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Summary. Gaussian integer is one of basic algebraic integers. In this artic-
le we formalize some definitions about Gaussian integers [27]. We also formalize
ring (called Gaussian integer ring), Z-module and Z-algebra generated by Gaus-
sian integer mentioned above. Moreover, we formalize some definitions about
Gaussian rational numbers and Gaussian rational number field. Then we prove
that the Gaussian rational number field and a quotient field of the Gaussian
integer ring are isomorphic.
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1. Gaussian Integer Ring

Now we state the proposition:

(1) Let us consider natural numbers x, y. If x+y = 1, then x = 1 and y = 0
or x = 0 and y = 1. Proof: x ¬ 1. �
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Let z be a complex. We say that z is Gaussian integer if and only if

(Def. 1) <(z), =(z) ∈ Z.

Note that every integer is Gaussian integer.
An element of Gaussian integers is a Gaussian integer complex. Let z be an

element of Gaussian integers. Note that <(z) is integer and =(z) is integer.
Let z1, z2 be elements of Gaussian integers. One can verify that z1 + z2 is

Gaussian integer and z1 − z2 is Gaussian integer and z1 · z2 is Gaussian integer
and i is Gaussian integer.

Let z be an element of Gaussian integers. Let us note that −z is Gaussian
integer and z is Gaussian integer.

Let n be an integer. One can check that n · z is Gaussian integer.
The set of Gaussian integers yielding a subset of C is defined by the term

(Def. 2) the set of all z where z is an element of Gaussian integers.

Note that the set of Gaussian integers is non empty.
Let i be an integer. Let us observe that i(∈ the set of Gaussian integers)

reduces to i.
Let us consider a set x. Now we state the propositions:

(2) If x ∈ the set of Gaussian integers, then x is an element of Gaussian
integers.

(3) If x is an element of Gaussian integers, then x ∈ the set of Gaussian
integers.

The addition of Gaussian integers yielding a binary operation on the set of
Gaussian integers is defined by the term

(Def. 3) +C � the set of Gaussian integers.

The multiplication of Gaussian integers yielding a binary operation on the
set of Gaussian integers is defined by the term

(Def. 4) ·C � the set of Gaussian integers.

The scalar multiplication of Gaussian integers yielding a function from Z×
the set of Gaussian integers into the set of Gaussian integers is defined by the
term

(Def. 5) ·C�(Z× the set of Gaussian integers).

Now we state the propositions:

(4) Let us consider elements z, w of Gaussian integers. Then (the addition
of Gaussian integers)(z, w) = z + w.

(5) Let us consider an element z of Gaussian integers and an integer i. Then
(the scalar multiplication of Gaussian integers)(i, z) = i · z.

The Gaussian integer module yielding a strict non empty Z-module structure
is defined by the term
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(Def. 6) 〈〈the set of Gaussian integers, 0(∈ the set of Gaussian integers), the addi-
tion of Gaussian integers, the scalar multiplication of Gaussian integers〉〉.

Observe that the Gaussian integer module is Abelian add-associative right
zeroed right complementable scalar distributive vector distributive scalar asso-
ciative and scalar unital.

Now we state the proposition:

(6) Let us consider elements z, w of Gaussian integers. Then (the multiplica-
tion of Gaussian integers)(z, w) = z · w.

The Gaussian integer ring yielding a strict non empty double loop structure
is defined by the term

(Def. 7) 〈the set of Gaussian integers, the addition of Gaussian integers, the multi-
plication of Gaussian integers, 1(∈ the set of Gaussian integers), 0(∈ the set
of Gaussian integers)〉.

One can check that the Gaussian integer ring is Abelian add-associative
right zeroed right complementable associative well unital and distributive, and
the Gaussian integer ring is integral domain-like, and the Gaussian integer ring
is commutative.

Now we state the propositions:

(7) Every element of the Gaussian integer ring is an element of Gaussian
integers.

(8) Every element of Gaussian integers is an element of the Gaussian integer
ring.

2. Z-Algebra

We consider Z-algebra structures which extend double loop structures and
Z-module structures and are systems

〈〈a carrier, a multiplication, an addition, an external multiplication,

a one, a zero〉〉

where the carrier is a set, the multiplication and the addition are binary opera-
tions on the carrier, the external multiplication is a function from Z×the carrier
into the carrier, the one and the zero are elements of the carrier.

Let us observe that there exists a Z-algebra structure which is non empty.
Let I1 be a non empty Z-algebra structure. We say that I1 is vector associa-

tive if and only if

(Def. 8) Let us consider elements x, y of I1 and an integer a1. Then a1 · (x · y) =
(a1 · x) · y.
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Let us observe that 〈〈the set of Gaussian integers, (the multiplication of
Gaussian integers), (the addition of Gaussian integers), (the scalar multiplication
of Gaussian integers), 1(∈ the set of Gaussian integers), 0(∈ the set of Gaussian
integers)〉〉 is non empty and 〈〈the set of Gaussian integers, (the multiplication of
Gaussian integers), (the addition of Gaussian integers), (the scalar multiplication
of Gaussian integers), 1(∈ the set of Gaussian integers), 0(∈ the set of Gaussian
integers)〉〉 is strict Abelian add-associative right zeroed right complementable
commutative associative right unital right distributive vector associative sca-
lar associative vector distributive and scalar distributive and there exists a non
empty Z-algebra structure which is strict, Abelian, add-associative, right zeroed,
right complementable, commutative, associative, right unital, right distributive,
vector associative, scalar associative, vector distributive, and scalar distributive.

A Z-algebra is an Abelian add-associative right zeroed right complementable
commutative associative right unital right distributive vector associative scalar
associative vector distributive scalar distributive non empty Z-algebra structure.
Now we state the proposition:

(9) 〈〈the set of Gaussian integers, (the multiplication of Gaussian integers),
(the addition of Gaussian integers), (the scalar multiplication of Gaussian
integers), 1(∈ the set of Gaussian integers), 0(∈ the set of Gaussian
integers)〉〉 is a right complementable associative commutative right distri-
butive right unital Abelian add-associative right zeroed vector distributive
scalar distributive scalar associative strict vector associative non empty Z-
algebra structure.

One can verify that Z is denumerable and the set of Gaussian integers is
denumerable and the Gaussian integer ring is non degenerated.

3. Quotient Field of Gaussian Integer Ring

The Gaussian number field yielding a strict non empty double loop structure
is defined by the term

(Def. 9) The field of quotients of the Gaussian integer ring.

Observe that the Gaussian number field is non degenerated almost left in-
vertible strict Abelian associative and distributive.

Let z be a complex. We say that z is Gaussian rational if and only if

(Def. 10) <(z), =(z) ∈ Q.

One can verify that every rational number is Gaussian rational.
An element of Gaussian rationals is a Gaussian rational complex. Let z be

an element of Gaussian rationals. One can verify that <(z) is rational and =(z)
is rational.

Let z1, z2 be elements of Gaussian rationals. Observe that z1+z2 is Gaussian
rational and z1 − z2 is Gaussian rational and z1 · z2 is Gaussian rational.
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Let z be an element of Gaussian rationals and n be a rational number. One
can check that n · z is Gaussian rational.

Let us observe that −z is Gaussian rational and z−1 is Gaussian rational.
The set of Gaussian rationals yielding a subset of C is defined by the term

(Def. 11) the set of all z where z is an element of Gaussian rationals.

Let us observe that the set of Gaussian rationals is non empty and every
element of Gaussian integers is Gaussian rational.

Let us consider a set x. Now we state the propositions:

(10) If x ∈ the set of Gaussian rationals, then x is an element of Gaussian
rationals.

(11) If x is an element of Gaussian rationals, then x ∈ the set of Gaussian
rationals.

Now we state the proposition:

(12) Let us consider an element p of Gaussian rationals. Then there exist
elements x, y of Gaussian integers such that

(i) y 6= 0, and

(ii) p = x
y .

The addition of Gaussian rationals yielding a binary operation on the set of
Gaussian rationals is defined by the term

(Def. 12) +C � the set of Gaussian rationals.

The multiplication of Gaussian rationals yielding a binary operation on the
set of Gaussian rationals is defined by the term

(Def. 13) ·C � the set of Gaussian rationals.

4. Rational Field

Let i be an integer. One can check that i(∈ Q) reduces to i.
The rational number field yielding a strict non empty double loop structure

is defined by the term

(Def. 14) 〈Q,+Q, ·Q, 1(∈ Q), 0(∈ Q)〉.
Now we state the propositions:

(13) (i) the carrier of the rational number field is a subset of the carrier of
RF, and

(ii) the addition of the rational number field = (the addition of RF) �
(the carrier of the rational number field), and

(iii) the multiplication of the rational number field = (the multiplication
of RF) � (the carrier of the rational number field), and

(iv) 1α = 1RF , and
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(v) 0α = 0RF , and

(vi) the rational number field is right complementable, commutative, al-
most left invertible, and non degenerated,

where α is the rational number field. Proof: Every element of the rational
number field is right complementable. For every element v of the rational
number field such that v 6= 0α holds v is left invertible, where α is the
rational number field. �

(14) The rational number field is a subfield of RF.
Let us note that the rational number field is add-associative right zeroed

right complementable Abelian commutative associative left and right unital di-
stributive almost left invertible and non degenerated and the rational number
field is well unital and every element of the rational number field is rational.

Let x be an element of the rational number field and y be a rational number.
We identify −y with −x where x = y. Now we state the propositions:

(15) Let us consider an element x of the rational number field and a rational
number x1. If x 6= 0α and x1 = x, then x−1 = x1

−1, where α is the rational
number field.

(16) Let us consider elements x, y of the rational number field and rational
numbers x1, y1. Suppose

(i) x1 = x, and

(ii) y1 = y, and

(iii) y 6= 0α.

Then x
y = x1

y1
, where α is the rational number field. The theorem is a

consequence of (15).

Let us consider a field K, a subfield K1 of K, elements x, y of K, and
elements x1, y1 of K1. Now we state the propositions:

(17) If x = x1 and y = y1, then x+ y = x1 + y1.

(18) If x = x1 and y = y1, then x · y = x1 · y1.
Now we state the proposition:

(19) Let us consider a field K, a subfield K1 of K, an element x of K, and an
element x1 of K1. If x = x1, then −x = −x1. The theorem is a consequence
of (17).

Let us consider a field K, a subfield K1 of K, elements x, y of K, and
elements x1, y1 of K1. Now we state the propositions:

(20) If x = x1 and y = y1, then x− y = x1 − y1.
(21) If x = x1 and x 6= 0K , then x−1 = x1

−1.

(22) If x = x1 and y = y1 and y 6= 0K , then x
y = x1

y1
.

Let us consider a subfield K1 of the rational number field. Now we state the
propositions:
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(23) N ⊆ the carrier of K1.

(24) Z ⊆ the carrier of K1.

(25) The carrier of K1 = the carrier of the rational number field.

Now we state the proposition:

(26) Let us consider a strict subfield K1 of the rational number field. Then
K1 = the rational number field. The theorem is a consequence of (25).

One can verify that the rational number field is prime.

5. Gaussian Rational Number Field

Let i be a rational number. Note that i(∈ the set of Gaussian rationals)
reduces to i.

The scalar multiplication of Gaussian rationals yielding a function from
(the carrier of the rational number field) × the set of Gaussian rationals into
the set of Gaussian rationals is defined by the term

(Def. 15) ·C�((the carrier of the rational number field)×the set of Gaussian rationals).

Now we state the propositions:

(27) Let us consider elements z, w of Gaussian rationals. Then (the addition
of Gaussian rationals)(z, w) = z + w.

(28) Let us consider an element z of Gaussian rationals and an element i of
Q. Then (the scalar multiplication of Gaussian rationals)(i, z) = i · z.

The Gaussian rational module yielding a strict non empty vector space struc-
ture over the rational number field is defined by the term

(Def. 16) 〈the set of Gaussian rationals, the addition of Gaussian rationals, 0(∈
the set of Gaussian rationals), the scalar multiplication of Gaussian ratio-
nals〉.

Observe that the Gaussian rational module is scalar distributive vector di-
stributive scalar associative scalar unital add-associative right zeroed right com-
plementable and Abelian.

Now we state the proposition:

(29) Let us consider elements z, w of Gaussian rationals. Then (the multiplica-
tion of Gaussian rationals)(z, w) = z · w.

The Gaussian rational ring yielding a strict non empty double loop structure
is defined by the term

(Def. 17) 〈the set of Gaussian rationals, the addition of Gaussian rationals, the mul-
tiplication of Gaussian rationals, 1(∈ the set of Gaussian rationals), 0(∈
the set of Gaussian rationals)〉.

Let us note that the Gaussian rational ring is add-associative right zeroed
right complementable Abelian commutative associative well unital distributive
almost left invertible and non degenerated.
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Now we state the proposition:

(30) There exists a function I from the Gaussian number field into the Gaus-
sian rational ring such that

(i) for every element z such that z ∈ the carrier of the Gaussian number
field there exist elements x, y of Gaussian integers and there exists
an element u of Q(the Gaussian integer ring) such that y 6= 0 and
u = 〈〈x, y〉〉 and z = QClass(u) and I(z) = x

y , and

(ii) I is one-to-one and onto, and

(iii) for every elements x, y of the Gaussian number field, I(x + y) =
I(x) + I(y) and I(x · y) = I(x) · I(y), and

(iv) I(0α) = 0, and

(v) I(1α) = 1,

where α is the Gaussian number field. The theorem is a consequence of (2),
(10), (12), (3), (6), (4), (27), and (29).Proof: Define P[element, element] ≡
there exist elements x, y of Gaussian integers and there exists an ele-
ment u of Q(the Gaussian integer ring) such that y 6= 0 and u = 〈〈x,
y〉〉 and $1 = QClass(u) and $2 = x

y . For every element z such that
z ∈ the carrier of the Gaussian number field there exists an element w
such that w ∈ the carrier of the Gaussian rational ring and P[z, w]. Con-
sider I being a function from the Gaussian number field into the Gaussian
rational ring such that for every element z such that z ∈ the carrier of
the Gaussian number field holds P[z, I(z)] from [8, Sch. 1]. For every ele-
ments z1, z2 of the Gaussian number field, I(z1 + z2) = I(z1) + I(z2) and
I(z1 · z2) = I(z1) · I(z2) by [20, (9), (5), (10)]. �

6. Gaussian Integer Ring is Euclidean

Let a1, b1 be elements of Gaussian integers. We say that a1 divides b1 if and
only if

(Def. 18) There exists an element c of Gaussian integers such that b1 = a1 · c.
Note that the predicate is reflexive.

Let us consider elements a1, b1 of the Gaussian integer ring and elements a2,
b2 of Gaussian integers. Now we state the propositions:

(31) If a1 = a2 and b1 = b2, then if a1 | b1, then a2 divides b2.

(32) If a1 = a2 and b1 = b2, then if a2 divides b2, then a1 | b1.
Let z be an element of Gaussian rationals. Observe that the functor z yields

an element of Gaussian rationals. The functor Norm z yielding a rational number
is defined by the term

(Def. 19) z · z .



Gaussian integers 123

Let us observe that Norm z is non negative.
Let z be an element of Gaussian integers. Observe that Norm z is natural.
Now we state the propositions:

(33) Let us consider an element x of Gaussian rationals. Then Norm x =
Normx.

(34) Let us consider elements x, y of Gaussian rationals. Then Norm(x · y) =
Normx ·Norm y.

Let us consider an element x of Gaussian integers. Now we state the propo-
sitions:

(35) Normx = 1 if and only if x = 1 or x = −1 or x = i or x = −i.
(36) If Normx = 0, then x = 0.

Let z be an element of Gaussian integers. We say that z is unit of Gaussian
integers if and only if

(Def. 20) Norm z = 1.

Let x, y be elements of Gaussian integers. We say that x is associated to y
if and only if

(Def. 21) (i) x divides y, and

(ii) y divides x.

Let us observe that the predicate is symmetric.
Let us consider elements a1, b1 of the Gaussian integer ring and elements a2,

b2 of Gaussian integers. Now we state the propositions:

(37) If a1 = a2 and b1 = b2, then if a1 is associated to b1, then a2 is associated
to b2.

(38) If a1 = a2 and b1 = b2, then if a2 is associated to b2, then a1 is associated
to b1.

Now we state the propositions:

(39) Let us consider an element z of the Gaussian integer ring and an element
z3 of Gaussian integers. If z3 = z, then z is unital iff z3 is unit of Gaussian
integers. The theorem is a consequence of (2), (6), (34), (35), and (3).
Proof: There exists an element w of the Gaussian integer ring such that
1α = z · w, where α is the Gaussian integer ring. �

(40) Let us consider elements x, y of Gaussian integers. Then x is associated
to y if and only if there exists an element c of Gaussian integers such that
c is unit of Gaussian integers and x = c · y. The theorem is a consequence
of (3), (38), (2), (39), (6), and (37).

(41) Let us consider an element x of Gaussian integers. Suppose

(i) <(x) 6= 0, and

(ii) =(x) 6= 0, and

(iii) <(x) 6= =(x), and
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(iv) −<(x) 6= =(x).

Then x is not associated to x. The theorem is a consequence of (40) and
(35).

(42) Let us consider elements x, y, z of Gaussian integers. Suppose

(i) x is associated to y, and

(ii) y is associated to z.

Then x is associated to z. The theorem is a consequence of (40) and (34).

Let us consider elements x, y of Gaussian integers. Now we state the propo-
sitions:

(43) If x is associated to y, then x is associated to y .

(44) Suppose <(y) 6= 0 and =(y) 6= 0 and <(y) 6= =(y) and −<(y) 6= =(y)
and x is associated to y. Then

(i) does not x divide y, and

(ii) does not y divide x.

Let p be an element of Gaussian integers. We say that p is Gaussian prime
if and only if

(Def. 22) (i) Norm p > 1, and

(ii) for every element z of Gaussian integers, does not z divide p or z is
unit of Gaussian integers or z is associated to p.

Let us consider an element q of Gaussian integers. Now we state the propo-
sitions:

(45) If Norm q is a prime number and Norm q 6= 2, then <(q) 6= 0 and =(q) 6= 0
and <(q) 6= =(q) and −<(q) 6= =(q).

(46) If Norm q is a prime number, then q is Gaussian prime.

Now we state the propositions:

(47) Let us consider an element q of Gaussian rationals. Then Norm q =
|<(q)|2 + |=(q)|2.

(48) Let us consider an element q of R. Then there exists an element m of Z
such that |q −m| ¬ 12 .

One can check that the Gaussian integer ring is Euclidean.
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