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The Derivations of Temporal Logic
Formulas'
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Summary. This is a preliminary article to prove the completeness theorem
of an extension of basic propositional temporal logic. We base it on the proof of
completeness for basic propositional temporal logic given in [12]. We introduce
n-ary connectives and prove their properties. We derive temporal logic formulas.

MML identifier: LTLAXIO02, version: 7.14.01 4.183.1153

The papers [14], [3], [1], [16], [6], [17], [8], [2], [7], [13], [4], [5], [11], [10], [15],
and [9] provide the terminology and notation for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following rules: A, B, p, ¢, r, s are elements of
the LTLB-WFF, ¢, k, n are elements of N, X is a subset of the LTLB-WFF, f,
f1 are finite sequences of elements of the LTLB-WFF, and g is a function from
the LTLB-WFF into Boolean.

Let f be a finite sequence and let x be an empty set. One can check that
f(z) is empty.

We now state three propositions:
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(1) For every finite sequence f such that lenf > 0 and n > 0 holds
len(fIn) > 0.
(2) For every finite sequence f such that len f = 0 holds f|,, = f.
(3) For all finite sequences f, g such that rng f = rngg holds len f = 0 iff
leng = 0.
Let us consider A, B. The functor UN(A, B) yields an element of the LTLB-
WEFF and is defined by:
(Def. 1) UN(A,B) = BV (A&&(AU B)).
One can prove the following proposition
(4) VAL,(T) =1.
Next we state the proposition
(5) VAL4(pV q) = VAL,(p) V VAL,(q).

2. n-ARGUMENT CONNECTIVES AND THEIR PROPERTIES

Let us consider f. The functor conjunction f yielding a finite sequence of
elements of the LTLB-WFF is defined as follows:

(Def. 2)(i)  lenconjunction f = len f and (conjunction f)(1) = f(1) and for
every ¢ such that 1 < 4 < lenf holds (conjunction f)(i + 1) =
(conjunction f); && fiy1 if len f > 0,

(ii)  conjunction f = (T;), otherwise.
Let us consider f, A. The functor implication(f, A) yielding a finite sequence
of elements of the LTLB-WFF is defined as follows:

(Def. 3)(i) lenimplication(f, A) = len f and (implication(f, A))(1) =G(f1) = 4
and for every ¢ such that 1 < i < len f holds (implication(f, A))(i +1) =
G(fi+1) = (implication(f, A)); if len f > 0,

(ii)  implication(f, A) = €(the LTLB-WFF), Otherwise.
Let us consider f. The functor negation f yields a finite sequence of elements
of the LTLB-WFF and is defined by:

(Def. 4) lennegation f = len f and for every i such that 1 < ¢ < len f holds
(negation f) (i) = = (fi).

Let us consider f. The functor next f yields a finite sequence of elements of
the LTLB-WFF and is defined by:

(Def. 5) lennext f = lenf and for every ¢ such that 1 < ¢ < lenf holds
(next f)(z) = X(fi)-

We now state a number of propositions:
(6) Iflen f > 0, then (conjunction f); = fi.
(7) For every natural number i such that 1 < ¢ < lenf holds
(conjunction f);+1 = (conjunction f); && fit1.
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(8) For every natural number ¢ such that ¢ € dom f holds (negation f); =
~(fi)-
(9) For every natural number i such that i € dom f holds (next f); = X (fi)-
(10) (ConjunCtion(E(the LTLB-WFF)))len conjunction(&he LTLB-WFF)) Tt-
(11) (Conjunction<A>)len conjunction(A) — A.
(12) For every k such that m < k holds (conjunctionf)(n) =
(conjunction(fTk))(n).
(13) For every k such that n < k and 1 <n <len f holds (conjunction f),, =
(conjunction(f[k)),.
negation(A) = (—A).
negation(f ~ (A)) = (negation f) ™~ (—A).
negation(f 7 f1) = (negation f) ~ negation f;.
VAL ((conjunction(f ™ f1) )ien conjunction(f~ f1)) =
VAL, ((conjunction f)ien conjunction f)/A VALg((conjunction f1)ien conjunction f1)-
(18) If n € dom f, then VAL, ((conjunction f)ien conjunction f) =
VALg((conjunction(f[(n ~! 1)))len conjunction(fr(nf’l))) A VALg(fTL)/\
VALg((conjunction(fin))ien conjunction(f,))-
(19) VAL,((conjunction f)ien conjunction f) = 1 iff for every natural number i
such that i € dom f holds VAL,(f;) = 1.
(20) VAL, (—((conjunction negation f)ien conjunction negation f)) = 0 iff for every
natural number ¢ such that ¢ € dom f holds VAL,(f;) = 0.
(21) If rng f = rng f1, then VALy((conjunction f)ien conjunction f) =

VALg ( (Conjunction fl)len conjunction fi ) .
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3. CLASSICAL TAUTOLOGIES OF TEMPORAL LANGUAGE

Next we state a number of propositions:

[\)
\)

p = T is tautologically valid.
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- Ty = p is tautologically valid.
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p = p is tautologically valid.
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——p = p is tautologically valid.
p = ——p is tautologically valid.
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p&& q = p is tautologically valid.

[\
oo

p&& q = q is tautologically valid.
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For every natural number k£ such that & € dom f holds fr, =
—((conjunction negation f)ien conjunction negation f) is tautologically valid.

(30) Ifrng f C rng fi, then —((conjunction negation f)ien conjunction negation f) =
—((conjunction negation f1)ien conjunction negation f,) is tautologically valid.
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(31) —(p = q) = p is tautologically valid.

(32) —=(p= q) = —q is tautologically valid.

(33) p= (¢ = p) is tautologically valid.

(34) p= (¢ = (p=q)) is tautologically valid.

(35) —(p&& q) = —pV —q is tautologically valid.

(36) —(pVq) = —p&& —q is tautologically valid.

(37) —(p&&q) = (p = —q) is tautologically valid.

(38) (T && —A) = A is tautologically valid.

(39) —(s&&q) = ((p= q) = (p = —s)) is tautologically valid.

(40) (p=r1r)=((p=s) = (p=r&&s)) is tautologically valid.

(41) —(p&& s) = —(r && s &&(p && q)) is tautologically valid.

(42) —(p&& s) = —(p&& q&&(r && s)) is tautologically valid.

(43) (p = q&& —q) = —p is tautologically valid.

(44) (¢=p&&r) = ((p=s) = (¢ = s&&r)) is tautologically valid.
45) (p=q) = ((r=3) = (p&&r = q&&s)) is tautologically valid.
(46) (p=q) = ((p=71)= ((r=p) = (r=q))) is tautologically valid.
47y (p=q¢) = ((p=-r)= (p= —(¢=r))) is tautologically valid.
(48) (p=qVr)=((r=s)= (p=qVs)) is tautologically valid.
(49) (p=r)= ((¢g=r)= (pVq=r)) is tautologically valid.

(50) (r = UN(p,q)) = ((r = —p&& —q) = —r) is tautologically valid.
(51) (r=UN(p,q)) = ((r = —q&& —(pU q)) = —r) is tautologically valid.

4. THE DERIVATIONS OF TEMPORAL LOGIC FORMULAS WITHIN CLASSICAL
Logic

One can prove the following propositions:

(52) f XFp=gand XFp=r then X Fp= q&&m.

(53) If XFp=gqgand X Fr=s,then X Fp&&r = q&&s.
(54) If XFp=gand XFp=rand X+ r=p, then X Fr = gq.
(55) If X Fp= q&& ¢, then X - —p.

(56) If for every natural number ¢ such that i € dom f holds

Dthe LTLB-WFF - p = fi, then
Dthe LTLB-WFF - p = (conjunction f)ien conjunction f-
(57) If for every natural number ¢ such that i € dom f holds
Dthe LTLB-WFF - fi = p, then
Q)the LTLB-WFF H _‘((COHjunCtion negation f)len conjunction negation f) = P.
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5. THE DERIVATIONS OF TEMPORAL LOGIC FORMULAS

Next we state several propositions:

(58) XE(Xp=Xq) = X(=q).
(59) XFx(p&&q) = xXp&& Xxq.
(60) (Z)the LTLB-WFF I~ (conjunction next f)len conjunction next f =

X((Conj unction f)len conjunction f) .

(61) XFxpvxqg=X(pVaq).
(62) XFXx(pVg =XpVXg
(63) X+ —(AU B) = x ~UN(A, B).
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