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Summary. The goal of this article is to formalize Ceva’s theorem that is
in the [8] on the web. Alongside with it formalizations of Routh’s, Menelaus’ and
generalized form of Ceva’s theorem itself are provided.

MML identifier: MENELAUS, version: 7.12.02 4.181.1147

The papers [1], [4], [3], [6], [5], [2], [7], and [9] provide the notation and termi-
nology for this paper.

1. Some Properties of the Area of Triangle

We use the following convention: A, B, C, A1, B1, C1, A2, B2, C2 are points
of E2T, l1, m1, n1 are real numbers, and X, Y , Z are subsets of E2T.

Let us consider X, Y . We introduce X is parallel to Y as a synonym of X
misses Y .

Let us consider X, Y , Z. We say that X, Y , Z are concurrent if and only if:

(Def. 1) X is parallel to Y and Y is parallel to Z and Z is parallel to X or there
exists A such that A ∈ X and A ∈ Y and A ∈ Z.

One can prove the following propositions:

(1) (A+B)1 = A1 +B1 and (A+B)2 = A2 +B2.

(2) (l1 ·A)1 = l1 ·A1 and (l1 ·A)2 = l1 ·A2.
(3) (−A)1 = −A1 and (−A)2 = −A2.
(4) (l1 ·A+m1 ·B)1 = l1 · A1 + m1 · B1 and (l1 ·A+m1 ·B)2 = l1 · A2 +

m1 ·B2.
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(5) ((−l1) ·A)1 = −l1 ·A1 and ((−l1) ·A)2 = −l1 ·A2.
(6) (l1 ·A−m1 ·B)1 = l1 · A1 −m1 · B1 and (l1 ·A−m1 ·B)2 = l1 · A2 −

m1 ·B2.
(7) The area of M((1−l1)·A+l1 ·A1, B,C) = (1−l1)·the area of M(A,B,C)+

l1 · the area of M(A1, B,C).

(8) If ](A,B,C) = 0 and A, B, C are mutually different, then ](B,C,A) =
π or ](B,A,C) = π.

(9) A, B and C are collinear iff the area of M(A,B,C) = 0.

(10) The area of M(0E2T , B,C) = B1·C2−C1·B2
2 .

(11) The area of M(A+ A1, B, C) = ((the area of M(A,B,C)) + (the area of
M(A1, B,C)))− the area of M(0E2T , B,C).

(12) If A ∈ L(B,C), then A ∈ Line(B,C).

(13) If B 6= C, then A, B and C are collinear iff A ∈ Line(B,C).

(14) If A, B, C form a triangle and A1 = (1− l1) ·B + l1 · C, then A 6= A1.

(15) Suppose A, B, C form a triangle. Then
(i) A, C, B form a triangle,

(ii) B, A, C form a triangle,
(iii) B, C, A form a triangle,
(iv) C, A, B form a triangle, and
(v) C, B, A form a triangle.

(16) Suppose A, B, C form a triangle and A1 = (1 − l1) · B + l1 · C and
B1 = (1 −m1) · C + m1 · A and m1 6= 1. Then (1 −m1) + l1 ·m1 6= 0 if
and only if Line(A,A1) is not parallel to Line(B,B1).

2. Ceva’s Theorem and Others

The following propositions are true:

(17) Suppose A1 = (1 − l1) · B + l1 · C and B1 = (1 −m1) · C + m1 · A and
C1 = (1−n1) ·A+n1 ·B. Then the area of M(A1, B1, C1) = ((1− l1) · (1−
m1) · (1− n1) + l1 ·m1 · n1) · the area of M(A,B,C).

(18) Suppose A, B, C form a triangle and A1 = (1 − l1) · B + l1 · C and
B1 = (1 − m1) · C + m1 · A and C1 = (1 − n1) · A + n1 · B and l1 6= 1
and m1 6= 1 and n1 6= 1. Then A1, B1 and C1 are collinear if and only if
l1
1−l1 ·

m1
1−m1 ·

n1
1−n1 = −1.

(19) Suppose that A, B, C form a triangle and A1 = (1− l1) ·B + l1 ·C and
B1 = (1−m1) ·C +m1 ·A and C1 = (1− n1) ·A+ n1 ·B and l1 6= 1 and
m1 6= 1 and n1 6= 1 and A, A1 and C2 are collinear and B, B1 and C2 are
collinear and B, B1 and A2 are collinear and C, C1 and A2 are collinear
and A, A1 and B2 are collinear and C, C1 and B2 are collinear. Then
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(i) ((1−m1) + l1 ·m1) · ((1− l1) + n1 · l1) · ((1− n1) +m1 · n1) 6= 0, and
(ii) the area of M(A2, B2, C2) = (m1·n1·l1−(1−m1)·(1−n1)·(1−l1))2

((1−m1)+l1·m1)·((1−l1)+n1·l1)·((1−n1)+m1·n1) ·
the area of M(A,B,C).

(20) Suppose that A, B, C form a triangle and A1 = 2
3 · B + 1

3 · C and
B1 = 2

3 · C + 1
3 ·A and C1 = 2

3 ·A+ 1
3 ·B and A, A1 and C2 are collinear

and B, B1 and C2 are collinear and B, B1 and A2 are collinear and C, C1
and A2 are collinear and A, A1 and B2 are collinear and C, C1 and B2 are
collinear. Then the area of M(A2, B2, C2) = the area of M(A,B,C)

7 .

(21) Suppose that A, B, C form a triangle and A1 = (1− l1) ·B + l1 ·C and
B1 = (1−m1) ·C +m1 ·A and C1 = (1− n1) ·A+ n1 ·B and l1 6= 1 and
m1 6= 1 and n1 6= 1 and (1 −m1) + l1 ·m1 6= 0 and (1 − l1) + n1 · l1 6= 0
and (1 − n1) + m1 · n1 6= 0. Then l1

1−l1 ·
m1
1−m1 ·

n1
1−n1 = 1 if and only if

there exists A2 such that A, A1 and A2 are collinear and B, B1 and A2
are collinear and C, C1 and A2 are collinear.

(22) Suppose A, B, C form a triangle and A1 = (1 − l1) · B + l1 · C and
B1 = (1−m1) ·C +m1 ·A and C1 = (1− n1) ·A+ n1 ·B and l1 6= 1 and
m1 6= 1 and n1 6= 1. Then l1

1−l1 ·
m1
1−m1 ·

n1
1−n1 = 1 if and only if Line(A,A1),

Line(B,B1), Line(C,C1) are concurrent.
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