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Summary. In this article, we describe the differential equations on func-
tions from R into real Banach space. The descriptions are based on the article
[20]. As preliminary to the proof of these theorems, we proved some properties
of differentiable functions on real normed space. For the proof we referred to
descriptions and theorems in the article [21] and the article [32]. And applying
the theorems of Riemann integral introduced in the article [22], we proved the
ordinary differential equations on real Banach space. We referred to the methods
of proof in [30].
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The notation and terminology used in this paper have been introduced in the
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1. Some Properties of Differentiable Functions on Real Normed
Space

From now on Y denotes a real normed space.
Now we state the propositions:
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(1) Let us consider a real normed space Y, a function J from 〈E1, ‖ · ‖〉 into
R, a point x0 of 〈E1, ‖ · ‖〉, an element y0 of R, a partial function g from
R to Y, and a partial function f from 〈E1, ‖ · ‖〉 to Y. Suppose

(i) J = proj(1, 1), and

(ii) x0 ∈ dom f , and

(iii) y0 ∈ dom g, and

(iv) x0 = 〈y0〉, and

(v) f = g · J .

Then f is continuous in x0 if and only if g is continuous in y0. Proof: If
f is continuous in x0, then g is continuous in y0 by [14, (2)], [6, (39)], [37,
(36)]. �

(2) Let us consider a real normed space Y, a function I from R into 〈E1, ‖·‖〉,
a point x0 of 〈E1, ‖ · ‖〉, an element y0 of R, a partial function g from R to
Y, and a partial function f from 〈E1, ‖ · ‖〉 to Y. Suppose

(i) I = (proj(1, 1) qua function)−1, and

(ii) x0 ∈ dom f , and

(iii) y0 ∈ dom g, and

(iv) x0 = 〈y0〉, and

(v) f · I = g.

Then f is continuous in x0 if and only if g is continuous in y0. Proof:
If f is continuous in x0, then g is continuous in y0 by [14, (1)], [21, (33)],
[26, (15)]. �

(3) Let us consider a function I from R into 〈E1, ‖ · ‖〉.
Suppose I = (proj(1, 1) qua function)−1. Then

(i) for every rest R of 〈E1, ‖ · ‖〉, Y, R · I is a rest of Y, and

(ii) for every linear operator L from 〈E1, ‖ ·‖〉 into Y, L ·I is a linear of Y.

Proof: For every rest R of 〈E1, ‖ · ‖〉, Y, R · I is a rest of Y by [15,
(23)], [5, (47)], [14, (3)]. Reconsider L0 = L as a function from R1 into
Y. Reconsider L1 = L0 · I as a partial function from R to Y. Reconsider
r = L1(jj) as a point of Y. For every real number p, L1p = p · r by [6,
(13)], [14, (3)], [6, (12)]. �

(4) Let us consider a function J from 〈E1, ‖ · ‖〉 into R. Suppose J =
proj(1, 1). Then

(i) for every rest R of Y, R · J is a rest of 〈E1, ‖ · ‖〉, Y, and

(ii) for every linear L of Y, L · J is a Lipschitzian linear operator from
〈E1, ‖ · ‖〉 into Y.
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Proof: For every rest R of Y, R · J is a rest of 〈E1, ‖ · ‖〉, Y by [14, (4)],
[15, (6)], [5, (47)]. Consider r being a point of Y such that for every real
number p, Lp = p · r. �

(5) Let us consider a function I from R into 〈E1, ‖·‖〉, a point x0 of 〈E1, ‖·‖〉,
an element y0 of R, a partial function g from R to Y, and a partial function
f from 〈E1, ‖ · ‖〉 to Y. Suppose

(i) I = (proj(1, 1) qua function)−1, and

(ii) x0 ∈ dom f , and

(iii) y0 ∈ dom g, and

(iv) x0 = 〈y0〉, and

(v) f · I = g, and

(vi) f is differentiable in x0.

Then

(vii) g is differentiable in y0, and

(viii) g′(y0) = f ′(x0)(〈1〉), and

(ix) for every element r of R, f ′(x0)(〈r〉) = r · g′(y0).
The theorem is a consequence of (3). Proof: Consider N1 being a ne-
ighbourhood of x0 such that N1 ⊆ dom f and there exists a point L of
the real norm space of bounded linear operators from 〈E1, ‖ · ‖〉 into Y
and there exists a rest R of 〈E1, ‖ · ‖〉, Y such that for every point x of
〈E1, ‖ · ‖〉 such that x ∈ N1 holds fx − fx0 = L(x − x0) + Rx−x0 . Con-
sider e being a real number such that 0 < e and {z, where z is a point
of 〈E1, ‖ · ‖〉 : ‖z − x0‖ < e} ⊆ N1. Consider L being a point of the real
norm space of bounded linear operators from 〈E1, ‖ · ‖〉 into Y, R being a
rest of 〈E1, ‖ · ‖〉, Y such that for every point x3 of 〈E1, ‖ · ‖〉 such that
x3 ∈ N1 holds fx3 − fx0 = L(x3 − x0) +Rx3−x0 . Reconsider R0 = R · I as
a rest of Y. Reconsider L0 = L · I as a linear of Y. Set N = {z, where
z is a point of 〈E1, ‖ · ‖〉 : ‖z − x0‖ < e}. N ⊆ the carrier of 〈E1, ‖ · ‖〉. Set
N0 = {z, where z is an element of R : |z − y0| < e}. ]y0 − e, y0 + e[ ⊆ N0
by [28, (1)]. N0 ⊆ ]y0 − e, y0 + e[ by [28, (1)]. For every real number y1
such that y1 ∈ N0 holds (f · I)y1 − (f · I)y0 = L0y1−y0 + R0y1−y0 by [6,
(12)], [7, (35)], [14, (3)]. �

(6) Let us consider a function I from R into 〈E1, ‖·‖〉, a point x0 of 〈E1, ‖·‖〉,
a real number y0, a partial function g from R to Y, and a partial function
f from 〈E1, ‖ · ‖〉 to Y. Suppose

(i) I = (proj(1, 1) qua function)−1, and

(ii) x0 ∈ dom f , and

(iii) y0 ∈ dom g, and
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(iv) x0 = 〈y0〉, and

(v) f · I = g.

Then f is differentiable in x0 if and only if g is differentiable in y0. The
theorem is a consequence of (5) and (4). Proof: Reconsider J = proj(1, 1)
as a function from 〈E1, ‖ · ‖〉 into R. Consider N0 being a neighbourhood
of y0 such that N0 ⊆ dom(f · I) and there exists a linear L of Y and there
exists a rest R of Y such that for every real number y such that y ∈ N0
holds (f · I)y− (f · I)y0 = Ly−y0 +Ry−y0 . Consider e0 being a real number
such that 0 < e0 andN0 = ]y0−e0, y0+e0[. Reconsider e = e0 as an element
of R. Set N = {z, where z is a point of 〈E1, ‖·‖〉 : ‖z−x0‖ < e}. Consider
L being a linear of Y, R being a rest of Y such that for every real number
y1 such that y1 ∈ N0 holds (f ·I)y1−(f ·I)y0 = Ly1−y0+Ry1−y0 . Reconsider
R0 = R ·J as a rest of 〈E1, ‖·‖〉, Y. Reconsider L0 = L ·J as a Lipschitzian
linear operator from 〈E1, ‖·‖〉 into Y. N ⊆ the carrier of 〈E1, ‖·‖〉. For every
point y of 〈E1, ‖ · ‖〉 such that y ∈ N holds fy− fx0 = L0(y−x0) +R0y−x0
by [6, (13)], [7, (35)], [14, (4)]. �

(7) Let us consider a function J from 〈E1, ‖·‖〉 into R, a point x0 of 〈E1, ‖·‖〉,
an element y0 of R, a partial function g from R to Y, and a partial function
f from 〈E1, ‖ · ‖〉 to Y. Suppose

(i) J = proj(1, 1), and

(ii) x0 ∈ dom f , and

(iii) y0 ∈ dom g, and

(iv) x0 = 〈y0〉, and

(v) f = g · J .

Then f is differentiable in x0 if and only if g is differentiable in y0. The
theorem is a consequence of (6).

(8) Let us consider a function I from R into 〈E1, ‖·‖〉, a point x0 of 〈E1, ‖·‖〉,
an element y0 of R, a partial function g from R to Y, and a partial function
f from 〈E1, ‖ · ‖〉 to Y. Suppose

(i) I = (proj(1, 1) qua function)−1, and

(ii) x0 ∈ dom f , and

(iii) y0 ∈ dom g, and

(iv) x0 = 〈y0〉, and

(v) f · I = g, and

(vi) f is differentiable in x0.

Then ‖g′(y0)‖ = ‖f ′(x0)‖. The theorem is a consequence of (5). Proof:
Reconsider d1 = f ′(x0) as a Lipschitzian linear operator from 〈E1, ‖ · ‖〉
into Y. Set A = PreNorms(d1). For every real number r such that r ∈ A
holds r ¬ ‖g′(y0)‖ by [14, (1), (4)]. �
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Let us consider real numbers a, b, z and points p, q, x of 〈E1, ‖ · ‖〉. Now we
state the propositions:

(9) Suppose p = 〈a〉 and q = 〈b〉 and x = 〈z〉. Then

(i) if z ∈ ]a, b[, then x ∈ ]p, q[, and

(ii) if x ∈ ]p, q[, then a 6= b and if a < b, then z ∈ ]a, b[ and if a > b, then
z ∈ ]b, a[.

(10) Suppose p = 〈a〉 and q = 〈b〉 and x = 〈z〉. Then

(i) if z ∈ [a, b], then x ∈ [p, q], and

(ii) if x ∈ [p, q], then if a ¬ b, then z ∈ [a, b] and if a  b, then z ∈ [b, a].

Now we state the propositions:

(11) Let us consider real numbers a, b, points p, q of 〈E1, ‖ ·‖〉, and a function
I from R into 〈E1, ‖ · ‖〉. Suppose

(i) p = 〈a〉, and

(ii) q = 〈b〉, and

(iii) I = (proj(1, 1) qua function)−1.

Then

(iv) if a ¬ b, then I◦[a, b] = [p, q], and

(v) if a < b, then I◦]a, b[ = ]p, q[.

The theorem is a consequence of (10) and (9).

(12) Let us consider a real normed space Y, a partial function g from R to
the carrier of Y, and real numbers a, b, M . Suppose

(i) a ¬ b, and

(ii) [a, b] ⊆ dom g, and

(iii) for every real number x such that x ∈ [a, b] holds g is continuous in
x, and

(iv) for every real number x such that x ∈ ]a, b[ holds g is differentiable
in x, and

(v) for every real number x such that x ∈ ]a, b[ holds ‖g′(x)‖ ¬M .

Then ‖gb − ga‖ ¬M · |b− a|. The theorem is a consequence of (11), (10),
(1), (9), (7), and (8).
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2. Differential Equations

In the sequel X, Y denote real Banach spaces, Z denotes an open subset
of R, a, b, c, d, e, r, x0 denote real numbers, y0 denotes a vector of X, and G
denotes a function from X into X.

Now we state the propositions:

(13) Let us consider a real Banach space X, a partial function F from R to
the carrier of X, and a continuous partial function f from R to the carrier
of X. Suppose

(i) [a, b] ⊆ dom f , and

(ii) ]a, b[ ⊆ domF , and

(iii) for every real number x such that x ∈ ]a, b[ holds Fx =
x∫
a

f(x)dx,

and

(iv) x0 ∈ ]a, b[, and

(v) f is continuous in x0.

Then

(vi) F is differentiable in x0, and

(vii) F ′(x0) = fx0 .

(14) Let us consider a partial function F from R to the carrier of X and a
continuous partial function f from R to the carrier of X. Suppose

(i) dom f = [a, b], and

(ii) domF = [a, b], and

(iii) for every real number t such that t ∈ [a, b] holds Ft =
t∫
a

f(x)dx.

Let us consider a real number x. If x ∈ [a, b], then F is continuous in x.

(15) Let us consider a continuous partial function f from R to the carrier of

X. If a ∈ dom f , then
a∫
a

f(x)dx = 0X .

Let us consider a continuous partial function f from R to the carrier ofX and
a partial function g from R to the carrier of X. Now we state the propositions:

(16) Suppose a ¬ b and dom f = [a, b] and for every real number t such that

t ∈ [a, b] holds gt = y0 +
t∫
a

f(x)dx. Then ga = y0.
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(17) Suppose dom f = [a, b] and dom g = [a, b] and Z = ]a, b[ and for every

real number t such that t ∈ [a, b] holds gt = y0 +
t∫
a

f(x)dx. Then

(i) g is continuous and differentiable on Z, and

(ii) for every real number t such that t ∈ Z holds g′(t) = ft.

Let us consider a partial function f from R to the carrier of X. Now we state
the propositions:

(18) Suppose a ¬ b and [a, b] ⊆ dom f and for every real number x such that
x ∈ [a, b] holds f is continuous in x and f is differentiable on ]a, b[ and for
every real number x such that x ∈ ]a, b[ holds f ′(x) = 0X . Then fb = fa.

(19) Suppose [a, b] ⊆ dom f and for every real number x such that x ∈ [a, b]
holds f is continuous in x and f is differentiable on ]a, b[ and for every real
number x such that x ∈ ]a, b[ holds f ′(x) = 0X . Then f�]a, b[ is constant.

Now we state the propositions:

(20) Let us consider a continuous partial function f from R to the carrier of
X. Suppose

(i) [a, b] = dom f , and

(ii) f�]a, b[ is constant.

Let us consider a real number x. If x ∈ [a, b], then fx = fa.

(21) Let us consider continuous partial functions y, G1 from R to the carrier
of X and a partial function g from R to the carrier of X. Suppose

(i) a ¬ b, and

(ii) Z = ]a, b[, and

(iii) dom y = [a, b], and

(iv) dom g = [a, b], and

(v) domG1 = [a, b], and

(vi) y is differentiable on Z, and

(vii) ya = y0, and

(viii) for every real number t such that t ∈ Z holds y′(t) = G1t, and

(ix) for every real number t such that t ∈ [a, b] holds gt = y0+
t∫
a

G1(x)dx.

Then y = g. The theorem is a consequence of (17), (16), (19), and (20).
Proof: Reconsider h = y − g as a continuous partial function from R
to the carrier of X. For every real number x such that x ∈ domh holds
hx = 0X by [35, (15)]. For every element x of R such that x ∈ dom y holds
y(x) = g(x) by [35, (21)]. �
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Let X be a real Banach space, y0 be a vector of X, G be a function from
X into X, and a, b be real numbers. Assume a ¬ b and G is continuous on
domG. The functor Fredholm(G, a, b, y0) yielding a function from the R-norm
space of continuous functions of [a, b] andX into the R-norm space of continuous
functions of [a, b] and X is defined by

(Def. 1) Let us consider a vector x of the R-norm space of continuous functions
of [a, b] and X. Then there exist continuous partial functions f , g, G1 from
R to the carrier of X such that

(i) x = f , and

(ii) it(x) = g, and

(iii) dom f = [a, b], and

(iv) dom g = [a, b], and

(v) G1 = G · f , and

(vi) for every real number t such that t ∈ [a, b] holds gt = y0+
t∫
a

G1(x)dx.

Now we state the propositions:

(22) Suppose a ¬ b and 0 < r and for every vectors y1, y2 of X, ‖Gy1−Gy2‖ ¬
r ·‖y1−y2‖. Let us consider vectors u, v of the R-norm space of continuous
functions of [a, b] and X and continuous partial functions g, h from R to
the carrier of X. Suppose

(i) g = (Fredholm(G, a, b, y0))(u), and

(ii) h = (Fredholm(G, a, b, y0))(v).

Let us consider a real number t. Suppose t ∈ [a, b]. Then ‖gt − ht‖ ¬
(r · (t − a)) · ‖u − v‖. Proof: Set F = Fredholm(G, a, b, y0). Consider
f1, g1, G3 being continuous partial functions from R to the carrier of
X such that u = f1 and F (u) = g1 and dom f1 = [a, b] and dom g1 =
[a, b] and G3 = G · f1 and for every real number t such that t ∈ [a, b]

holds g1t = y0 +
t∫
a

G3(x)dx. Consider f2, g2, G5 being continuous partial

functions from R to the carrier of X such that v = f2 and F (v) = g2
and dom f2 = [a, b] and dom g2 = [a, b] and G5 = G · f2 and for every real

number t such that t ∈ [a, b] holds g2t = y0+
t∫
a

G5(x)dx. Set G4 = G3−G5.

For every real number x such that x ∈ [a, t] holds ‖G4x‖ ¬ r · ‖u− v‖ by
[20, (26)], [6, (12)]. �

(23) Suppose a ¬ b and 0 < r and for every vectors y1, y2 of X, ‖Gy1 −
Gy2‖ ¬ r · ‖y1 − y2‖. Let us consider vectors u, v of the R-norm space of
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continuous functions of [a, b] and X, an element m of N, and continuous
partial functions g, h from R to the carrier of X. Suppose

(i) g = (Fredholm(G, a, b, y0))m+1(u), and

(ii) h = (Fredholm(G, a, b, y0))m+1(v).

Let us consider a real number t. Suppose t ∈ [a, b]. Then ‖gt − ht‖ ¬
(r·(t−a))m+1
(m+1)! ·‖u−v‖. The theorem is a consequence of (22). Proof: Set F =

Fredholm(G, a, b, y0). Define P[natural number] ≡ for every continuous
partial functions g, h from R to the carrier of X such that g = F $1+1(u1)
and h = F $1+1(v1) for every real number t such that t ∈ [a, b] holds

‖gt − ht‖ ¬ (r·(t−a))
$1+1

($1+1)!
· ‖u1 − v1‖. P[0] by [4, (70)], [18, (5), (13)]. For

every natural number k such that P[k] holds P[k+1] by [4, (71)], [6, (13)],
[37, (27)]. For every natural number k, P[k] from [1, Sch. 2]. �

(24) Let us consider a natural number m. Suppose

(i) a ¬ b, and

(ii) 0 < r, and

(iii) for every vectors y1, y2 of X, ‖Gy1 −Gy2‖ ¬ r · ‖y1 − y2‖.
Let us consider vectors u, v of the R-norm space of continuous functions
of [a, b] and X.
Then ‖(Fredholm(G, a, b, y0))m+1(u) − (Fredholm(G, a, b, y0))m+1(v)‖ ¬
(r·(b−a))m+1
(m+1)! · ‖u− v‖. The theorem is a consequence of (23).

(25) If a < b and G is Lipschitzian on the carrier of X, then there exists
a natural number m such that (Fredholm(G, a, b, y0))m+1 is contraction.
The theorem is a consequence of (24).

(26) If a < b andG is Lipschitzian on the carrier ofX, then Fredholm(G, a, b, y0)
has unique fixpoint. The theorem is a consequence of (25).

(27) Let us consider continuous partial functions f , g from R to the carrier
of X. Suppose

(i) dom f = [a, b], and

(ii) dom g = [a, b], and

(iii) Z = ]a, b[, and

(iv) a < b, and

(v) G is Lipschitzian on the carrier of X, and

(vi) g = (Fredholm(G, a, b, y0))(f).

Then

(vii) ga = y0, and

(viii) g is differentiable on Z, and
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(ix) for every real number t such that t ∈ Z holds g′(t) = (G · f)t.
The theorem is a consequence of (17) and (16).

(28) Let us consider a continuous partial function y from R to the carrier of
X. Suppose

(i) a < b, and

(ii) Z = ]a, b[, and

(iii) G is Lipschitzian on the carrier of X, and

(iv) dom y = [a, b], and

(v) y is differentiable on Z, and

(vi) ya = y0, and

(vii) for every real number t such that t ∈ Z holds y′(t) = G(yt).

Then y is a fixpoint of Fredholm(G, a, b, y0). The theorem is a consequence
of (21). Proof: Consider f , g, G1 being continuous partial functions from
R to the carrier of X such that y = f and (Fredholm(G, a, b, y0))(y) = g
and dom f = [a, b] and dom g = [a, b] and G1 = G · f and for every real

number t such that t ∈ [a, b] holds gt = y0 +
t∫
a

G1(x)dx. For every real

number t such that t ∈ Z holds y′(t) = G1t by [6, (13)]. �

(29) Let us consider continuous partial functions y1, y2 from R to the carrier
of X. Suppose

(i) a < b, and

(ii) Z = ]a, b[, and

(iii) G is Lipschitzian on the carrier of X, and

(iv) dom y1 = [a, b], and

(v) y1 is differentiable on Z, and

(vi) y1a = y0, and

(vii) for every real number t such that t ∈ Z holds y1′(t) = G(y1t), and

(viii) dom y2 = [a, b], and

(ix) y2 is differentiable on Z, and

(x) y2a = y0, and

(xi) for every real number t such that t ∈ Z holds y2′(t) = G(y2t).

Then y1 = y2. The theorem is a consequence of (26) and (28).

(30) Suppose a < b and Z = ]a, b[ and G is Lipschitzian on the carrier of X.
Then there exists a continuous partial function y from R to the carrier of
X such that
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(i) dom y = [a, b], and

(ii) y is differentiable on Z, and

(iii) ya = y0, and

(iv) for every real number t such that t ∈ Z holds y′(t) = G(yt).

The theorem is a consequence of (26) and (27).
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