉,
where α is the carrier of X.

Observe that X is constituted functions.
Let f be an element of X and v be a vector of X. One can verify that the

functor f(v) yields an element of R. Now we state the propositions:

(12) Let us consider a real linear space X and vectors f , g, h of X . Then
h = f + g if and only if for every vector x of X, h(x) = f(x) + g(x). The
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theorem is a consequence of (10).

(13) Let us consider a real linear space X, vectors f , h of X , and a real
number a. Then h = a · f if and only if for every vector x of X, h(x) =
a · f(x). The theorem is a consequence of (10).

(14) Let us consider a real linear space X. Then 0X = (the carrier of X) 7−→
0. The theorem is a consequence of (10).

2. Dual Spaces of Real Normed Spaces

In the sequel S denotes a sequence of real numbers, k, n, m, m1 denote
natural numbers, and g, h, r, x denote real numbers.

Let S be a sequence of real numbers and x be a real number. The functor
S − x yielding a sequence of real numbers is defined by

(Def. 8) it(n) = S(n)− x.

Now we state the proposition:

(15) If S is convergent, then S − x is convergent and lim(S − x) = limS − x.

Let X be a real normed space and I be a functional in X. We say that I is
Lipschitzian if and only if

(Def. 9) There exists a real number K such that

(i) 0 ¬ K, and

(ii) for every vector x of X, |I(x)| ¬ K · ‖x‖.
Now we state the proposition:

(16) Let us consider a real normed space X and a functional f in X. If for
every vector x of X, f(x) = 0, then f is Lipschitzian.

Let X be a real normed space. One can check that there exists a linear
functional in X which is Lipschitzian.

The bounded linear functionals X yielding a subset of X is defined by

(Def. 10) Let us consider a set x. Then x ∈ it if and only if x is a Lipschitzian
linear functional in X.

One can check that the bounded linear functionals X is non empty.
Let us consider a real normed space X. Now we state the propositions:

(17) The bounded linear functionals X is linearly closed. Proof: Set W =
the bounded linear functionals X. For every vectors v, u of X such that
v, u ∈W holds v+ u ∈W by [5, (56)], (12). For every real number a and
for every vector v of X such that v ∈W holds a · v ∈W by [5, (46), (65)],
(13). �

(18) 〈the bounded linear functionals X,Zero(the bounded linear functionals
X, X ),Add(the bounded linear functionalsX, X ),Mult(the bounded linear
functionals X, X )〉 is a subspace of X .
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Let X be a real normed space. Let us observe that 〈the bounded linear
functionals X,Zero(the bounded linear functionals X, X ),Add(the bounded
linear functionals X, X ),Mult(the bounded linear functionals X, X )〉 is Abe-
lian add-associative right zeroed right complementable vector distributive scalar
distributive scalar associative and scalar unital.

The R-vector space of bounded linear functionals of X yielding a strict real
linear space is defined by the term

(Def. 11) 〈the bounded linear functionals X,Zero(the bounded linear functionals
X, X ),Add(the bounded linear functionals X, X ),Mult(the bounded
linear functionals X, X )〉.

One can check that every element of the R-vector space of bounded linear
functionals of X is function-like and relation-like.

Let f be an element of the R-vector space of bounded linear functionals of
X and v be a vector of X. Note that the functor f(v) yields an element of R.
Now we state the propositions:

(19) Let us consider a real normed space X and vectors f , g, h of the R-vector
space of bounded linear functionals of X. Then h = f +g if and only if for
every vector x of X, h(x) = f(x) + g(x). The theorem is a consequence of
(17) and (12).

(20) Let us consider a real normed space X, vectors f , h of the R-vector space
of bounded linear functionals of X, and a real number a. Then h = a · f
if and only if for every vector x of X, h(x) = a · f(x). The theorem is a
consequence of (17) and (13).

(21) Let us consider a real normed space X. Then 0α = (the carrier of
X) 7−→ 0, where α is the R-vector space of bounded linear functionals of
X. The theorem is a consequence of (14) and (17).

Let X be a real normed space and f be an object.
The functor Bound2Lipschitz(f,X) yielding a Lipschitzian linear functional

in X is defined by the term

(Def. 12) f(∈ the bounded linear functionals X).

Let u be a linear functional in X. The functor PreNorms(u) yielding a non
empty subset of R is defined by the term

(Def. 13) {|u(t)|, where t is a vector of X : ‖t‖ ¬ 1}.

Let g be a Lipschitzian linear functional in X. Observe that PreNorms(g) is
upper bounded.

Now we state the proposition:

(22) Let us consider a real normed space X and a linear functional g in X.
Then g is Lipschitzian if and only if PreNorms(g) is upper bounded.

Let X be a real normed space. The bounded linear functionals norm X

yielding a function from the bounded linear functionals X into R is defined by
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(Def. 14) Let us consider an object x. Suppose x ∈ the bounded linear functionals
X. Then it(x) = sup PreNorms(Bound2Lipschitz(x,X)).

Let us consider a real normed space X and a Lipschitzian linear functional
f in X. Now we state the propositions:

(23) Bound2Lipschitz(f,X) = f .

(24) (The bounded linear functionals norm X)(f) = sup PreNorms(f). The
theorem is a consequence of (23).

Let X be a real normed space. The functor DualSpX yielding a non empty
normed structure is defined by the term

(Def. 15) 〈the bounded linear functionals X,Zero(the bounded linear functionals
X, X ),Add(the bounded linear functionals X, X ),Mult(the bounded
linear functionals X, X ), the bounded linear functionals norm X〉.

Now we state the propositions:

(25) Let us consider a real normed space X. Then (the carrier of X) 7−→ 0 =
0DualSpX . The theorem is a consequence of (21).

(26) Let us consider a real normed space X, a point f of DualSpX, and a
Lipschitzian linear functional g in X. Suppose g = f . Let us consider a
vector t of X. Then |g(t)| ¬ ‖f‖·‖t‖. The theorem is a consequence of (24).

(27) Let us consider a real normed space X and a point f of DualSpX. Then
0 ¬ ‖f‖. The theorem is a consequence of (24).

(28) Let us consider real normed spaces X, Y and a point f of DualSpX.
If f = 0DualSpX , then 0 = ‖f‖. Proof: ‖f‖ = 0 by [23, (45)], [13, (45)],
(25), [23, (7)]. �

Let X be a real normed space. Note that every element of DualSpX is
function-like and relation-like.

Let f be an element of DualSpX and v be a vector of X. Let us note that
the functor f(v) yields an element of R. Now we state the propositions:

(29) Let us consider a real normed space X and points f , g, h of DualSpX.
Then h = f + g if and only if for every vector x of X, h(x) = f(x) + g(x).
The theorem is a consequence of (19).

(30) Let us consider a real normed space X, points f , h of DualSpX, and
a real number a. Then h = a · f if and only if for every vector x of X,
h(x) = a · f(x). The theorem is a consequence of (20).

(31) Let us consider a real normed space X, points f , g of DualSpX, and a
real number a. Then

(i) ‖f‖ = 0 iff f = 0DualSpX , and

(ii) ‖a · f‖ = |a| · ‖f‖, and

(iii) ‖f + g‖ ¬ ‖f‖+ ‖g‖.
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Proof: ‖f + g‖ ¬ ‖f‖+ ‖g‖ by [13, (45)], (27), [5, (56)], (26). ‖a · f‖ =
|a| · ‖f‖ by (27), (26), [5, (65), (46)]. �

Let X be a real normed space. Note that DualSpX is reflexive discernible
and real normed space-like.

Now we state the proposition:

(32) Let us consider a real normed space X. Then DualSpX is a real normed
space.

Let X be a real normed space. Let us note that DualSpX is reflexive di-
scernible real normed space-like vector distributive scalar distributive scalar
associative scalar unital Abelian add-associative right zeroed and right comple-
mentable.

Now we state the proposition:

(33) Let us consider a real normed space X and points f , g, h of DualSpX.
Then h = f − g if and only if for every vector x of X, h(x) = f(x)− g(x).
The theorem is a consequence of (29).

Let X be a real normed space, s be a sequence of DualSpX, and n be a
natural number. Let us note that the functor s(n) yields an element of DualSpX.
Now we state the propositions:

(34) Let us consider a real normed space X and a sequence s1 of DualSpX.
If s1 is Cauchy sequence by norm, then s1 is convergent. Proof: Define
P[set, set] ≡ there exists a sequence x1 of R such that for every natural
number n, x1(n) = (Bound2Lipschitz(vseq(n), X))($1) and x1 is conver-
gent and $2 = limx1. For every element x of X, there exists an element
y of R such that P[x, y] by (23), (33), (26), [5, (44)]. Consider f being
a function from the carrier of X into R such that for every element x of
X, P[x, f(x)] from [7, Sch. 3]. Reconsider t1 = f as a function from the
carrier of X into R. t1 is Lipschitzian by [13, (14)], [11, (12)], (23), (26).
For every real number e such that e > 0 there exists a natural number
k such that for every natural number n such that n  k for every vector
x of X, |(Bound2Lipschitz(vseq(n), X))(x)− t1(x)| ¬ e · ‖x‖ by [22, (8)],
(23), (33), (26). Reconsider t2 = t1 as a point of DualSpX. For every real
number e such that e > 0 there exists a natural number k such that for
every natural number n such that n  k holds ‖vseq(n)− t2‖ ¬ e by (23),
(33), [13, (45)], (24). For every real number e such that e > 0 there exists a
natural number m such that for every natural number n such that n  m
holds ‖vseq(n)− t2‖ < e. �

(35) Let us consider a real normed space X. Then DualSpX is a real Banach
space. The theorem is a consequence of (34).

Let X be a real normed space. One can verify that DualSpX is complete.
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3. Hahn-Banach Extension Theorem

Let V be a real normed space.
A subreal normal space of V is a real normed space and is defined by

(Def. 16) (i) the carrier of it ⊆ the carrier of V , and

(ii) 0it = 0V , and

(iii) the addition of it = (the addition of V ) � (the carrier of it), and

(iv) the external multiplication of it = (the external multiplication of
V )�(R× (the carrier of it)), and

(v) the normed of it = (the normed of V )�(the carrier of it).

(36) Let us consider a real normed space V , a subreal normal space X of V , a
Lipschitzian linear functional f in X, and a point F of DualSpX. Suppose
f = F . Then there exists a Lipschitzian linear functional g in V and the-
re exists a point G of DualSpV such that g = G and g�(the carrier
of X) = f and ‖G‖ = ‖F‖. Proof: Reconsider X0 = X as a re-
al linear space. Reconsider f3 = f as a linear functional in X0. Define
F(element of the carrier of V ) = ‖F‖ · ‖$1‖. Consider q being a function
from the carrier of V into R such that for every element v of the car-
rier of V , q(v) = F(v) from [7, Sch. 8]. q is a Banach functional in V .
For every vector x of X0 and for every vector v of V such that x = v

holds f3(x) ¬ q(v) by [19, (4)], (26), [6, (49)]. Consider g being a linear
functional in V such that g�(the carrier of X0) = f3 and for every vec-
tor x of V , g(x) ¬ q(x). For every vector x of V , |g(x)| ¬ ‖F‖ · ‖x‖
by [26, (16)], [20, (2)], [19, (5)]. (The bounded linear functionals norm
V )(g) ¬ (the bounded linear functionals norm X)(f). (The bounded
linear functionals norm X)(f) ¬ sup PreNorms(g). (The bounded linear
functionals norm X)(f) ¬ (the bounded linear functionals norm V )(g). �

(37) Hahn-Banach extension theorem (real normed spaces):
Let us consider a real normed space V , a subreal normal space X of V , a
Lipschitzian linear functional f in X, and a point F of DualSpX. Suppose

(i) f = F , and

(ii) for every vector x of X and for every vector v of V such that x = v

holds f(x) ¬ ‖v‖.
Then there exists a Lipschitzian linear functional g in V and there exists
a point G of DualSpV such that g = G and g�(the carrier of X) = f and
for every vector x of V , g(x) ¬ ‖x‖ and ‖G‖ = ‖F‖. Proof: Consider g
being a Lipschitzian linear functional in V , G being a point of DualSpV
such that g = G and g�(the carrier of X) = f and ‖G‖ = ‖F‖. ‖G‖ ¬ 1.
For every vector x of V , g(x) ¬ ‖x‖ by [19, (4)], (26). �
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