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Summary. In this paper we formalized some theorems concerning the
cyclic groups of prime power order. We formalize that every commutative cyclic
group of prime power order is isomorphic to a direct product of family of cyclic
groups [1], [18].
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The notation and terminology used in this paper have been introduced in the
following articles: [2], [20], [6], [11], [7], [8], [24], [18], [25], [26], [27], [28], [13],
[23], [16], [21], [3], [4], [15], [5], [9], [22], [17], [12], [30], [31], [14], [29], and [10].

1. Basic Properties of Cyclic Groups of Prime Power Order

Let G be a finite group. The functor Ordset(G) yielding a subset of N is
defined by the term

(Def. 1) the set of all ord(a) where a is an element of G.

One can check that Ordset(G) is finite and non empty.
Now we state the propositions:

(1) Let us consider a finite group G. Then there exists an element g of G
such that ord(g) = sup Ordset(G).
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(2) Let us consider a strict group G and a strict normal subgroup N of G.
If G is commutative, then G/N is commutative.

(3) Let us consider a finite group G and elements a, b of G. Then b ∈ gr({a})
if and only if there exists an element p of N such that b = ap.

(4) Let us consider a finite group G, an element a of G, and elements n, p,
s of N. Suppose

(i) gr({a}) = n, and

(ii) n = p · s.
Then ord(ap) = s.

Let us consider an element k of N, a finite group G, and an element a of G.
Now we state the propositions:

(5) gr({a}) = gr({ak}) if and only if gcd(k, ord(a)) = 1.

(6) If gcd(k, ord(a)) = 1, then ord(a) = ord(ak).

(7) ord(a) | k · ord(ak).

Now we state the proposition:

(8) Let us consider a group G and elements a, b of G. Suppose b ∈ gr({a}).
Then gr({b}) is a strict subgroup of gr({a}).

Let G be a strict commutative group and x be an element of SubGrG. The
functor NormSpR(x) yielding a normal strict subgroup of G is defined by the
term

(Def. 2) x.

Now we state the propositions:

(9) Let us consider groups G, H, a subgroup K of H, and a homomor-
phism f from G to H. Then there exists a strict subgroup J of G such
that the carrier of J = f−1(the carrier of K). Proof: Reconsider I3 =
f−1(the carrier of K) as a non empty subset of the carrier of G. For every
elements g1, g2 of G such that g1, g2 ∈ I3 holds g1 · g2 ∈ I3 by [8, (38)],
[25, (50)]. For every element g of G such that g ∈ I3 holds g−1 ∈ I3 by [8,
(38)], [25, (51)], [28, (32)]. Consider J being a strict subgroup of G such
that the carrier of J = f−1(the carrier of K). �

(10) Let us consider a natural number p, a finite group G, and elements x, d
of G. Suppose

(i) ord(d) = p, and

(ii) p is prime, and

(iii) x ∈ gr({d}).
Then

(iv) x = 1G, or

(v) gr({x}) = gr({d}).
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The theorem is a consequence of (8). Proof: If gr({x}) = {1}gr({d}), then
x = 1G by [19, (2)], [25, (44)]. �

(11) Let us consider a group G and normal subgroups H, K of G. Suppo-
se (the carrier of H) ∩ (the carrier of K) = {1G}. Then (the canonical
homomorphism onto cosets of H)�(the carrier of K) is one-to-one. Pro-
of: Set f = the canonical homomorphism onto cosets of H. Set g =
f�the carrier of K. For every elements x1, x2 such that x1, x2 ∈ dom g
and g(x1) = g(x2) holds x1 = x2 by [30, (57)], [7, (49)], [25, (46), (103),
(51)]. �

Let us consider finite commutative groups G, F , an element a of G, and a
homomorphism f from G to F . Now we state the propositions:

(12) The carrier of gr({f(a)}) = f◦the carrier of gr({a}).
(13) ord(f(a)) ¬ ord(a).

(14) If f is one-to-one, then ord(f(a)) = ord(a).

Now we state the propositions:

(15) Let us consider groups G, F , a subgroup H of G, and a homomorphism
f from G to F . Then f�the carrier of H is a homomorphism from H to F .
Proof: Reconsider g = f�the carrier of H as a function from the carrier
of H into the carrier of F . For every elements a, b of H, g(a ·b) = g(a) ·g(b)
by [25, (40)], [7, (49)], [25, (43)]. �

(16) Let us consider finite commutative groups G, F , an element a of G, and
a homomorphism f from G to F . Suppose f�the carrier of gr({a}) is one-
to-one. Then ord(f(a)) = ord(a). The theorem is a consequence of (15)
and (14).

(17) Let us consider a finite commutative group G, a prime number p, a
natural number m, and an element a of G. Suppose

(i) G = pm, and

(ii) a 6= 1G.

Then there exists a natural number n such that ord(a) = pn+1.

(18) Let us consider a prime number p and natural numbers j,m, k. Ifm = pk

and p - j, then gcd(j,m) = 1.

2. Isomorphism of Cyclic Groups of Prime Power Order

Let us consider a strict finite commutative group G, a prime number p, and
a natural number m. Now we state the propositions:

(19) Suppose G = pm. Then there exists a normal strict subgroup K of G
and there exist natural numbers n, k and there exists an element g of G
such that ord(g) = sup Ordset(G) and K is finite and commutative and
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(the carrier of K)∩ (the carrier of gr({g})) = {1G} and for every element
x of G, there exist elements b1, a1 of G such that b1 ∈ K and a1 ∈ gr({g})
and x = b1 ·a1 and ord(g) = pn and k = m−n and n ¬ m and K = pk and
there exists a homomorphism F from

∏
〈K, gr({g})〉 to G such that F is

bijective and for every elements a, b of G such that a ∈ K and b ∈ gr({g})
holds F (〈a, b〉) = a · b.

(20) Suppose G = pm. Then there exists a non zero natural number k and
there exists a k-element finite sequence a of elements ofG and there exists a
k-element finite sequence I2 of elements of N and there exists an associative
group-like commutative multiplicative magma family F of Seg k and there
exists a homomorphism H1 from

∏
F to G such that for every natural

number i such that i ∈ Seg k there exists an element a2 of G such that a2 =
a(i) and F (i) = gr({a2}) and ord(a2) = pI2(i) and for every natural number
i such that 1 ¬ i ¬ k − 1 holds I2(i) ¬ I2(i + 1) and for every elements
p, q of Seg k such that p 6= q holds (the carrier of F (p)) ∩ (the carrier
of F (q)) = {1G} and H1 is bijective and for every (the carrier of G)-
valued total Seg k-defined function x such that for every element p of
Seg k, x(p) ∈ F (p) holds x ∈

∏
F and H1(x) =

∏
x.

(21) Suppose G = pm. Then there exists a non zero natural number k and
there exists a k-element finite sequence a of elements ofG and there exists a
k-element finite sequence I2 of elements of N and there exists an associative
group-like commutative multiplicative magma family F of Seg k such that
for every natural number i such that i ∈ Seg k there exists an element a2
of G such that a2 = a(i) and F (i) = gr({a2}) and ord(a2) = pI2(i) and for
every natural number i such that 1 ¬ i ¬ k − 1 holds I2(i) ¬ I2(i + 1)
and for every elements p, q of Seg k such that p 6= q holds (the carrier
of F (p)) ∩ (the carrier of F (q)) = {1G} and for every element y of G,
there exists a (the carrier of G)-valued total Seg k-defined function x such
that for every element p of Seg k, x(p) ∈ F (p) and y =

∏
x and for every

(the carrier of G)-valued total Seg k-defined functions x1, x2 such that for
every element p of Seg k, x1(p) ∈ F (p) and for every element p of Seg k,
x2(p) ∈ F (p) and

∏
x1 =

∏
x2 holds x1 = x2.
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