

Routh's, Menelaus' and Generalized Ceva's Theorems

Boris A. Shminke Shakhtyorskaya 2 453850 Meleuz, Russia

Summary. The goal of this article is to formalize Ceva's theorem that is in the [8] on the web. Alongside with it formalizations of Routh's, Menelaus' and generalized form of Ceva's theorem itself are provided.

MML identifier: MENELAUS, version: 7.12.02 4.181.1147

The papers [1], [4], [3], [6], [5], [2], [7], and [9] provide the notation and terminology for this paper.

1. Some Properties of the Area of Triangle

We use the following convention: A, B, C, A_1 , B_1 , C_1 , A_2 , B_2 , C_2 are points of \mathcal{E}^2_T , l_1 , m_1 , n_1 are real numbers, and X, Y, Z are subsets of \mathcal{E}^2_T .

Let us consider X, Y. We introduce X is parallel to Y as a synonym of X misses Y.

Let us consider X, Y, Z. We say that X, Y, Z are concurrent if and only if:

(Def. 1) X is parallel to Y and Y is parallel to Z and Z is parallel to X or there exists A such that $A \in X$ and $A \in Y$ and $A \in Z$.

One can prove the following propositions:

- (1) $(A+B)_1 = A_1 + B_1$ and $(A+B)_2 = A_2 + B_2$.
- (2) $(l_1 \cdot A)_1 = l_1 \cdot A_1$ and $(l_1 \cdot A)_2 = l_1 \cdot A_2$.
- (3) $(-A)_1 = -A_1$ and $(-A)_2 = -A_2$.
- (4) $(l_1 \cdot A + m_1 \cdot B)_1 = l_1 \cdot A_1 + m_1 \cdot B_1$ and $(l_1 \cdot A + m_1 \cdot B)_2 = l_1 \cdot A_2 + m_1 \cdot B_2$.

- (5) $((-l_1) \cdot A)_1 = -l_1 \cdot A_1$ and $((-l_1) \cdot A)_2 = -l_1 \cdot A_2$.
- (6) $(l_1 \cdot A m_1 \cdot B)_1 = l_1 \cdot A_1 m_1 \cdot B_1$ and $(l_1 \cdot A m_1 \cdot B)_2 = l_1 \cdot A_2 m_1 \cdot B_2$.
- (7) The area of $\triangle((1-l_1)\cdot A+l_1\cdot A_1, B, C) = (1-l_1)\cdot$ the area of $\triangle(A, B, C)+l_1\cdot$ the area of $\triangle(A_1, B, C)$.
- (8) If $\angle(A, B, C) = 0$ and A, B, C are mutually different, then $\angle(B, C, A) = \pi$ or $\angle(B, A, C) = \pi$.
- (9) $A, B \text{ and } C \text{ are collinear iff the area of } \Delta(A, B, C) = 0.$
- (10) The area of $\Delta(0_{\mathcal{E}_{T}^{2}}, B, C) = \frac{B_{1} \cdot C_{2} C_{1} \cdot B_{2}}{2}$.
- (11) The area of $\triangle(A+A_1,B,C)=($ (the area of $\triangle(A,B,C))+($ the area of $\triangle(A_1,B,C)))-$ the area of $\triangle(0_{\mathcal{E}^2_n},B,C).$
- (12) If $A \in \mathcal{L}(B, C)$, then $A \in \text{Line}(B, C)$.
- (13) If $B \neq C$, then A, B and C are collinear iff $A \in \text{Line}(B, C)$.
- (14) If A, B, C form a triangle and $A_1 = (1 l_1) \cdot B + l_1 \cdot C$, then $A \neq A_1$.
- (15) Suppose A, B, C form a triangle. Then
 - (i) A, C, B form a triangle,
- (ii) B, A, C form a triangle,
- (iii) B, C, A form a triangle,
- (iv) C, A, B form a triangle, and
- (v) C, B, A form a triangle.
- (16) Suppose A, B, C form a triangle and $A_1 = (1 l_1) \cdot B + l_1 \cdot C$ and $B_1 = (1 m_1) \cdot C + m_1 \cdot A$ and $m_1 \neq 1$. Then $(1 m_1) + l_1 \cdot m_1 \neq 0$ if and only if Line (A, A_1) is not parallel to Line (B, B_1) .

2. Ceva's Theorem and Others

The following propositions are true:

- (17) Suppose $A_1 = (1 l_1) \cdot B + l_1 \cdot C$ and $B_1 = (1 m_1) \cdot C + m_1 \cdot A$ and $C_1 = (1 n_1) \cdot A + n_1 \cdot B$. Then the area of $\Delta(A_1, B_1, C_1) = ((1 l_1) \cdot (1 m_1) \cdot (1 n_1) + l_1 \cdot m_1 \cdot n_1)$ the area of $\Delta(A, B, C)$.
- (18) Suppose A, B, C form a triangle and $A_1 = (1 l_1) \cdot B + l_1 \cdot C$ and $B_1 = (1 m_1) \cdot C + m_1 \cdot A$ and $C_1 = (1 n_1) \cdot A + n_1 \cdot B$ and $l_1 \neq 1$ and $m_1 \neq 1$ and $n_1 \neq 1$. Then A_1, B_1 and C_1 are collinear if and only if $\frac{l_1}{1 l_1} \cdot \frac{m_1}{1 m_1} \cdot \frac{n_1}{1 n_1} = -1$.
- (19) Suppose that A, B, C form a triangle and $A_1 = (1 l_1) \cdot B + l_1 \cdot C$ and $B_1 = (1 m_1) \cdot C + m_1 \cdot A$ and $C_1 = (1 n_1) \cdot A + n_1 \cdot B$ and $l_1 \neq 1$ and $m_1 \neq 1$ and $n_1 \neq 1$ and A, A_1 and C_2 are collinear and A, A_1 and A_2 are collinear and A.

- $((1-m_1)+l_1\cdot m_1)\cdot ((1-l_1)+n_1\cdot l_1)\cdot ((1-n_1)+m_1\cdot n_1)\neq 0, \text{ and}$ the area of $\triangle(A_2,B_2,C_2)=\frac{(m_1\cdot n_1\cdot l_1-(1-m_1)\cdot (1-n_1)\cdot (1-l_1))^2}{((1-m_1)+l_1\cdot m_1)\cdot ((1-l_1)+n_1\cdot l_1)\cdot ((1-n_1)+m_1\cdot n_1)}$ the area of $\triangle(A, B, C)$.
- (20) Suppose that A, B, C form a triangle and $A_1 = \frac{2}{3} \cdot B + \frac{1}{3} \cdot C$ and $B_1 = \frac{2}{3} \cdot C + \frac{1}{3} \cdot A$ and $C_1 = \frac{2}{3} \cdot A + \frac{1}{3} \cdot B$ and A, A_1 and C_2 are collinear and B, B_1 and C_2 are collinear and B, B_1 and A_2 are collinear and C, C_1 and A_2 are collinear and A, A_1 and B_2 are collinear and C, C_1 and B_2 are collinear. Then the area of $\Delta(A_2, B_2, C_2) = \frac{\text{the area of } \Delta(A, B, C)}{7}$.
- (21) Suppose that A, B, C form a triangle and $A_1 = (1 l_1) \cdot B + l_1 \cdot C$ and $B_1 = (1 - m_1) \cdot C + m_1 \cdot A$ and $C_1 = (1 - n_1) \cdot A + n_1 \cdot B$ and $l_1 \neq 1$ and $m_1 \neq 1$ and $n_1 \neq 1$ and $(1 - m_1) + l_1 \cdot m_1 \neq 0$ and $(1 - l_1) + n_1 \cdot l_1 \neq 0$ and $(1 - n_1) + m_1 \cdot n_1 \neq 0$. Then $\frac{l_1}{1 - l_1} \cdot \frac{m_1}{1 - m_1} \cdot \frac{n_1}{1 - n_1} = 1$ if and only if there exists A_2 such that A, A_1 and A_2 are collinear and B, B_1 and A_2 are collinear and C, C_1 and A_2 are collinear.
- (22) Suppose A, B, C form a triangle and $A_1 = (1 l_1) \cdot B + l_1 \cdot C$ and $B_1 = (1 - m_1) \cdot C + m_1 \cdot A$ and $C_1 = (1 - n_1) \cdot A + n_1 \cdot B$ and $l_1 \neq 1$ and $m_1 \neq 1$ and $n_1 \neq 1$. Then $\frac{l_1}{1 - l_1} \cdot \frac{m_1}{1 - m_1} \cdot \frac{n_1}{1 - n_1} = 1$ if and only if Line (A, A_1) , Line (B, B_1) , Line (C, C_1) are concurrent.

References

- Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- Akihiro Kubo. Lines in *n*-dimensional Euclidean spaces. Formalized Mathematics, 11(4):371–376, 2003.
- Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidian topological space. Formalized Mathematics, 11(3):281–287, 2003.
- Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- Marco Riccardi. Heron's formula and Ptolemy's theorem. Formalized Mathematics, 16(2):97–101, 2008, doi:10.2478/v10037-008-0014-2.
- Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,
- Freek Wiedijk. Formalizing 100 theorems. http://www.cs.ru.nl/~freek/100/.
- Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255–263, 1998.

Received January 16, 2012