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Summary. A complex polynomial is called a Hurwitz polynomial, if all
its roots have a real part smaller than zero. This kind of polynomial plays an
all-dominant role in stability checks of electrical (analog or digital) networks.
In this article we prove that a polynomial p can be shown to be Hurwitz by
checking whether the rational function e(p)/o(p) can be realized as a reactance of
one port, that is as an electrical impedance or admittance consisting of inductors
and capacitors. Here e(p) and o(p) denote the even and the odd part of p [25].
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The notation and terminology used in this paper have been introduced in the
following articles: [16], [14], [2], [3], [10], [4], [5], [22], [19], [21], [15], [1], [6], [17],
[11], [12], [13], [18], [8], [26], [23], [20], [24], [9], [27], and [7].

1. Preliminaries

Now we state the propositions:

(1) Let us consider complex numbers x, y. If =(x) = 0 and <(y) = 0, then
<(xy ) = 0.

(2) Let us consider a complex number a. Then a · a = |a|2.
One can check that there exists a polynomial of CF which is Hurwitz and 0

is even.
Now we state the propositions:
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(3) Let us consider an add-associative right zeroed right complementable as-
sociative distributive non empty double loop structure L, an even element
k of N, and an element x of L. Then powerL(−x, k) = powerL(x, k).

(4) Let us consider an add-associative right zeroed right complementable
associative distributive non empty double loop structure L, an odd element
k of N, and an element x of L. Then powerL(−x, k) = −powerL(x, k). The
theorem is a consequence of (3).

(5) Let us consider an even element k of N and an element x of CF. If
<(x) = 0, then =(powerCF(x, k)) = 0.

(6) Let us consider an odd element k of N and an element x of CF. If <(x) =
0, then <(powerCF(x, k)) = 0.

2. Even and Odd Part of Polynomials

Let L be a non empty zero structure and p be a sequence of L. The functors
the even part of p and the odd part of p yielding sequences of L are defined by
the conditions, respectively.

(Def. 1) Let us consider an even natural number i. Then

(i) (the even part of p)(i) = p(i), and

(ii) for every odd natural number i, (the even part of p)(i) = 0L.

(Def. 2) Let us consider an even natural number i. Then

(i) (the odd part of p)(i) = 0L, and

(ii) for every odd natural number i, (the odd part of p)(i) = p(i).

Let p be a polynomial of L. Observe that the even part of p is finite-Support
and the odd part of p is finite-Support. Now we state the propositions:

(7) Let us consider a non empty zero structure L. Then

(i) the even part of 0. L = 0. L, and

(ii) the odd part of 0. L = 0. L.

(8) Let us consider a non empty multiplicative loop with zero structure L.
Then

(i) the even part of 1. L = 1. L, and

(ii) the odd part of 1. L = 0. L.

Let us consider a left zeroed right zeroed non empty additive loop structure
L and a polynomial p of L. Now we state the propositions:

(9) (The even part of p) + (the odd part of p) = p.

(10) (The odd part of p) + (the even part of p) = p.
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Let us consider an add-associative right zeroed right complementable non
empty additive loop structure L and a polynomial p of L. Now we state the
propositions:

(11) p− the odd part of p = the even part of p.

(12) p− the even part of p = the odd part of p.

Let us consider an add-associative right zeroed right complementable Abe-
lian non empty additive loop structure L and a polynomial p of L. Now we state
the propositions:

(13) (The even part of p)− p = −the odd part of p.

(14) (The odd part of p)− p = −the even part of p.

Let us consider an add-associative right zeroed right complementable Abe-
lian non empty additive loop structure L and polynomials p, q of L. Now we
state the propositions:

(15) The even part of p+ q = (the even part of p) + (the even part of q).

(16) The odd part of p+ q = (the odd part of p) + (the odd part of q).

Let us consider a well unital non empty double loop structure L and a
polynomial p of L. Now we state the propositions:

(17) Suppose deg p is even. Then the even part of Leading-Monomial p =
Leading-Monomial p.

(18) If deg p is odd, then the even part of Leading-Monomial p = 0. L.

(19) If deg p is even, then the odd part of Leading-Monomial p = 0. L.

(20) Suppose deg p is odd. Then the odd part of Leading-Monomial p =
Leading-Monomial p.

Now we state the proposition:

(21) Let us consider a well unital add-associative right zeroed right com-
plementable Abelian associative distributive non degenerated double loop
structure L and a non zero polynomial p of L. Then deg the even part of
p 6= deg the odd part of p. The theorem is a consequence of (9).

Let us consider a well unital add-associative right zeroed right complemen-
table associative Abelian distributive non degenerated double loop structure L
and a polynomial p of L. Now we state the propositions:

(22) (i) deg the even part of p ¬ deg p, and

(ii) deg the odd part of p ¬ deg p.

(23) deg p = max(deg the even part of p,deg the odd part of p).

3. Even and Odd Polynomials and Rational Functions

Let L be a non empty additive loop structure and f be a function from L
into L. We say that f is even if and only if
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(Def. 3) Let us consider an element x of L. Then f(−x) = f(x).

We say that f is odd if and only if

(Def. 4) Let us consider an element x of L. Then f(−x) = −f(x).
Let L be a well unital non empty double loop structure and p be a polynomial

of L. We say that p is even if and only if

(Def. 5) Polynomial-Function(L, p) is even.

We say that p is odd if and only if

(Def. 6) Polynomial-Function(L, p) is odd.

Let Z be a rational function of L. We say that Z is odd if and only if

(Def. 7) (i) Z1 is even and Z2 is odd, or

(ii) Z1 is odd and Z2 is even.

We introduce Z is even as an antonym for Z is odd.
Observe that there exists a polynomial of L which is even.
Let L be an add-associative right zeroed right complementable well unital

non empty double loop structure. Let us note that there exists a polynomial of
L which is odd.

Let L be a well unital add-associative right zeroed right complementable
associative non degenerated double loop structure. Observe that there exists a
polynomial of L which is non zero and even.

Let L be an add-associative right zeroed right complementable Abelian well
unital non degenerated double loop structure. One can verify that there exists
a polynomial of L which is non zero and odd.

Now we state the propositions:

(24) Let us consider a well unital non empty double loop structure L, an even
polynomial p of L, and an element x of L. Then eval(p,−x) = eval(p, x).

(25) Let us consider an add-associative right zeroed right complementable
Abelian well unital non degenerated double loop structure L, an odd po-
lynomial p of L, and an element x of L. Then eval(p,−x) = −eval(p, x).

Let L be a well unital non empty double loop structure. One can verify that
0. L is even.

Let L be an add-associative right zeroed right complementable well unital
non empty double loop structure. One can verify that 0. L is odd.

Let L be a well unital add-associative right zeroed right complementable
associative non degenerated double loop structure. Note that 1. L is even.

Let L be an Abelian add-associative right zeroed right complementable well
unital left distributive non empty double loop structure and p, q be even poly-
nomials of L. Let us note that p+ q is even.

Let p, q be odd polynomials of L. Let us note that p+ q is odd.
Let L be an Abelian add-associative right zeroed right complementable as-

sociative well unital distributive non degenerated double loop structure and p
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be a polynomial of L. One can check that the even part of p is even and the odd
part of p is odd.

Now we state the propositions:

(26) Let us consider an Abelian add-associative right zeroed right comple-
mentable well unital distributive non degenerated double loop structure
L, an even polynomial p of L, an odd polynomial q of L, and an element
x of L. If x is a common root of p and q, then −x is a root of p+ q. The
theorem is a consequence of (24) and (25).

(27) Let us consider a Hurwitz polynomial p of CF. Then the even part of p
and the odd part of p have no common roots. The theorem is a consequence
of (9) and (26).

4. Real Positive Polynomials and Rational Functions

Let p be a polynomial of CF. We say that p is real if and only if

(Def. 8) Let us consider a natural number i. Then p(i) is a real number.

We say that p is positive if and only if

(Def. 9) Let us consider an element x of CF. If <(x) > 0, then <(eval(p, x)) > 0.

Let us note that 0.CF is real and non positive and 1.CF is real and positive
and there exists a polynomial of CF which is non zero, real, and positive and
every polynomial of CF which is real is also real-valued.

Let p be a real polynomial of CF. One can verify that the even part of p is
real and the odd part of p is real.

Let L be a non empty additive loop structure and p be a polynomial of L.
We say that p has all coefficients if and only if

(Def. 10) Let us consider a natural number i. If i ¬ deg p, then p(i) 6= 0.

Let p be a real polynomial of CF. We say that p has positive coefficients if
and only if

(Def. 11) Let us consider a natural number i. If i ¬ deg p, then p(i) > 0.

We say that p is negative coefficients if and only if

(Def. 12) Let us consider a natural number i. If i ¬ deg p, then p(i) < 0.

One can check that every real polynomial of CF which has positive coeffi-
cients has also all coefficients and every real polynomial of CF which is negative
coefficients has also all coefficients and there exists a real polynomial of CF
which is non constant and has positive coefficients.

Let p be a non zero real polynomial of CF with all coefficients. Let us note
that the even part of p is non zero. Note that the odd part of p is non zero.

Let Z be a rational function of CF. We say that Z is real if and only if

(Def. 13) Let us consider a natural number i. Then
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(i) Z1(i) is a real number, and

(ii) Z2(i) is a real number.

We say that Z is positive if and only if

(Def. 14) Let us consider an element x of CF. Suppose

(i) <(x) > 0, and

(ii) eval(Z2, x) 6= 0.

Then <(eval(Z, x)) > 0.

One can check that there exists a rational function of CF which is non zero,
odd, real, and positive.

Let p1 be a real polynomial of CF and p2 be a non zero real polynomial of
CF. Let us note that 〈〈p1, p2〉〉 is real as a rational function of CF.

5. The Routh-Schur Stability Criterion

A one port function is a real positive rational function of CF. A reactance
one port function is an odd real positive rational function of CF.

Let us consider a real polynomial p of CF and an element x of CF. Now we
state the propositions:

(28) If <(x) = 0, then =(eval(the even part of p, x)) = 0.

(29) If <(x) = 0, then <(eval(the odd part of p, x)) = 0.

Now we state the proposition:

(30) Let us consider a non constant real polynomial p of CF with positive
coefficients. Suppose

(i) 〈〈the even part of p, the odd part of p〉〉 is positive, and

(ii) the even part of p and the odd part of p have no common roots.

Then

(iii) for every element x of CF such that <(x) = 0 and eval(the odd
part of p, x) 6= 0 holds <(eval(〈〈the even part of p, the odd part of
p〉〉, x)) ­ 0, and

(iv) (the even part of p) + (the odd part of p) is Hurwitz.

The theorem is a consequence of (28), (29), and (1).

Now we state the proposition:

(31) Routh-Schur stability criterion (for a single-input, single-
output (SISO), linear time invariant (LTI) control system):
Let us consider a non constant real polynomial p of CF with positive
coefficients. Suppose

(i) 〈〈the even part of p, the odd part of p〉〉 is a one port function, and
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(ii) degree(〈〈the even part of p, the odd part of p〉〉) = degree(p).

Then p is Hurwitz. The theorem is a consequence of (23), (30), and (9).
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