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Summary. In this article we formalize a quotient module of Z-module and
a vector space constructed by the quotient module. We formally prove that for a
Z-module V and a prime number p, a quotient module V/pV has the structure of
a vector space over Fp. Z-module is necessary for lattice problems, LLL (Lenstra,
Lenstra and Lovász) base reduction algorithm and cryptographic systems with
lattices [14]. Some theorems in this article are described by translating theorems
in [20] and [19] into theorems of Z-module.

MML identifier: ZMODUL02, version: 7.14.01 4.183.1153

The terminology and notation used here have been introduced in the following
articles: [4], [1], [16], [3], [21], [9], [5], [6], [18], [13], [15], [17], [2], [7], [11], [24],
[25], [22], [20], [23], [12], [8], and [10].

1. Quotient Module of Z-module and Vector Space

For simplicity, we follow the rules: x is a set, V is a Z-module, u, v are
vectors of V , F , G, H are finite sequences of elements of V , i is an element of
N, and f , g are sequences of V .

Let V be a Z-module and let a be an integer number. The functor a · V
yielding a non empty subset of V is defined by:

(Def. 1) a · V = {a · v : v ranges over elements of V }.
Let V be a Z-module and let a be an integer number. The functor Zero(a, V )

yielding an element of a · V is defined as follows:

(Def. 2) Zero(a, V ) = 0V .
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Let V be a Z-module and let a be an integer number. The functor Add(a, V )
yielding a function from (a · V )× (a · V ) into a · V is defined by:

(Def. 3) Add(a, V ) = (the addition of V )�((a · V )× (a · V )).

Let V be a Z-module and let a be an integer number. The functor Mult(a, V )
yielding a function from Z× (a · V ) into a · V is defined by:

(Def. 4) Mult(a, V ) = (the external multiplication of V )�(Z× (a · V )).

Let V be a Z-module and let a be an integer number. The functor a ◦ V
yields a submodule of V and is defined as follows:

(Def. 5) a ◦ V = 〈〈a · V,Zero(a, V ),Add(a, V ),Mult(a, V )〉〉.
Let V be a Z-module and let W be a submodule of V . The functor

CosetSet(V,W ) yields a non empty family of subsets of V and is defined as
follows:

(Def. 6) CosetSet(V,W ) = {A : A ranges over cosets of W}.
Let V be a Z-module and let W be a submodule of V . The functor

addCoset(V,W ) yields a binary operation on CosetSet(V,W ) and is defined as
follows:

(Def. 7) For all elements A, B of CosetSet(V,W ) and for all vectors a, b of V such
that A = a+W and B = b+W holds (addCoset(V,W ))(A,B) = a+b+W.

Let V be a Z-module and let W be a submodule of V . The functor
zeroCoset(V,W ) yielding an element of CosetSet(V,W ) is defined by:

(Def. 8) zeroCoset(V,W ) = the carrier of W .

Let V be a Z-module and let W be a submodule of V . The functor
lmultCoset(V,W ) yields a function from Z×CosetSet(V,W ) into CosetSet(V,W )
and is defined as follows:

(Def. 9) For every integer z and for every element A of CosetSet(V,W ) and for
every vector a of V such that A = a+W holds (lmultCoset(V,W ))(z,A) =
z · a+W.

Let V be a Z-module and let W be a submodule of V . The functor
Z-ModuleQuot(V,W ) yields a strict Z-module and is defined by the conditions
(Def. 10).

(Def. 10)(i) The carrier of Z-ModuleQuot(V,W ) = CosetSet(V,W ),
(ii) the addition of Z-ModuleQuot(V,W ) = addCoset(V,W ),
(iii) 0Z-ModuleQuot(V,W ) = zeroCoset(V,W ), and
(iv) the external multiplication of Z-ModuleQuot(V,W ) = lmultCoset(V,W ).

The following propositions are true:

(1) Let p be an integer, V be a Z-module, W be a submodule of V , and
x be a vector of Z-ModuleQuot(V,W ). If W = p ◦ V, then p · x =
0Z-ModuleQuot(V,W ).
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(2) Let p, i be integers, V be a Z-module, W be a submodule of V , and
x be a vector of Z-ModuleQuot(V,W ). If p 6= 0 and W = p ◦ V, then
i · x = (i mod p) · x.

(3) Let p, q be integers, V be a Z-module, W be a submodule of V , and v

be a vector of V . Suppose W = p ◦ V and p > 1 and q > 1 and p and q

are relative prime. If q · v = 0V , then v +W = 0Z-ModuleQuot(V,W ).

Let p be a prime number and let V be a Z-module. The functor
MultModpV(V, p) yields a function from (the carrier of GF(p)) × (the carrier
of Z-ModuleQuot(V, p ◦ V )) into the carrier of Z-ModuleQuot(V, p ◦ V ) and is
defined by the condition (Def. 11).

(Def. 11) Let a be an element of GF(p), i be an integer, and x be an element of
Z-ModuleQuot(V, p◦V ). If a = i mod p, then (MultModpV(V, p))(a, x) =
(i mod p) · x.

Let p be a prime number and let V be a Z-module. The functor
Z-MQVectSp(V, p) yielding a non empty strict vector space structure over GF(p)
is defined by:

(Def. 12) Z-MQVectSp(V, p) = 〈the carrier of Z-ModuleQuot(V, p ◦ V ), the ad-
dition of Z-ModuleQuot(V, p ◦ V ), the zero of Z-ModuleQuot(V, p ◦ V ),
MultModpV(V, p)〉.

Let p be a prime number and let V be a Z-module. Observe that
Z-MQVectSp(V, p) is scalar distributive, vector distributive, scalar associative,
scalar unital, add-associative, right zeroed, right complementable, and Abelian.

Let p be a prime number, let V be a Z-module, and let v be a vector of
V . The functor Z-MtoMQV(V, p, v) yields a vector of Z-MQVectSp(V, p) and is
defined as follows:

(Def. 13) Z-MtoMQV(V, p, v) = v + p ◦ V.
Let X be a Z-module. The functor MultINT∗X yielding a function from

(the carrier of (ZR))× (the carrier of X) into the carrier of X is defined by:

(Def. 14) MultINT∗X = the external multiplication of X.

Let X be a Z-module. The functor PreNormsX yielding a non empty strict
vector space structure over ZR is defined by:

(Def. 15) PreNormsX = 〈the carrier of X, the addition of X, the zero of X,
MultINT∗X〉.

Let X be a Z-module. Observe that PreNormsX is Abelian, add-associative,
right zeroed, right complementable, vector distributive, scalar distributive, sca-
lar associative, and scalar unital.

Let X be a left module over ZR. The functor MultINT∗X yielding a function
from Z× the carrier of X into the carrier of X is defined as follows:

(Def. 16) MultINT∗X = the left multiplication of X.



208 yuichi futa et al.

Let X be a left module over ZR. The functor PreNormsX yields a non empty
strict Z-module structure and is defined as follows:

(Def. 17) PreNormsX = 〈〈the carrier of X, the zero of X, the addition of X,
MultINT∗X〉〉.

Let X be a left module over ZR. Note that PreNormsX is Abelian, add-
associative, right zeroed, right complementable, scalar distributive, vector di-
stributive, scalar associative, and scalar unital.

We now state four propositions:

(4) Let X be a Z-module, v, w be elements of X, and v1, w1 be elements of
PreNormsX. If v = v1 and w = w1, then v + w = v1 + w1 and v − w =
v1 − w1.

(5) Let X be a Z-module, v be an element of X, v1 be an element of
PreNormsX, a be an integer, and a1 be an element of ZR. If v = v1

and a = a1, then a · v = a1 · v1.

(6) Let X be a left module over ZR, v, w be elements of X, and v1, w1 be
elements of PreNormsX. If v = v1 and w = w1, then v+w = v1 +w1 and
v − w = v1 − w1.

(7) Let X be a left module over ZR, v be an element of X, v1 be an element
of PreNormsX, a be an element of ZR, and a1 be an integer. If v = v1

and a = a1, then a · v = a1 · v1.

2. Linear Combination of Z-module

Let V be a non empty zero structure. An element of Zthe carrier of V is said
to be a Z-linear combination of V if:

(Def. 18) There exists a finite subset T of V such that for every element v of V
such that v /∈ T holds it(v) = 0.

In the sequel K, L, L1, L2, L3 denote Z-linear combinations of V .
Let V be a non empty additive loop structure and let L be a Z-linear com-

bination of V . The support of L yielding a finite subset of V is defined by:

(Def. 19) The support of L = {v ∈ V : L(v) 6= 0}.
Next we state the proposition

(8) Let V be a non empty additive loop structure, L be a Z-linear combina-
tion of V , and v be an element of V . Then L(v) = 0 if and only if v /∈ the
support of L.

Let V be a non empty additive loop structure. The functor Z-ZeroLCV

yields a Z-linear combination of V and is defined by:

(Def. 20) The support of Z-ZeroLCV = ∅.
One can prove the following proposition
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(9) For every non empty additive loop structure V and for every element v
of V holds (Z-ZeroLCV )(v) = 0.

Let V be a non empty additive loop structure and let A be a subset of V .
A Z-linear combination of V is said to be a Z-linear combination of A if:

(Def. 21) The support of it ⊆ A.
For simplicity, we adopt the following convention: a, b are integers, G, H1,

H2, F , F1, F2, F3 are finite sequences of elements of V , A, B are subsets of V ,
v1, v2, v3, u1, u2, u3 are vectors of V , f is a function from the carrier of V into
Z, i is an element of N, and l, l1, l2 are Z-linear combinations of A.

One can prove the following propositions:

(10) If A ⊆ B, then l is a Z-linear combination of B.

(11) Z-ZeroLCV is a Z-linear combination of A.

(12) For every Z-linear combination l of ∅the carrier of V holds l = Z-ZeroLCV.

Let us consider V , F , f . The functor f ·F yields a finite sequence of elements
of V and is defined by:

(Def. 22) len(f ·F ) = lenF and for every i such that i ∈ dom(f ·F ) holds (f ·F )(i) =
f(Fi) · Fi.

Next we state several propositions:

(13) If i ∈ domF and v = F (i), then (f · F )(i) = f(v) · v.
(14) f · ε(the carrier of V ) = ε(the carrier of V ).

(15) f · 〈v〉 = 〈f(v) · v〉.
(16) f · 〈v1, v2〉 = 〈f(v1) · v1, f(v2) · v2〉.
(17) f · 〈v1, v2, v3〉 = 〈f(v1) · v1, f(v2) · v2, f(v3) · v3〉.

Let us consider V , L. The functor
∑
L yielding an element of V is defined

by:

(Def. 23) There exists F such that F is one-to-one and rngF = the support of L
and
∑
L =
∑

(L · F ).

Next we state several propositions:

(18) A 6= ∅ and A is linearly closed iff for every l holds
∑
l ∈ A.

(19)
∑

Z-ZeroLCV = 0V .

(20) For every Z-linear combination l of ∅the carrier of V holds
∑
l = 0V .

(21) For every Z-linear combination l of {v} holds
∑
l = l(v) · v.

(22) If v1 6= v2, then for every Z-linear combination l of {v1, v2} holds
∑
l =

l(v1) · v1 + l(v2) · v2.

(23) If the support of L = ∅, then
∑
L = 0V .

(24) If the support of L = {v}, then
∑
L = L(v) · v.

(25) If the support of L = {v1, v2} and v1 6= v2, then
∑
L = L(v1) · v1 +

L(v2) · v2.
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Let V be a non empty additive loop structure and let L1, L2 be Z-linear
combinations of V . Let us observe that L1 = L2 if and only if:

(Def. 24) For every element v of V holds L1(v) = L2(v).

Let V be a non empty additive loop structure and let L1, L2 be Z-linear
combinations of V . Then L1 + L2 is a Z-linear combination of V and it can be
characterized by the condition:

(Def. 25) For every element v of V holds (L1 + L2)(v) = L1(v) + L2(v).

Let us observe that the functor L1 + L2 is commutative.
The following propositions are true:

(26) The support of L1 + L2 ⊆ (the support of L1) ∪ (the support of L2).

(27) Suppose L1 is a Z-linear combination of A and L2 is a Z-linear combi-
nation of A. Then L1 + L2 is a Z-linear combination of A.

(28) L1 + (L2 + L3) = (L1 + L2) + L3.

Let us consider V , a, L. Note that L+ Z-ZeroLCV reduces to L.
The functor a · L yielding a Z-linear combination of V is defined as follows:

(Def. 26) For every v holds (a · L)(v) = a · L(v).

We now state several propositions:

(29) If a 6= 0, then the support of a · L = the support of L.

(30) 0 · L = Z-ZeroLCV.

(31) If L is a Z-linear combination of A, then a · L is a Z-linear combination
of A.

(32) (a+ b) · L = a · L+ b · L.
(33) a · (L1 + L2) = a · L1 + a · L2.

(34) a · (b · L) = (a · b) · L.
Let us consider V , L. One can check that 1 · L reduces to L.
The functor −L yielding a Z-linear combination of V is defined as follows:

(Def. 27) −L = (−1) · L.
Let us note that the functor −L is involutive.

We now state four propositions:

(35) (−L)(v) = −L(v).

(36) If L1 + L2 = Z-ZeroLCV, then L2 = −L1.

(37) The support of −L = the support of L.

(38) If L is a Z-linear combination of A, then −L is a Z-linear combination
of A.

Let us consider V , L1, L2. The functor L1−L2 yields a Z-linear combination
of V and is defined as follows:

(Def. 28) L1 − L2 = L1 +−L2.

The following four propositions are true:



Quotient module of Z-module 211

(39) (L1 − L2)(v) = L1(v)− L2(v).

(40) The support of L1 − L2 ⊆ (the support of L1) ∪ (the support of L2).

(41) Suppose L1 is a Z-linear combination of A and L2 is a Z-linear combi-
nation of A. Then L1 − L2 is a Z-linear combination of A.

(42) L− L = Z-ZeroLCV.

Let us consider V . The functor LCV yielding a set is defined by:

(Def. 29) x ∈ LCV iff x is a Z-linear combination of V .

Let us consider V . One can verify that LCV is non empty.
In the sequel e, e1, e2 denote elements of LCV .
Let us consider V , e. The functor @e yielding a Z-linear combination of V

is defined by:

(Def. 30) @e = e.

Let us consider V , L. The functor @L yielding an element of LCV is defined
by:

(Def. 31) @L = L.

Let us consider V . The functor +LCV yields a binary operation on LCV and
is defined as follows:

(Def. 32) For all e1, e2 holds +LCV (e1, e2) = (@e1) + @e2.

Let us consider V . The functor ·LCV yields a function from Z × LCV into
LCV and is defined by:

(Def. 33) For all a, e holds ·LCV (〈〈a, e〉〉) = a · (@e).

Let us consider V . The functor LC-Z-ModuleV yielding a Z-module struc-
ture is defined as follows:

(Def. 34) LC-Z-ModuleV = 〈〈LCV ,
@Z-ZeroLCV,+LCV , ·LCV 〉〉.

Let us consider V . One can check that LC-Z-ModuleV is strict and non
empty.

Let us consider V . Observe that LC-Z-ModuleV is Abelian, add-associative,
right zeroed, right complementable, vector distributive, scalar distributive, sca-
lar associative, and scalar unital.

Next we state several propositions:

(43) The carrier of LC-Z-ModuleV = LCV .

(44) 0LC-Z-ModuleV = Z-ZeroLCV.

(45) The addition of LC-Z-ModuleV = +LCV .

(46) The external multiplication of LC-Z-ModuleV = ·LCV .

(47) L1
LC-Z-ModuleV + L2

LC-Z-ModuleV = L1 + L2.

(48) a · LLC-Z-ModuleV = a · L.
(49) −LLC-Z-ModuleV = −L.
(50) L1

LC-Z-ModuleV − L2
LC-Z-ModuleV = L1 − L2.
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Let us consider V , A. The functor LC-Z-ModuleA yielding a strict submo-
dule of LC-Z-ModuleV is defined by:

(Def. 35) The carrier of LC-Z-ModuleA = {l}.

3. Linearly Independent Subset of Z-module

For simplicity, we use the following convention: W , W1, W2, W3 are submo-
dules of V , v, v1 are vectors of V , C is a subset of V , T is a finite subset of V ,
L, L1, L2 are Z-linear combinations of V , l is a Z-linear combination of A, and
G is a finite sequence of elements of the carrier of V .

One can prove the following propositions:

(51) f · (F a G) = (f · F ) a (f ·G).

(52)
∑

(L1 + L2) =
∑
L1 +

∑
L2.

(53)
∑

(a · L) = a ·
∑
L.

(54)
∑

(−L) = −
∑
L.

(55)
∑

(L1 − L2) =
∑
L1 −

∑
L2.

Let us consider V , A. We say that A is linearly independent if and only if:

(Def. 36) For every l such that
∑
l = 0V holds the support of l = ∅.

Let us consider V , A. We introduce A is linearly dependent as an antonym
of A is linearly independent.

We now state three propositions:

(56) If A ⊆ B and B is linearly independent, then A is linearly independent.

(57) If A is linearly independent, then 0V /∈ A.
(58) ∅the carrier of V is linearly independent.

Let us consider V . Observe that there exists a subset of V which is linearly
independent.

One can prove the following proposition

(59) If V inherits cancelable on multiplication, then {v} is linearly indepen-
dent iff v 6= 0V .

Let us consider V . Note that {0V } is linearly dependent as a subset of V .
One can prove the following propositions:

(60) If {v1, v2} is linearly independent, then v1 6= 0V .

(61) {v, 0V } is linearly dependent.

(62) Suppose V inherits cancelable on multiplication. Then v1 6= v2 and
{v1, v2} is linearly independent if and only if v2 6= 0V and for all a, b
such that b 6= 0 holds b · v1 6= a · v2.

(63) Suppose V inherits cancelable on multiplication. Then v1 6= v2 and
{v1, v2} is linearly independent if and only if for all a, b such that
a · v1 + b · v2 = 0V holds a = 0 and b = 0.
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Let us consider V , A. The functor Lin(A) yielding a strict submodule of V
is defined as follows:

(Def. 37) The carrier of Lin(A) = {
∑
l}.

The following propositions are true:

(64) x ∈ Lin(A) iff there exists l such that x =
∑
l.

(65) If x ∈ A, then x ∈ Lin(A).

(66) x ∈ 0V iff x = 0V .

(67) Lin(∅the carrier of V ) = 0V .

(68) If Lin(A) = 0V , then A = ∅ or A = {0V }.
(69) For every strict Z-module V and for every subset A of V such that

A = the carrier of V holds Lin(A) = V.

(70) If A ⊆ B, then Lin(A) is a submodule of Lin(B).

(71) For every strict Z-module V and for all subsets A, B of V such that
Lin(A) = V and A ⊆ B holds Lin(B) = V.

(72) Lin(A ∪B) = Lin(A) + Lin(B).

(73) Lin(A ∩B) is a submodule of Lin(A) ∩ Lin(B).

4. Theorems Related to Submodule

One can prove the following propositions:

(74) If W1 is a submodule of W3, then W1 ∩W2 is a submodule of W3.

(75) If W1 is a submodule of W2 and a submodule of W3, then W1 is a
submodule of W2 ∩W3.

(76) If W1 is a submodule of W3 and W2 is a submodule of W3, then W1 +W2

is a submodule of W3.

(77) If W1 is a submodule of W2, then W1 is a submodule of W2 +W3.
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