

## Constructing Binary Huffman Tree<sup>1</sup>

Hiroyuki Okazaki<sup>2</sup> Shinshu University Nagano, Japan Yuichi Futa Japan Advanced Institute of Science and Technology Ishikawa, Japan

Yasunari Shidama<sup>3</sup> Shinshu University Nagano, Japan

**Summary.** Huffman coding is one of a most famous entropy encoding methods for lossless data compression [16]. JPEG and ZIP formats employ variants of Huffman encoding as lossless compression algorithms. Huffman coding is a bijective map from source letters into leaves of the Huffman tree constructed by the algorithm. In this article we formalize an algorithm constructing a binary code tree, Huffman tree.

MSC: 14G50 68P30 03B35

Keywords: formalization of Huffman coding tree; source coding

MML identifier: HUFFMAN1, version: 8.1.02 5.17.1181

The notation and terminology used in this paper have been introduced in the following articles: [9], [1], [20], [8], [14], [11], [12], [23], [22], [2], [3], [18], [19], [17], [25], [26], [24], [4], [5], [6], [7], and [13].

## 1. Constructing Binary Decoded Trees

Let D be a non empty set and x be an element of D. Observe that the root tree of x is binary as a decorated tree.

The functor  $\mathbb{R}_{\mathbb{N}}$  yielding a set is defined by the term

<sup>&</sup>lt;sup>1</sup>This research was presented during the 2013 International Conference on Foundations of Computer Science FCS'13 in Las Vegas, USA.

<sup>&</sup>lt;sup>2</sup>This work was supported by JSPS KAKENHI 21240001.

<sup>&</sup>lt;sup>3</sup>This work was supported by JSPS KAKENHI 22300285.

(Def. 1)  $\mathbb{N} \times \mathbb{R}$ .

Note that  $\mathbb{R}_{\mathbb{N}}$  is non empty.

Let D be a non empty set. The binary finite trees of D yielding a set of trees decorated with elements of D is defined by

(Def. 2) Let us consider a tree T decorated with elements of D. Then dom T is finite and T is binary if and only if  $T \in it$ .

The Boolean binary finite trees of D yielding a non empty subset of  $2^{\text{the binary finite trees of }D}$  is defined by the term

(Def. 3)  $\{x, \text{ where } x \text{ is an element of } 2^{\alpha} : x \text{ is finite and } x \neq \emptyset\}$ , where  $\alpha$  is the binary finite trees of D.

In this paper  $\mathbb{S}$  denotes a non empty finite set, p denotes a probability on the trivial  $\sigma$ -field of  $\mathbb{S}$ ,  $T_1$  denotes a finite sequence of elements of the Boolean binary finite trees of  $\mathbb{R}_{\mathbb{N}}$ , and q denotes a finite sequence of elements of  $\mathbb{N}$ .

Let us consider  $\mathbb{S}$  and p. The functor InitTrees p yielding a non empty finite subset of the binary finite trees of  $\mathbb{R}_{\mathbb{N}}$  is defined by the term

(Def. 4)  $\{T, \text{ where } T \text{ is an element of FinTrees}(\mathbb{R}_{\mathbb{N}}) : T \text{ is a finite binary tree decorated with elements of } \mathbb{R}_{\mathbb{N}} \text{ and there exists an element } x \text{ of } \mathbb{S} \text{ such that } T = \text{the root tree of } \langle (\text{CFS}(\mathbb{S}))^{-1}(x), p(\{x\}) \rangle \}.$ 

Let p be a tree decorated with elements of  $\mathbb{R}_{\mathbb{N}}$ . The value of root from right of p yielding a real number is defined by the term

(Def. 5)  $p(\emptyset)_2$ .

The value of root from left of p yielding a natural number is defined by the term (Def. 6)  $p(\emptyset)_1$ .

Let T be a finite binary tree decorated with elements of  $\mathbb{R}_{\mathbb{N}}$  and p be an element of dom T. The value of tree of p yielding a real number is defined by the term

(Def. 7)  $T(p)_2$ .

Let p, q be finite binary trees decorated with elements of  $\mathbb{R}_{\mathbb{N}}$  and k be a natural number. The functor MakeTree(p,q,k) yielding a finite binary tree decorated with elements of  $\mathbb{R}_{\mathbb{N}}$  is defined by the term

(Def. 8)  $\langle k, \text{ (the value of root from right of } p) + \text{ (the value of root from right of } q) \rangle$ -tree(p,q).

Let X be a non empty finite subset of the binary finite trees of  $\mathbb{R}_{\mathbb{N}}$ . The maximal value of X yielding a natural number is defined by

- (Def. 9) There exists a non empty finite subset L of  $\mathbb{N}$  such that
  - (i)  $L = \{ \text{the value of root from left of } p, \text{ where } p \text{ is an element of the binary finite trees of } \mathbb{R}_{\mathbb{N}} : p \in X \}, \text{ and }$
  - (ii)  $it = \max L$ .

Now we state the propositions:

- (1) Let us consider a non empty finite subset X of the binary finite trees of  $\mathbb{R}_{\mathbb{N}}$  and a finite binary tree w decorated with elements of  $\mathbb{R}_{\mathbb{N}}$ . Suppose  $X = \{w\}$ . Then the maximal value of X = the value of root from left of w. Proof: Consider L being a non empty finite subset of  $\mathbb{N}$  such that  $L = \{$ the value of root from left of p, where p is an element of the binary finite trees of  $\mathbb{R}_{\mathbb{N}} : p \in X \}$  and the maximal value of  $X = \max L$ . For every element n such that  $n \in L$  holds n = the value of root from left of w. For every element n such that n = the value of root from left of  $n \in L$ .  $n \in L$
- (2) Let us consider non empty finite subsets X, Y, Z of the binary finite trees of  $\mathbb{R}_{\mathbb{N}}$ . Suppose  $Z = X \cup Y$ . Then the maximal value of  $Z = \max(\text{the maximal value of } X, \text{the maximal value of } Y)$ .
- (3) Let us consider non empty finite subsets X, Z of the binary finite trees of  $\mathbb{R}_{\mathbb{N}}$  and a set Y. Suppose  $Z = X \setminus Y$ . Then the maximal value of  $Z \leq$  the maximal value of X. The theorem is a consequence of (2).
- (4) Let us consider a non empty finite subset X of the binary finite trees of  $\mathbb{R}_{\mathbb{N}}$  and an element p of the binary finite trees of  $\mathbb{R}_{\mathbb{N}}$ . Suppose  $p \in X$ . Then the value of root from left of  $p \leq 1$  the maximal value of X.

Let X be a non empty finite subset of the binary finite trees of  $\mathbb{R}_{\mathbb{N}}$ . A minimal value tree of X is a finite binary tree decorated with elements of  $\mathbb{R}_{\mathbb{N}}$  and is defined by

- (Def. 10) (i)  $it \in X$ , and
  - (ii) for every finite binary tree q decorated with elements of  $\mathbb{R}_{\mathbb{N}}$  such that  $q \in X$  holds the value of root from right of  $it \leqslant$  the value of root from right of q.

Now we state the propositions:

- (5)  $\overline{\text{InitTrees }p} = \overline{\mathbb{S}}$ . PROOF: Reconsider  $f_1 = (\text{CFS}(\mathbb{S}))^{-1}$  as a function from  $\mathbb{S}$  into Seg  $\overline{\mathbb{S}}$ . Define  $\mathcal{P}[\text{element}, \text{element}] \equiv \mathbb{S}_2 = \text{the root tree of } \langle f_1(\mathbb{S}_1), p(\{\mathbb{S}_1\}) \rangle$ . For every element x such that  $x \in \mathbb{S}$  there exists an element y such that  $y \in \text{InitTrees }p$  and  $\mathcal{P}[x,y]$  by [12,(5)], [13,(87)], [7,(3)]. Consider f being a function from  $\mathbb{S}$  into InitTrees p such that for every element x such that  $x \in \mathbb{S}$  holds  $\mathcal{P}[x,f(x)]$  from [12,Sch. 1].  $\square$
- (6) Let us consider a non empty finite subset X of the binary finite trees of  $\mathbb{R}_{\mathbb{N}}$  and finite binary trees s, t decorated with elements of  $\mathbb{R}_{\mathbb{N}}$ . Then MakeTree $(t, s, ((\text{the maximal value of } X) + 1)) \notin X$ .

Let X be a set. The set of leaves of X yielding a subset of  $2^{\mathbb{R}_{\mathbb{N}}}$  is defined by the term

(Def. 11) {Leaves(p), where p is an element of the binary finite trees of  $\mathbb{R}_{\mathbb{N}} : p \in X$ }. Now we state the propositions:

- (7) Let us consider a finite binary tree X decorated with elements of  $\mathbb{R}_{\mathbb{N}}$ . Then the set of leaves of  $\{X\} = \{\text{Leaves}(X)\}$ . PROOF: For every element  $x, x \in \text{the set of leaves of } \{X\} \text{ iff } x \in \{\text{Leaves}(X)\}$ .  $\square$
- (8) Let us consider sets X, Y. Then the set of leaves of  $X \cup Y =$  (the set of leaves of X)  $\cup$  (the set of leaves of Y). PROOF: For every element x,  $x \in$  the set of leaves of  $X \cup Y$  iff  $x \in$  (the set of leaves of X)  $\cup$  (the set of leaves of Y).  $\square$
- (9) Let us consider trees s, t. Then  $\emptyset \notin \text{Leaves}(\widehat{t}, s)$ . PROOF: For every element p,  $p \in \widehat{t}, s$  iff  $p \in \text{the elementary tree of 0 by } [4, (19), (29)], [10, (130)]. <math>\square$
- (10) Let us consider trees s, t. Then Leaves $(t,s) = \{\langle 0 \rangle \cap p$ , where p is an element of  $t: p \in \text{Leaves}(t)\} \cup \{\langle 1 \rangle \cap p$ , where p is an element of  $s: p \in \text{Leaves}(s)\}$ . The theorem is a consequence of (9). Proof: Set  $L = \{\langle 0 \rangle \cap p$ , where p is an element of  $t: p \in \text{Leaves}(t)\}$ . Set  $R = \{\langle 1 \rangle \cap p$ , where p is an element of  $s: p \in \text{Leaves}(s)\}$ . Set H = Leaves(t,s). For every element  $x, x \in H$  iff  $x \in L \cup R$  by [2, (23)], [9, (6)].  $\square$

Let us consider decorated trees s, t, an element x, and a finite sequence q of elements of  $\mathbb{N}$ . Now we state the propositions:

- (11) If  $q \in \text{dom } t$ , then  $(x\text{-tree}(t, s))(\langle 0 \rangle \cap q) = t(q)$ .
- (12) If  $q \in \text{dom } s$ , then  $(x\text{-tree}(t, s))(\langle 1 \rangle \cap q) = s(q)$ . Now we state the propositions:
- (13) Let us consider decorated trees s, t and an element x. Then Leaves $(x\text{-tree}(t,s)) = \text{Leaves}(t) \cup \text{Leaves}(s)$ . The theorem is a consequence of (10), (11), and (12). Proof: Set  $L = \{\langle 0 \rangle \cap p$ , where p is an element of  $\text{dom } t : p \in \text{Leaves}(\text{dom } t)\}$ . Set  $R = \{\langle 1 \rangle \cap p$ , where p is an element of  $\text{dom } s : p \in \text{Leaves}(\text{dom } s)\}$ . For every element z,  $z \in (x\text{-tree}(t,s))^{\circ}L$  iff  $z \in t^{\circ}(\text{Leaves}(\text{dom } t))$ . For every element  $z, z \in (x\text{-tree}(t,s))^{\circ}R$  iff  $z \in s^{\circ}(\text{Leaves}(\text{dom } s))$ .  $\square$
- (14) Let us consider a natural number k and finite binary trees s, t decorated with elements of  $\mathbb{R}_{\mathbb{N}}$ . Then  $\bigcup$  the set of leaves of  $\{s,t\} = \bigcup$  the set of leaves of  $\{\text{MakeTree}(t,s,k)\}$ . The theorem is a consequence of (8), (7), and (13).
- (15) Leaves(the elementary tree of 0) = the elementary tree of 0. PROOF: For every element  $x, x \in \text{Leaves}$  (the elementary tree of 0) iff  $x \in \text{the elementary}$  tree of 0 by [4, (29), (54)].  $\square$
- (16) Let us consider an element x, a non empty set D, and a finite binary tree T decorated with elements of D. Suppose T = the root tree of x. Then Leaves $(T) = \{x\}$ . The theorem is a consequence of (15).

## 2. Binary Huffman Tree

Let us consider S, p,  $T_1$ , and q. We say that  $T_1$ , q, and p are constructing binary Huffman tree if and only if

- (Def. 12) (i)  $T_1(1) = \text{InitTrees } p$ , and
  - (ii) len  $T_1 = \overline{\overline{\mathbb{S}}}$ , and
  - (iii) for every natural number i such that  $1 \leq i < \text{len } T_1$  there exist non empty finite subsets X, Y of the binary finite trees of  $\mathbb{R}_{\mathbb{N}}$  and there exists a minimal value tree s of X and there exists a minimal value tree t of Y and there exists a finite binary tree v decorated with elements of  $\mathbb{R}_{\mathbb{N}}$  such that  $T_1(i) = X$  and  $Y = X \setminus \{s\}$  and  $v \in \{\text{MakeTree}(t, s, ((\text{the maximal value of } X) + 1)), \text{MakeTree}(s, t, ((\text{the maximal value of } X) + 1))\}$  and  $T_1(i+1) = (X \setminus \{t, s\}) \cup \{v\}$ , and
  - (iv) there exists a finite binary tree T decorated with elements of  $\mathbb{R}_{\mathbb{N}}$  such that  $\{T\} = T_1(\operatorname{len} T_1)$ , and
  - (v) dom  $q = \operatorname{Seg} \overline{\overline{\mathbb{S}}}$ , and
  - (vi) for every natural number k such that  $k \in \text{Seg }\overline{\mathbb{S}}$  holds  $q(k) = \overline{T_1(k)}$  and  $q(k) \neq 0$ , and
  - (vii) for every natural number k such that  $k < \overline{\overline{\mathbb{S}}}$  holds q(k+1) = q(1) k, and
  - (viii) for every natural number k such that  $1 \le k < \overline{\overline{\mathbb{S}}}$  holds  $2 \le q(k)$ . Now we state the proposition:
  - (17) There exists  $T_1$  and there exists q such that  $T_1$ , q, and p are constructing binary Huffman tree. The theorem is a consequence of (5) and (6). PROOF: Define  $\mathcal{A}[\text{natural number, set, set}] \equiv \text{if there exist elements } u, v \text{ such that}$  $u \neq v$  and  $u, v \in \$_2$ , then there exist non empty finite subsets X, Y of the binary finite trees of  $\mathbb{R}_{\mathbb{N}}$  and there exists a minimal value tree s of X and there exists a minimal value tree t of Y and there exists a finite binary tree w decorated with elements of  $\mathbb{R}_{\mathbb{N}}$  such that  $\$_2 = X$ and  $Y = X \setminus \{s\}$  and  $w \in \{\text{MakeTree}(t, s, ((\text{the maximal value of } X) +$ 1)), MakeTree(s, t, ((the maximal value of X) + 1))} and  $\$_3 = (X \setminus \{t, s\}) \cup$  $\{w\}$ . For every natural number n such that  $1 \leq n < \overline{\mathbb{S}}$  for every element x of the Boolean binary finite trees of  $\mathbb{R}_{\mathbb{N}}$ , there exists an element y of the Boolean binary finite trees of  $\mathbb{R}_{\mathbb{N}}$  such that  $\mathcal{A}[n,x,y]$ . Reconsider I=InitTrees p as an element of the Boolean binary finite trees of  $\mathbb{R}_{\mathbb{N}}$ . Consider  $T_1$  being a finite sequence of elements of the Boolean binary finite trees of  $\mathbb{R}_{\mathbb{N}}$  such that len  $T_1 = \overline{\mathbb{S}}$  and  $T_1(1) = I$  or  $\overline{\mathbb{S}} = 0$  and for every natural number n such that  $1 \leq n < \overline{\mathbb{S}}$  holds  $\mathcal{A}[n, T_1(n), T_1(n+1)]$  from [15, Sch. 4]. Define  $\mathcal{B}[\text{element}, \text{element}] \equiv \text{there exists a finite set } X \text{ such that}$

 $T_1(\$_1) = X$  and  $\$_2 = \overline{\overline{X}}$  and  $\$_2 \neq 0$ . For every natural number k such that  $k \in \operatorname{Seg} \overline{\overline{\mathbb{S}}}$  there exists an element x of  $\mathbb{N}$  such that  $\mathcal{B}[k, x]$  by [11, (3)]. Consider q being a finite sequence of elements of  $\mathbb{N}$  such that dom  $q = \operatorname{Seg} \overline{\mathbb{S}}$ and for every natural number k such that  $k \in \operatorname{Seg} \overline{\mathbb{S}}$  holds  $\mathcal{B}[k, q(k)]$  from [8, Sch. 5]. For every natural number k such that  $k \in \operatorname{Seg} \overline{\overline{\mathbb{S}}}$  holds q(k) = $\overline{\overline{T_1(k)}}$  and  $q(k) \neq 0$ . For every natural number k such that  $1 \leq k < \overline{\overline{\mathbb{S}}}$ holds if  $2 \le q(k)$ , then q(k+1) = q(k) - 1 by [8, (1)], [2, (11), (13)]. Define  $\mathcal{C}[\text{natural number}] \equiv \text{if } \$_1 < \overline{\mathbb{S}}, \text{ then } q(\$_1 + 1) = q(1) - \$_1. \text{ For every}$ natural number n such that  $\mathcal{C}[n]$  holds  $\mathcal{C}[n+1]$  by [2, (11)], [8, (1)], [2, (14), (13)]. For every natural number n,  $\mathcal{C}[n]$  from [2, Sch. 2]. For every natural number n such that  $1 \leq n < \overline{\mathbb{S}}$  holds  $2 \leq q(n)$  by [2, (21), (13)]. For every natural number k such that  $1 \leq k < \operatorname{len} T_1$  there exist non empty finite subsets X, Y of the binary finite trees of  $\mathbb{R}_{\mathbb{N}}$  and there exists a minimal value tree s of X and there exists a minimal value tree t of Yand there exists a finite binary tree w decorated with elements of  $\mathbb{R}_{\mathbb{N}}$  such that  $T_1(k) = X$  and  $Y = X \setminus \{s\}$  and  $w \in \{\text{MakeTree}(t, s, ((\text{the maximal maxim$ value of X) + 1)), MakeTree(s, t, ((the maximal value of X) + 1))} and  $T_1(k+1) = (X \setminus \{t,s\}) \cup \{w\}$  by [8, (1)]. Consider  $T_2$  being a finite set such that  $T_1(\overline{\mathbb{S}}) = T_2$  and  $q(\overline{\mathbb{S}}) = \overline{T_2}$  and  $q(\overline{\mathbb{S}}) \neq 0$ . Consider u being an element such that  $T_2 = \{u\}$ .  $\square$ 

Let us consider  $\mathbb{S}$  and p. A binary Huffman tree of p is a finite binary tree decorated with elements of  $\mathbb{R}_{\mathbb{N}}$  and is defined by

- (Def. 13) There exists a finite sequence  $T_1$  of elements of the Boolean binary finite trees of  $\mathbb{R}_{\mathbb{N}}$  and there exists a finite sequence q of elements of  $\mathbb{N}$  such that  $T_1$ , q, and p are constructing binary Huffman tree and  $\{it\} = T_1(\operatorname{len} T_1)$ . In this paper T denotes a binary Huffman tree of p. Now we state the propositions:
  - (18) Up the set of leaves of InitTrees  $p = \{z, \text{ where } z \text{ is an element of } \mathbb{N} \times \mathbb{R} :$  there exists an element x of  $\mathbb{S}$  such that  $z = \langle (CFS(\mathbb{S}))^{-1}(x), p(\{x\}) \rangle \}$ . The theorem is a consequence of (16). PROOF: Set  $L = \bigcup$  the set of leaves of InitTrees p. Set  $R = \{z, \text{ where } z \text{ is an element of } \mathbb{N} \times \mathbb{R} : \text{ there exists an element } x \text{ of } \mathbb{S} \text{ such that } z = \langle (CFS(\mathbb{S}))^{-1}(x), p(\{x\}) \rangle \}$ . For every element  $x, x \in L$  iff  $x \in R$  by [13, (87)], [7, (3)].  $\square$
  - (19) Suppose  $T_1$ , q, and p are constructing binary Huffman tree. Let us consider a natural number i. Suppose  $1 \le i \le \text{len } T_1$ . Then  $\bigcup$  the set of leaves of  $T_1(i) = \{z, \text{ where } z \text{ is an element of } \mathbb{N} \times \mathbb{R} : \text{ there exists an element } x \text{ of } \mathbb{S} \text{ such that } z = \langle (\text{CFS}(\mathbb{S}))^{-1}(x), p(\{x\}) \rangle \}.$  The theorem is a consequence of (18), (8), and (14). PROOF: Define  $\mathcal{P}[\text{natural number}] \equiv \text{if } \$_1 < \text{len } T_1$ , then  $\bigcup$  the set of leaves of  $T_1(\$_1 + 1) = \{z, \text{ where } z \text{ is an element of } \mathbb{N} \times \mathbb{R} : \text{ there exists an element } x \text{ of } \mathbb{S} \text{ such that } z = \langle (\text{CFS}(\mathbb{S}))^{-1}(x), x \rangle \}$

- $p(\lbrace x \rbrace) \rangle$ . For every natural number k such that  $\mathcal{P}[k]$  holds  $\mathcal{P}[k+1]$  by [2, (11)], [13, (78), (32)]. For every natural number k,  $\mathcal{P}[k]$  from [2, Sch. 2].
- (20) Leaves(T) = {z, where z is an element of  $\mathbb{N} \times \mathbb{R}$ : there exists an element x of  $\mathbb{S}$  such that  $z = \langle (CFS(\mathbb{S}))^{-1}(x), p(\{x\}) \rangle$ }. The theorem is a consequence of (19) and (7).
- (21) Suppose  $T_1$ , q, and p are constructing binary Huffman tree. Let us consider a natural number i, a finite binary tree T decorated with elements of  $\mathbb{R}_{\mathbb{N}}$ , and elements t, s, r of dom T. Suppose
  - (i)  $T \in T_1(i)$ , and
  - (ii)  $t \in \text{dom } T \setminus \text{Leaves}(\text{dom } T)$ , and
  - (iii)  $s = t \cap \langle 0 \rangle$ , and
  - (iv)  $r = t \cap \langle 1 \rangle$ .

Then the value of tree of t = (the value of tree of s) + (the value of tree of r). The theorem is a consequence of (15), (11), and (12). PROOF: Define  $\mathcal{P}[\text{natural number}] \equiv \text{if } 1 \leqslant \$_1 \leqslant \text{len } T_1$ , then for every finite binary tree T decorated with elements of  $\mathbb{R}_{\mathbb{N}}$  and for every elements a, b, c of dom T such that  $T \in T_1(\$_1)$  and  $a \in \text{dom } T \setminus \text{Leaves}(\text{dom } T)$  and  $b = a \cap \langle 0 \rangle$  and  $c = a \cap \langle 1 \rangle$  holds the value of tree of a = (the value of tree of b)+(the value of tree of c). For every natural number i such that  $\mathcal{P}[i]$  holds  $\mathcal{P}[i+1]$  by [2, (16), (14)], [8, (44)]. For every natural number  $i, \mathcal{P}[i]$  from [2, Sch. 2].  $\square$ 

- (22) Let us consider elements t, s, r of dom T. Suppose
  - (i)  $t \in \text{dom } T \setminus \text{Leaves}(\text{dom } T)$ , and
  - (ii)  $s = t \cap \langle 0 \rangle$ , and
  - (iii)  $r = t \cap \langle 1 \rangle$ .

Then the value of tree of t =(the value of tree of s) + (the value of tree of r). The theorem is a consequence of (21).

- (23) Let us consider a non empty finite subset X of the binary finite trees of  $\mathbb{R}_{\mathbb{N}}$ . Suppose a finite binary tree T decorated with elements of  $\mathbb{R}_{\mathbb{N}}$ . Suppose  $T \in X$ . Let us consider an element p of dom T and an element r of  $\mathbb{N}$ . Suppose  $r = T(p)_1$ . Then  $r \leq$  the maximal value of X. Let us consider finite binary trees s, t, w decorated with elements of  $\mathbb{R}_{\mathbb{N}}$ . Suppose
  - (i)  $s, t \in X$ , and
  - (ii) w = MakeTree(t, s, ((the maximal value of X) + 1)).

Let us consider an element p of dom w and an element r of  $\mathbb{N}$ . Suppose  $r = w(p)_1$ . Then  $r \leq$  (the maximal value of X) + 1. The theorem is a consequence of (11) and (12). PROOF: For every element a such that

 $a \in \text{dom } d \text{ holds } a = \emptyset \text{ or there exists an element } f \text{ of dom } t \text{ such that } a = \langle 0 \rangle \cap f \text{ or there exists an element } f \text{ of dom } s \text{ such that } a = \langle 1 \rangle \cap f \text{ by } [2, (23)]. \square$ 

- (24) Suppose  $T_1$ , q, and p are constructing binary Huffman tree. Let us consider a natural number i. Suppose  $1 \leq i < \text{len } T_1$ . Let us consider non empty finite subsets X, Y of the binary finite trees of  $\mathbb{R}_N$ . Suppose
  - (i)  $X = T_1(i)$ , and
  - (ii)  $Y = T_1(i+1)$ .

Then the maximal value of Y =(the maximal value of X) + 1. PROOF: Consider X, Y being non empty finite subsets of the binary finite trees of  $\mathbb{R}_{\mathbb{N}}$ , s being a minimal value tree of X, t being a minimal value tree of Y, v being a finite binary tree decorated with elements of  $\mathbb{R}_{\mathbb{N}}$  such that  $T_1(i) = X$  and  $Y = X \setminus \{s\}$  and  $v \in \{\text{MakeTree}(t, s, ((\text{the maximal value of } X) + 1)), \text{MakeTree}(s, t, ((\text{the maximal value of } X) + 1))\}$  and  $T_1(i+1) = (X \setminus \{t,s\}) \cup \{v\}$ . Consider  $L_1$  being a non empty finite subset of  $\mathbb{N}$  such that  $L_1 = \{\text{the value of root from left of } p, \text{ where } p \text{ is an element of the binary finite trees of } \mathbb{R}_{\mathbb{N}} : p \in X0\}$  and the maximal value of  $X0 = \max L_1$ . Consider  $L_4$  being a non empty finite subset of  $\mathbb{N}$  such that  $L_4 = \{\text{the value of root from left of } p, \text{ where } p \text{ is an element of the binary finite trees of } \mathbb{R}_{\mathbb{N}} : p \in Y0\}$  and the maximal value of  $Y0 = \max L_4$ . Reconsider  $p_1 = v$  as an element of the binary finite trees of  $\mathbb{R}_{\mathbb{N}}$ . For every extended real x such that  $x \in L_4$  holds  $x \leq \text{the value of root from left of } p_1 \text{ by } [2, (16)]$ .  $\square$ 

Let us consider a natural number i, a non empty finite subset X of the binary finite trees of  $\mathbb{R}_{\mathbb{N}}$ , a finite binary tree T decorated with elements of  $\mathbb{R}_{\mathbb{N}}$ , an element p of dom T, and an element r of  $\mathbb{N}$ . Now we state the propositions:

- (25) Suppose  $T_1$ , q, and p are constructing binary Huffman tree. Then if  $X = T_1(i)$ , then if  $T \in X$ , then if  $r = T(p)_1$ , then  $r \leq$  the maximal value of X.
- (26) Suppose  $T_1$ , q, and p are constructing binary Huffman tree. Then if  $X = T_1(i)$ , then if  $T \in X$ , then if  $r = T(p)_1$ , then  $r \leq$  the maximal value of X.

Now we state the proposition:

- (27) Suppose  $T_1$ , q, and p are constructing binary Huffman tree. Let us consider a natural number i, finite binary trees s, t decorated with elements of  $\mathbb{R}_{\mathbb{N}}$ , and a non empty finite subset X of the binary finite trees of  $\mathbb{R}_{\mathbb{N}}$ . Suppose
  - (i)  $X = T_1(i)$ , and
  - (ii)  $s, t \in X$ .

Let us consider a finite binary tree z decorated with elements of  $\mathbb{R}_{\mathbb{N}}$ . Suppose  $z \in X$ . Then  $\langle$  (the maximal value of X) + 1, (the value of root from right of t) + (the value of root from right of s) $\rangle \notin \operatorname{rng} z$ . The theorem is a consequence of (26).

Let x be an element. Note that the root tree of x is one-to-one. Now we state the propositions:

- (28) Let us consider a non empty finite subset X of the binary finite trees of  $\mathbb{R}_{\mathbb{N}}$  and finite binary trees s, t, w decorated with elements of  $\mathbb{R}_{\mathbb{N}}$ . Suppose
  - (i) for every finite binary tree T decorated with elements of  $\mathbb{R}_{\mathbb{N}}$  such that  $T \in X$  for every element p of dom T for every element r of  $\mathbb{N}$  such that  $r = T(p)_1$  holds  $r \leq$  the maximal value of X, and
  - (ii) for every finite binary trees p, q decorated with elements of  $\mathbb{R}_{\mathbb{N}}$  such that  $p, q \in X$  and  $p \neq q$  holds  $\operatorname{rng} p \cap \operatorname{rng} q = \emptyset$ , and
  - (iii)  $s, t \in X$ , and
  - (iv)  $s \neq t$ , and
  - (v)  $w \in X \setminus \{s, t\}$ .

Then rng MakeTree $(t, s, ((\text{the maximal value of } X) + 1)) \cap \text{rng } w = \emptyset$ . The theorem is a consequence of (11) and (12). PROOF: Set d = MakeTree(t, s, ((the maximal value of X) + 1)). For every element a such that  $a \in \text{dom } d$  holds  $a = \emptyset$  or there exists an element f of dom t such that  $a = \langle 0 \rangle \cap f$  or there exists an element f of dom s such that  $a = \langle 1 \rangle \cap f$  by [2, (23)]. Consider  $n_2$  being an element such that  $n_2 \in \text{rng } d \cap \text{rng } w$ . Consider  $a_1$  being an element such that  $a_1 \in \text{dom } d$  and  $a_2 = a(a_1)$ . Consider  $a_1 \in \text{dom } d$  and  $a_2 = a(a_1)$ . Consider  $a_1 \in \text{dom } d$  and  $a_2 = a(a_1)$  and  $a_3 \in \text{dom } d$  and  $a_4 \in \text{dom } d$  and

- (29) Suppose  $T_1$ , q, and p are constructing binary Huffman tree. Let us consider a natural number i and finite binary trees T, S decorated with elements of  $\mathbb{R}_{\mathbb{N}}$ . Suppose
  - (i)  $T, S \in T_1(i)$ , and
  - (ii)  $T \neq S$ .

Then  $\operatorname{rng} T \cap \operatorname{rng} S = \emptyset$ . The theorem is a consequence of (26) and (28). PROOF: Define  $\mathcal{P}[\operatorname{natural number}] \equiv \operatorname{if } 1 \leqslant \$_1 \leqslant \operatorname{len} T_1$ , then for every finite binary trees T, S decorated with elements of  $\mathbb{R}_{\mathbb{N}}$  such that T,  $S \in T_1(\$_1)$  and  $T \neq S$  holds  $\operatorname{rng} T \cap \operatorname{rng} S = \emptyset$ . For every natural number i such that  $\mathcal{P}[i]$  holds  $\mathcal{P}[i+1]$  by [21, (8)], [2, (16), (14)]. For every natural number i,  $\mathcal{P}[i]$  from [2, Sch. 2].  $\square$ 

- (30) Let us consider a non empty finite subset X of the binary finite trees of  $\mathbb{R}_{\mathbb{N}}$  and finite binary trees s, t decorated with elements of  $\mathbb{R}_{\mathbb{N}}$ . Suppose
  - (i) s is one-to-one, and

- (ii) t is one-to-one, and
- (iii)  $t, s \in X$ , and
- (iv)  $\operatorname{rng} s \cap \operatorname{rng} t = \emptyset$ , and
- (v) for every finite binary tree z decorated with elements of  $\mathbb{R}_{\mathbb{N}}$  such that  $z \in X$  holds  $\langle$  (the maximal value of X) + 1, (the value of root from right of t) + (the value of root from right of s) $\rangle \notin \operatorname{rng} z$ .

Then MakeTree(t, s, ((the maximal value of X) + 1)) is one-to-one. The theorem is a consequence of (11) and (12). PROOF: Set d = MakeTree(t, s, ((the maximal value of X) + 1)). For every element a such that  $a \in \text{dom } d$  holds  $a = \emptyset$  or there exists an element f of dom t such that  $a = \langle 0 \rangle \cap f$  or there exists an element f of dom f such that f s

(31) Suppose  $T_1$ , q, and p are constructing binary Huffman tree. Let us consider a natural number i and a finite binary tree T decorated with elements of  $\mathbb{R}_{\mathbb{N}}$ . If  $T \in T_1(i)$ , then T is one-to-one. The theorem is a consequence of (27), (29), and (30). PROOF: Define  $\mathcal{P}[\text{natural number}] \equiv \text{if } 1 \leqslant \$_1 \leqslant \text{len } T_1$ , then for every finite binary tree T decorated with elements of  $\mathbb{R}_{\mathbb{N}}$  such that  $T \in T_1(\$_1)$  holds T is one-to-one. For every natural number i such that  $\mathcal{P}[i]$  holds  $\mathcal{P}[i+1]$  by [2, (16), (14)]. For every natural number i,  $\mathcal{P}[i]$  from [2, Sch. 2].  $\square$ 

Let us consider p.

Now we are at the position where we can present the Main Theorem of the paper: Every binary Huffman tree of p is one-to-one.

## References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [4] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421–427, 1990.
- [5] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397–402, 1991.
- [6] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized Mathematics, 3(2):195–204, 1992.
- [7] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.
- [8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [9] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on binary trees. Formalized Mathematics, 5(1):9–13, 1996.

- [10] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [11] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
- [12] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [13] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [14] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [15] Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321–328, 1990.
- [16] D. A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the I.R.E, 1952.
- [17] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841–845, 1990.
- [18] Andrzej Nędzusiak.  $\sigma$ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [19] Hiroyuki Okazaki and Yasunari Shidama. Probability on finite set and real-valued random variables. Formalized Mathematics, 17(2):129–136, 2009. doi:10.2478/v10037-009-0014-x.
- [20] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115–122, 1990.
- [21] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.
- [22] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341–347, 2003.
- [23] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.
- [26] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received June 18, 2013