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Posterior Probability on Finite Set1

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Summary. In [14] we formalized probability and probability distribution
on a finite sample space. In this article first we propose a formalization of the class
of finite sample spaces whose element’s probability distributions are equivalent
with each other. Next, we formalize the probability measure of the class of sample
spaces we have formalized above. Finally, we formalize the sampling and posterior
probability.
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The notation and terminology used in this paper have been introduced in the
following papers: [11], [1], [14], [17], [3], [5], [20], [10], [6], [7], [4], [19], [22], [25],
[18], [2], [8], [13], [15], [12], [23], [24], [16], [21], and [9].

1. Equivalent Distributed Finite and Distributed Sample Spaces

The following propositions are true:

(1) Let Y be a non empty finite set and s be a finite sequence of elements
of Y . If Y = {1} and s = 〈1〉, then FDprobSEQ s = 〈1〉.

(2) Let S be a non empty finite set, p be a probability distribution fi-
nite sequence on S, and s be a finite sequence of elements of S. If
FDprobSEQ s = p, then distribution(p, S) = the equivalence class of s
and s ∈ distribution(p, S).

(3) Let S be a non empty finite set and x be an element of S. Then
x ∈ rng CFS(S) and there exists a natural number n such that n ∈
dom CFS(S) and x = (CFS(S))(n) and n ∈ Seg S .
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Let S be a non empty finite set. One can check that every non empty finite
set is non empty.

Let S be a non empty finite set and let D be an element of the distribution
family of S. We see that the element of D is a finite sequence of elements of S.

One can prove the following proposition

(4) Let S be a non empty finite set, D be an element of the distribution
family of S, and s, t be elements of D. Then s and t are probability
equivalent.

Let S be a non empty finite set and let D be an element of the distribution
family of S. We introduce D is well distributed as a synonym of D has non
empty elements.

We now state the proposition

(5) Let S be a non empty finite set and s be a finite sequence of elements of
S. Then for every set x holds ProbD(x, s) = 0 if and only if s is empty.

Let S be a non empty finite set. Observe that every non empty finite set
which is well distributed

We now state the proposition

(6) Let S be a non empty finite set and D be an element of the distribution
family of S. Then D is not well distributed if and only if D = {εS}.

Let S be a non empty finite set. An equivalent distributed sample spaces
family of S is a well distributed element of the distribution family of S.

Let S be a non empty finite set. One can verify that the uniform distribution
S is well distributed.

One can prove the following proposition

(7) Let S be a non empty finite set and D be an equivalent distributed
sample spaces family of S. Then (GenProbSEQS)(D) is a probability
distribution finite sequence on S.

2. Probability Measure of Equivalent Distributed Finite and
Distributed Sample Spaces

Let S be a non empty finite set and let a be an element of S. The functor
|• : a|N yielding an element of N is defined by:

(Def. 1) |• : a|N = a" CFS(S).

Let S be a non empty finite set and let D be an equivalent distributed sample
spaces family of S. The probability finite sequence of D yields a probability
distribution finite sequence on S and is defined by:

(Def. 2) The probability finite sequence of D = (GenProbSEQS)(D).

Let j1 be a Boolean-valued function. The true event of j1 yielding an event
of dom j1 is defined as follows:
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(Def. 3) The true event of j1 = j1
−1({true}).

The following proposition is true

(8) Let S be a non empty finite set, f be an S-valued function, and j1 be a
function from S into Boolean. Then the true event of j1 · f is an event of
dom f.

Let S be a non empty finite set, let D be an equivalent distributed sample
spaces family of S, let s be an element of D, and let j1 be a function from S into
Boolean. The functor Prob(j1, s) yielding a real number is defined as follows:

(Def. 4) Prob(j1, s) = the true event of j1·s
len s .

The following propositions are true:

(9) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, s be an element of D, j1 be a function from S into
Boolean, F be a non empty finite set, and E be an event of F . If F = dom s

and E = the true event of j1 · s, then Prob(j1, s) = P(E).

(10) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, a be an element of S, s be an element of D, and
j1 be a function from S into Boolean. If for every set x holds x = a iff
j1(x) = true, then Prob(j1, s) = ProbD(a, s).

Let S be a set, let s be a finite sequence of elements of S, and let A be a
subset of dom s. The functor extract(s,A) yielding a finite sequence of elements
of S is defined by:

(Def. 5) extract(s,A) = s · CFS(A).

We now state several propositions:

(11) Let S be a set, s be a finite sequence of elements of S, and A be a subset
of dom s. Then len extract(s,A) = A and for every natural number i such
that i ∈ dom extract(s,A) holds (extract(s,A))(i) = s((CFS(A))(i)).

(12) Let S be a non empty finite set, s be a finite sequence of elements of
S, A be a subset of dom s, and f be a function. If f = CFS(A), then
extract(s,A) · f−1 = s�A.

(13) Let S be a non empty finite set, f be an S-valued function, j1 be a
function from S into Boolean, and n be a set. Suppose n ∈ dom f. Then
n ∈ the true event of j1 · f if and only if f(n) ∈ the true event of j1.

(14) Let S be a non empty finite set, f be an S-valued function, and j1 be
a function from S into Boolean. Then the true event of j1 · f = f−1(the
true event of j1).

(15) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, s be an element of D, and j1 be a function from
S into Boolean. Then there exists a subset A of dom freqSEQ s such
that A = the true event of j1 · CFS(S) and the true event of j1 · s =
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∑
extract(freqSEQ s,A).

(16) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, and s be an element of D. Then freqSEQ s = len s ·
FDprobSEQ s.

(17) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, s, t be elements of D, and j1 be a function from S into
Boolean. Then Prob(j1, s) = Prob(j1, t).

Let S be a non empty finite set, let D be an equivalent distributed sample
spaces family of S, and let j1 be a function from S into Boolean. The functor
Prob(j1, D) yielding a real number is defined by:

(Def. 6) For every element s of D holds Prob(j1, D) = Prob(j1, s).

Next we state the proposition

(18) For every non empty finite set S and for every element s of S∗ and for
every function j1 from S into Boolean holds Coim(j1 · s, true) ∈ 2dom s.

Let S be a set and let S1 be a subset of S. The membership decision of S1

yielding a function from S into Boolean is defined as follows:

(Def. 7) The membership decision of S1 = χ(S1),S .

The following propositions are true:

(19) For every non empty finite set S and for every subset B1 of S there exists
a function j1 from S into Boolean such that Coim(j1, true) = B1.

(20) Let S be a non empty finite set, s be an element of S∗, f be a function
from S into Boolean, and F be a σ-field of subsets of dom s. If F = 2dom s,

then Coim(f · s, true) is an event of F .

(21) Let S be a non empty finite set, s be an element of S∗, and f , g be
functions from S into Boolean. Then Coim((f ∨ g) · s, true) = Coim(f ·
s, true) ∪ Coim(g · s, true).

(22) Let S be a non empty finite set, s be an element of S∗, and f , g be
functions from S into Boolean. Then Coim((f ∧ g) · s, true) = Coim(f ·
s, true) ∩ Coim(g · s, true).

(23) Let S be a non empty finite set, s be an element of S∗, and f be a function
from S into Boolean. Then Coim(¬f · s, true) = dom s \Coim(f · s, true).

(24) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, s be an element of D, and f , g be functions from S into

Boolean. Then Prob(f ∨ g, s) = (the true event of f ·s)∪(the true event of g·s)
len s .

(25) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, s be an element of D, and f , g be functions from S into

Boolean. Then Prob(f ∧ g, s) = (the true event of f ·s)∩(the true event of g·s)
len s .

(26) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, s be an element of D, and f be a function from S into



Posterior probability on finite set 261

Boolean. Then Prob(¬f, s) = 1− Prob(f, s).

(27) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, and f , g be functions from S into Boolean. Then
Prob(f ∨ g,D) = (Prob(f,D) + Prob(g,D))− Prob(f ∧ g,D).

(28) Let S be a non empty finite set, D be an equivalent distributed sam-
ple spaces family of S, and f be a function from S into Boolean. Then
Prob(¬f,D) = 1− Prob(f,D).

(29) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, and f be a function from S into Boolean. If f = χS,S ,

then Prob(f,D) = 1.

(30) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, and f be a function from S into Boolean. Then 0 ≤
Prob(f,D).

(31) Let S be a non empty finite set, A, B be sets, and f , g be functions from
S into Boolean. If A ⊆ S and B ⊆ S and f = χA,S and g = χB,S , then
χA∪B,S = f ∨ g.

(32) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, A, B be sets, and f , g be functions from S into Boolean.
If A ⊆ S and B ⊆ S and A misses B and f = χA,S and g = χB,S , then
Prob(f ∧ g,D) = 0.

Let S be a non empty finite set and let D be an equivalent distributed sample
spaces family of S. A function from BooleanS into R is said to be a probability
on D if:

(Def. 8) For every element j1 of BooleanS holds it(j1) = Prob(j1, D).

Let S be a non empty finite set and let D be an equivalent distributed sample
spaces family of S. The trivial probability of D yields a probability on the trivial
σ-field of S and is defined by the condition (Def. 9).

(Def. 9) Let x be a set. Suppose x ∈ the trivial σ-field of S. Then there exists
a function c1 from S into Boolean such that c1 = χx,S and (the trivial
probability of D)(x) = Prob(c1, D).

3. Sampling and Posterior Probability

Let S be a non empty finite set and let D be an equivalent distributed sample
spaces family of S. An element of S is called a sample of D if:

(Def. 10) There exists an element s of D such that it ∈ rng s.

Let S be a non empty finite set, let D be an equivalent distributed sample
spaces family of S, and let x be a sample of D. The functor Probx yielding a
real number is defined as follows:

(Def. 11) Probx = Prob(the membership decision of {x}, D).
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One can prove the following proposition

(33) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, and x be a sample of D. Then Probx = (the probability
finite sequence of D)(|• : x|N).

A non empty subset of S is said to be a sampling RNG of D if:

(Def. 12) There exists a sample x of D such that x ∈ it.

Let S be a non empty finite set, let D be an equivalent distributed sample
spaces family of S, and let X be a sampling RNG of D. The functor ProbX
yielding a real number is defined as follows:

(Def. 13) ProbX = Prob(the membership decision of X, D).

We now state several propositions:

(34) Let S be a non empty finite set, X be a subset of S, s, t be finite
sequences of elements of S, S2 be a subset of dom s, and x be a subset of
X. If S2 = s−1(X) and t = extract(s, S2), then s−1(x) = t−1(x) .

(35) Let S be a non empty finite set,X be a subset of S, s, t be finite sequences
of elements of S, S2 be a subset of dom s, and x be a set. If S2 = s−1(X)
and t = extract(s, S2) and x ∈ X, then frequency(x, s) = frequency(x, t).

(36) Let S be a non empty finite set, D be an element of the distribution
family of S, and s be a finite sequence of elements of S. If s ∈ D, then
D = the equivalence class of s.

(37) Let S be a non empty finite set, X be a subset of S, and s be a fi-
nite sequence of elements of S. Then s−1(X) = the true event of (the
membership decision of X) · s.

(38) Let S be a non empty finite set, X be a non empty subset of S, D be an
equivalent distributed sample spaces family of S, s1, s2 be elements of D,
t1, t2 be finite sequences of elements of S, S3 be a subset of dom s1, and
S4 be a subset of dom s2. Suppose S3 = s1

−1(X) and t1 = extract(s1, S3)
and S4 = s2

−1(X) and t2 = extract(s2, S4). Then t1 and t2 are probability
equivalent.

The conditional subset of X yields an equivalent distributed sample spaces
family of S and is defined by the condition (Def. 14).

(Def. 14) There exists an element s of D and there exists a finite sequence t of
elements of S and there exists a subset S2 of dom s such that S2 = s−1(X)
and t = extract(s, S2) and t ∈ the conditional subset of X.

Let f be a function from S into Boolean. The functor Prob(f,X) yielding a
real number is defined by:

(Def. 15) Prob(f,X) = Prob(f, the conditional subset of X).

One can prove the following proposition
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(39) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, X be a sampling RNG of D, and f be a function from
S into Boolean. Then Prob(f,X) · ProbX = Prob(f ∧ the membership
decision of X, D).
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