

The Borsuk-Ulam Theorem

Artur Korniłowicz¹
Institute of Informatics
University of Białystok
Sosnowa 64, 15-887 Białystok
Poland

Marco Riccardi Via del Pero 102 54038 Montignoso Italy

Summary. The Borsuk-Ulam theorem about antipodals is proven, [18, pp. 32–33].

MML identifier: BORSUK_7, version: 7.12.02 4.176.1140

The notation and terminology used here have been introduced in the following papers: [33], [36], [15], [16], [2], [5], [28], [35], [13], [26], [20], [30], [4], [34], [6], [7], [8], [38], [27], [1], [3], [9], [29], [31], [19], [41], [42], [39], [11], [43], [37], [40], [25], [32], [14], [23], [24], [22], [12], [21], [17], and [10].

1. Preliminaries

For simplicity, we adopt the following rules: a, b, x, y, z, X, Y, Z denote sets, n denotes a natural number, i denotes an integer, r, r_1, r_2, r_3, s denote real numbers, c, c_1, c_2 denote complex numbers, and p denotes a point of \mathcal{E}_T^n .

Let us observe that every element of \mathbb{IQ} is irrational.

Next we state a number of propositions:

- (1) If $0 \le r$ and $0 \le s$ and $r^2 = s^2$, then r = s.
- (2) If $\operatorname{frac} r \ge \operatorname{frac} s$, then $\operatorname{frac}(r-s) = \operatorname{frac} r \operatorname{frac} s$.
- (3) If frac r < frac s, then frac(r s) = (frac r frac s) + 1.

¹This work has been supported by the Polish Ministry of Science and Higher Education project "Managing a Large Repository of Computer-verified Mathematical Knowledge" (N N519 385136).

- (4) There exists i such that $\operatorname{frac}(r-s) = (\operatorname{frac} r \operatorname{frac} s) + i$ but i = 0 or i = 1.
- (5) If $\sin r = 0$, then $r = 2 \cdot \pi \cdot \lfloor \frac{r}{2 \cdot \pi} \rfloor$ or $r = \pi + 2 \cdot \pi \cdot \lfloor \frac{r}{2 \cdot \pi} \rfloor$.
- (6) If $\cos r = 0$, then $r = \frac{\pi}{2} + 2 \cdot \pi \cdot \lfloor \frac{r}{2 \cdot \pi} \rfloor$ or $r = \frac{3 \cdot \pi}{2} + 2 \cdot \pi \cdot \lfloor \frac{r}{2 \cdot \pi} \rfloor$.
- (7) If $\sin r = 0$, then there exists i such that $r = \pi \cdot i$.
- (8) If $\cos r = 0$, then there exists i such that $r = \frac{\pi}{2} + \pi \cdot i$.
- (9) If $\sin r = \sin s$, then there exists i such that $r = s + 2 \cdot \pi \cdot i$ or $r = (\pi s) + 2 \cdot \pi \cdot i$.
- (10) If $\cos r = \cos s$, then there exists i such that $r = s + 2 \cdot \pi \cdot i$ or $r = -s + 2 \cdot \pi \cdot i$.
- (11) If $\sin r = \sin s$ and $\cos r = \cos s$, then there exists i such that $r = s + 2 \cdot \pi \cdot i$.
- (12) If $|c_1| = |c_2|$ and $\operatorname{Arg} c_1 = \operatorname{Arg} c_2 + 2 \cdot \pi \cdot i$, then $c_1 = c_2$.

Let f be a one-to-one complex-valued function and let us consider c. One can verify that f + c is one-to-one.

Let f be a one-to-one complex-valued function and let us consider c. Note that f-c is one-to-one.

One can prove the following propositions:

- (13) For every complex-valued finite sequence f holds len(-f) = len f.
- $(14) \quad -\langle \underbrace{0, \dots, 0}_{n} \rangle = \langle \underbrace{0, \dots, 0}_{n} \rangle$
- (15) For every complex-valued function f such that $f \neq \langle \underbrace{0,\dots,0}_n \rangle$ holds $-f \neq$

$$\langle \underbrace{0,\ldots,0}_{n} \rangle$$
.

- (16) ${}^{2}\langle r_1, r_2, r_3 \rangle = \langle r_1^2, r_2^2, r_3^2 \rangle.$
- (17) $\sum_{1}^{2} \langle r_1, r_2, r_3 \rangle = r_1^2 + r_2^2 + r_3^2$.
- (18) For every complex-valued finite sequence f holds $(c \cdot f)^2 = c^2 \cdot f^2$.
- (19) For every complex-valued finite sequence f holds $(f/c)^2 = f^2/c^2$.
- (20) For every real-valued finite sequence f such that $\sum f \neq 0$ holds $\sum (f/\sum f) = 1$.

Let a, b, c, x, y, z be sets. The functor $[a \mapsto x, b \mapsto y, c \mapsto z]$ is defined by:

(Def. 1)
$$[a \mapsto x, b \mapsto y, c \mapsto z] = [a \longmapsto x, b \longmapsto y] + (c \longmapsto z).$$

Let $a,\,b,\,c,\,x,\,y,\,z$ be sets. One can check that $[a\mapsto x,b\mapsto y,c\mapsto z]$ is function-like and relation-like.

The following propositions are true:

- (21) $\operatorname{dom}([a \mapsto x, b \mapsto y, c \mapsto z]) = \{a, b, c\}.$
- $(22) \quad \operatorname{rng}([a \mapsto x, b \mapsto y, c \mapsto z]) \subseteq \{x, y, z\}.$
- $(23) \quad [a \mapsto x, a \mapsto y, a \mapsto z] = a \stackrel{\cdot}{\longmapsto} z.$
- $(24) \quad [a \mapsto x, a \mapsto y, b \mapsto z] = [a \longmapsto y, b \longmapsto z].$
- (25) If $a \neq b$, then $[a \mapsto x, b \mapsto y, a \mapsto z] = [a \longmapsto z, b \longmapsto y]$.

- $(26) \quad [a \mapsto x, b \mapsto y, b \mapsto z] = [a \longmapsto x, b \longmapsto z].$
- (27) If $a \neq b$ and $a \neq c$, then $([a \mapsto x, b \mapsto y, c \mapsto z])(a) = x$.
- (28) If a, b, c are mutually different, then $([a \mapsto x, b \mapsto y, c \mapsto z])(a) = x$ and $([a \mapsto x, b \mapsto y, c \mapsto z])(b) = y$ and $([a \mapsto x, b \mapsto y, c \mapsto z])(c) = z$.
- (29) For every function f such that dom $f = \{a, b, c\}$ and f(a) = x and f(b) = y and f(c) = z holds $f = [a \mapsto x, b \mapsto y, c \mapsto z]$.
- (30) $\langle a, b, c \rangle = [1 \mapsto a, 2 \mapsto b, 3 \mapsto c].$
- (31) If a, b, c are mutually different, then $\prod([a \mapsto \{x\}, b \mapsto \{y\}, c \mapsto \{z\}]) = \{[a \mapsto x, b \mapsto y, c \mapsto z]\}.$
- (32) For all sets A, B, C, D, E, F such that $A \subseteq B$ and $C \subseteq D$ and $E \subseteq F$ holds $\prod([a \mapsto A, b \mapsto C, c \mapsto E]) \subseteq \prod([a \mapsto B, b \mapsto D, c \mapsto F])$.
- (33) If a, b, c are mutually different and $x \in X$ and $y \in Y$ and $z \in Z$, then $[a \mapsto x, b \mapsto y, c \mapsto z] \in \prod ([a \mapsto X, b \mapsto Y, c \mapsto Z]).$

Let f be a function. We say that f is odd if and only if:

(Def. 2) For all complex-valued functions x, y such that x, $-x \in \text{dom } f$ and y = f(x) holds f(-x) = -y.

Let us mention that \emptyset is odd.

Let us observe that there exists a function which is odd and complexfunctions-valued.

The following propositions are true:

- (34) For every point p of $\mathcal{E}_{\mathrm{T}}^3$ holds $^2p = \langle (p_1)^2, (p_2)^2, (p_3)^2 \rangle$.
- (35) For every point p of \mathcal{E}_{T}^{3} holds $\sum^{2} p = (p_{1})^{2} + (p_{2})^{2} + (p_{3})^{2}$.

The following two propositions are true:

- (36) For every subset S of \mathbb{R}^1 such that $S = \mathbb{Q}$ holds $\mathbb{Q} \cap]-\infty, r[$ is an open subset of $\mathbb{R}^1 \upharpoonright S$.
- (37) For every subset S of \mathbb{R}^1 such that $S = \mathbb{Q}$ holds $\mathbb{Q} \cap]r, +\infty[$ is an open subset of $\mathbb{R}^1 \upharpoonright S$.

Let X be a connected non empty topological space, let Y be a non empty topological space, and let f be a continuous function from X into Y. Note that Im f is connected.

Next we state two propositions:

- (38) Let S be a subset of \mathbb{R}^1 . Suppose $S = \mathbb{Q}$. Let T be a connected topological space and f be a function from T into $\mathbb{R}^1 \upharpoonright S$. If f is continuous, then f is constant.
- (39) Let a, b be real numbers, f be a continuous function from $[a, b]_T$ into \mathbb{R}^1 , and g be a partial function from \mathbb{R} to \mathbb{R} . If $a \leq b$ and f = g, then g is continuous.

Let s be a point of \mathbb{R}^1 and let r be a real number. Then s+r is a point of \mathbb{R}^1 .

Let s be a point of \mathbb{R}^1 and let r be a real number. Then s-r is a point of \mathbb{R}^1 .

Let X be a set, let f be a function from X into \mathbb{R}^1 , and let us consider r. Then f + r is a function from X into \mathbb{R}^1 .

Let X be a set, let f be a function from X into \mathbb{R}^1 , and let us consider r. Then f - r is a function from X into \mathbb{R}^1 .

Let s, t be points of \mathbb{R}^1 , let f be a path from s to t, and let r be a real number. Then f+r is a path from s+r to t+r. Then f-r is a path from s-r to t-r.

The point c[100] of TopUnitCircle 3 is defined by:

(Def. 3) c[100] = [1, 0, 0].

The point c[-100] of TopUnitCircle 3 is defined by:

(Def. 4) c[-100] = [-1, 0, 0].

Next we state several propositions:

- $(40) \quad -c[100] = c[-100].$
- $(41) \quad -c[-100] = c[100].$
- (42) c[100] c[-100] = [2, 0, 0].
- (43) For every point p of \mathcal{E}_{T}^{2} holds $p_{1} = |p| \cdot \cos \operatorname{Arg} p$ and $p_{2} = |p| \cdot \sin \operatorname{Arg} p$.
- (44) For every point p of \mathcal{E}_{T}^{2} holds $p = \exp 2\operatorname{euc}(|p| \cdot \operatorname{cos} \operatorname{Arg} p + |p| \cdot \operatorname{sin} \operatorname{Arg} p \cdot i)$.
- (45) For all points p_1 , p_2 of \mathcal{E}_T^2 such that $|p_1| = |p_2|$ and $\operatorname{Arg} p_1 = \operatorname{Arg} p_2 + 2 \cdot \pi \cdot i$ holds $p_1 = p_2$.

One can prove the following propositions:

- (46) For every point p of \mathcal{E}_{T}^{2} such that p = CircleMap(r) holds $\text{Arg } p = 2 \cdot \pi \cdot \text{frac } r$.
- (47) Let p_1 , p_2 be points of \mathcal{E}_T^3 and u_1 , u_2 be points of \mathcal{E}^3 . If $u_1 = p_1$ and $u_2 = p_2$, then $\rho^3(u_1, u_2) = \sqrt{((p_1)_1 (p_2)_1)^2 + ((p_1)_2 (p_2)_2)^2 + ((p_1)_3 (p_2)_3)^2}$.
- (48) Let p be a point of $\mathcal{E}_{\mathrm{T}}^3$ and e be a point of \mathcal{E}^3 . If p=e and $p_{\mathbf{3}}=0$, then $\prod([1\mapsto]p_{\mathbf{1}}-\frac{r}{\sqrt{2}},p_{\mathbf{1}}+\frac{r}{\sqrt{2}}[,2\mapsto]p_{\mathbf{2}}-\frac{r}{\sqrt{2}},p_{\mathbf{2}}+\frac{r}{\sqrt{2}}[,3\mapsto\{0\}])\subseteq\mathrm{Ball}(e,r).$
- (49) For every real number s holds $c \circlearrowleft s = c \circlearrowleft s + 2 \cdot \pi \cdot i$.
- (50) For every real number s holds Rotate $s = \text{Rotate}(s + 2 \cdot \pi \cdot i)$.
- (51) For every real number s and for every point p of $\mathcal{E}_{\mathrm{T}}^2$ holds $|(\mathrm{Rotate}\, s)(p)| = |p|$.
- (52) For every real number s and for every point p of $\mathcal{E}_{\mathrm{T}}^2$ holds $\mathrm{Arg}(\mathrm{Rotate}\,s)(p) = \mathrm{Arg}(\mathrm{euc}2\mathrm{cpx}(p) \circlearrowleft s)$.
- (53) For every real number s and for every point p of \mathcal{E}_{T}^{2} such that $p \neq 0_{\mathcal{E}_{T}^{2}}$ there exists i such that $Arg(Rotates)(p) = s + Arg p + 2 \cdot \pi \cdot i$.
- (54) For every real number s holds (Rotate s)($0_{\mathcal{E}^2_{\mathrm{T}}}$) = $0_{\mathcal{E}^2_{\mathrm{T}}}$.

- (55) For every real number s and for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $(\operatorname{Rotate} s)(p) = 0_{\mathcal{E}_{\mathrm{T}}^2}$ holds $p = 0_{\mathcal{E}_{\mathrm{T}}^2}$.
- (56) For every real number s and for every point p of $\mathcal{E}_{\mathrm{T}}^2$ holds $(\mathrm{Rotate}\,s)((\mathrm{Rotate}(-s))(p)) = p.$
- (57) For every real number s holds Rotate $s \cdot \text{Rotate}(-s) = \text{id}_{\mathcal{E}_{T}^{2}}$.
- (58) For every real number s and for every point p of $\mathcal{E}_{\mathrm{T}}^2$ holds $p \in \mathrm{Sphere}((0_{\mathcal{E}_{\mathrm{T}}^2}), r)$ iff $(\mathrm{Rotate}\, s)(p) \in \mathrm{Sphere}((0_{\mathcal{E}_{\mathrm{T}}^2}), r)$.
- (59) For every non negative real number r and for every real number s holds (Rotate s) $^{\circ}$ Sphere($(0_{\mathcal{E}^2_T}), r$) = Sphere($(0_{\mathcal{E}^2_T}), r$).

Let r be a non negative real number and let s be a real number. The functor RotateCircle(r, s) yields a function from $\text{Tcircle}(0_{\mathcal{E}^2_{\text{T}}}, r)$ into $\text{Tcircle}(0_{\mathcal{E}^2_{\text{T}}}, r)$ and is defined by:

(Def. 5) RotateCircle(r, s) = Rotate $s \upharpoonright \text{Tcircle}(0_{\mathcal{E}^2_{\pi}}, r)$.

Let r be a non negative real number and let s be a real number. Note that RotateCircle(r, s) is homeomorphism.

One can prove the following proposition

(60) For every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that $p = \mathrm{CircleMap}(r_2)$ holds $(\mathrm{RotateCircle}(1, (-\mathrm{Arg}\,p)))(\mathrm{CircleMap}(r_1)) = \mathrm{CircleMap}(r_1 - r_2).$

2. On the Antipodals

Let n be a non empty natural number, let p be a point of $\mathcal{E}_{\mathrm{T}}^n$, and let r be a non negative real number. The functor $\mathrm{CircleIso}(p,r)$ yields a function from $\mathrm{TopUnitCircle}\,n$ into $\mathrm{Tcircle}(p,r)$ and is defined as follows:

(Def. 6) For every point a of TopUnitCircle n and for every point b of \mathcal{E}_{T}^{n} such that a = b holds (CircleIso(p, r)) $(a) = r \cdot b + p$.

Let n be a non empty natural number, let p be a point of $\mathcal{E}_{\mathrm{T}}^n$, and let r be a positive real number. Note that CircleIso(p,r) is homeomorphism.

The function SphereMap from \mathbb{R}^1 into TopUnitCircle 3 is defined by:

(Def. 7) For every real number x holds (SphereMap) $(x) = [\cos(2 \cdot \pi \cdot x), \sin(2 \cdot \pi \cdot x), 0]$.

We now state the proposition

(61) (SphereMap)(i) = c[100].

Let us note that SphereMap is continuous.

Let r be a real number. The functor eLoop r yields a function from $\mathbb I$ into TopUnitCircle 3 and is defined as follows:

- (Def. 8) For every point x of \mathbb{I} holds $(eLoop r)(x) = [cos(2 \cdot \pi \cdot r \cdot x), sin(2 \cdot \pi \cdot r \cdot x), 0]$. We now state the proposition
 - (62) $eLoop r = SphereMap \cdot ExtendInt r.$

Let us consider i. Then eLoop i is a loop of c[100].

One can check that eLoop i is null-homotopic as a loop of c[100].

One can prove the following proposition

(63) If $p \neq 0_{\mathcal{E}_{\mathbf{T}}^n}$, then |p/|p|| = 1.

Let n be a natural number and let p be a point of $\mathcal{E}_{\mathrm{T}}^{n}$. Let us assume that $p \neq 0_{\mathcal{E}_{\mathrm{T}}^{n}}$. The functor $(R^{n} \to S^{1}) p$ yields a point of $\mathrm{Tcircle}(0_{\mathcal{E}_{\mathrm{T}}^{n}}, 1)$ and is defined by:

(Def. 9) $(R^n \to S^1) p = p/|p|$.

Let n be a non zero natural number and let f be a function

from $\text{Tcircle}(0_{\mathcal{E}^{n+1}_{\mathbf{T}}}, 1)$ into $\mathcal{E}^n_{\mathbf{T}}$. The functor $(S^{n+1} \to S^n) f$ yielding a function from TopUnitCircle(n+1) into TopUnitCircle n is defined as follows:

(Def. 10) For all points x, y of $Tcircle(0_{\mathcal{E}_{T}^{n+1}}, 1)$ such that y = -x holds $((S^{n+1} \to S^n) f)(x) = (R^n \to S^1)(f(x) - f(y)).$

Let x_0 , y_0 be points of TopUnitCircle 2, let x_1 be a set, and let f be a path from x_0 to y_0 . Let us assume that $x_1 \in \text{CircleMap}^{-1}(\{x_0\})$. The functor liftPath (f, x_1) yielding a function from \mathbb{I} into \mathbb{R}^1 is defined by the conditions (Def. 11).

- (Def. 11)(i) (liftPath (f, x_1))(0) = x_1 ,
 - (ii) $f = \text{CircleMap} \cdot \text{liftPath}(f, x_1)$
 - (iii) liftPath (f, x_1) is continuous, and
 - (iv) for every function f_1 from \mathbb{I} into \mathbb{R}^1 such that f_1 is continuous and $f = \text{CircleMap} \cdot f_1$ and $f_1(0) = x_1 \text{ holds liftPath}(f, x_1) = f_1$.

Let n be a natural number, let p, x, y be points of $\mathcal{E}_{\mathrm{T}}^{n}$, and let r be a real number. We say that x and y are antipodals of p and r if and only if:

(Def. 12) x is a point of $\mathrm{Tcircle}(p,r)$ and y is a point of $\mathrm{Tcircle}(p,r)$ and $p \in \mathcal{L}(x,y)$.

Let n be a natural number, let p, x, y be points of $\mathcal{E}_{\mathrm{T}}^{n}$, let r be a real number, and let f be a function. We say that x and y are antipodals of p, r and f if and only if:

(Def. 13) x and y are antipodals of p and r and $x, y \in \text{dom } f$ and f(x) = f(y).

Let m, n be natural numbers, let p be a point of $\mathcal{E}_{\mathrm{T}}^{m}$, let r be a real number, and let f be a function from $\mathrm{Tcircle}(p,r)$ into $\mathcal{E}_{\mathrm{T}}^{n}$. We say that f has antipodals if and only if:

(Def. 14) There exist points x, y of $\mathcal{E}_{\mathrm{T}}^{m}$ such that x and y are antipodals of p, r and f.

Let m, n be natural numbers, let p be a point of $\mathcal{E}_{\mathrm{T}}^{m}$, let r be a real number, and let f be a function from $\mathrm{Tcircle}(p,r)$ into $\mathcal{E}_{\mathrm{T}}^{n}$. We introduce f is without antipodals as an antonym of f has antipodals.

One can prove the following propositions:

- (64) Let n be a non empty natural number, r be a non negative real number, and x be a point of $\mathcal{E}_{\mathbf{T}}^n$. Suppose x is a point of Tcircle $(0_{\mathcal{E}_{\mathbf{T}}^n}, r)$. Then x and -x are antipodals of $0_{\mathcal{E}_{\mathbf{T}}^n}$ and r.
- (65) Let n be a non empty natural number, p, x, y, x_2 , y_1 be points of $\mathcal{E}_{\mathrm{T}}^n$, and r be a positive real number. Suppose x and y are antipodals of $0_{\mathcal{E}_{\mathrm{T}}^n}$ and 1 and $x_2 = (\mathrm{CircleIso}(p,r))(x)$ and $y_1 = (\mathrm{CircleIso}(p,r))(y)$. Then x_2 and y_1 are antipodals of p and r.
- (66) Let f be a function from $\text{Tcircle}(0_{\mathcal{E}^{n+1}_{\mathrm{T}}}, 1)$ into $\mathcal{E}^n_{\mathrm{T}}$ and x be a point of $\text{Tcircle}(0_{\mathcal{E}^{n+1}_{\mathrm{T}}}, 1)$. If f is without antipodals, then $f(x) f(-x) \neq 0_{\mathcal{E}^n_{\mathrm{T}}}$.
- (67) For every function f from $Tcircle(0_{\mathcal{E}^{n+1}_T}, 1)$ into \mathcal{E}^n_T such that f is without antipodals holds $(S^{n+1} \to S^n) f$ is odd.
- (68) Let f be a function from $\operatorname{Tcircle}(0_{\mathcal{E}_{\mathbf{T}}^{n+1}}, 1)$ into $\mathcal{E}_{\mathbf{T}}^{n}$ and g, B_{1} be functions from $\operatorname{Tcircle}(0_{\mathcal{E}_{\mathbf{T}}^{n+1}}, 1)$ into $\mathcal{E}_{\mathbf{T}}^{n}$. If $g = f \circ -$ and $B_{1} = f g$ and f is without antipodals, then $(S^{n+1} \to S^{n}) f = B_{1}/(n \operatorname{NormF} \cdot B_{1})$.

Let us consider n, let r be a negative real number, and let p be a point of $\mathcal{E}_{\mathrm{T}}^{n+1}$. Observe that every function from $\mathrm{Tcircle}(p,r)$ into $\mathcal{E}_{\mathrm{T}}^{n}$ is without antipodals.

Let r be a non negative real number and let p be a point of $\mathcal{E}_{\mathrm{T}}^3$. Note that every function from $\mathrm{Tcircle}(p,r)$ into $\mathcal{E}_{\mathrm{T}}^2$ which is continuous also has antipodals.²

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
- [8] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [11] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [12] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [13] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [14] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.

²The Borsuk-Ulam Theorem

- [15] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, 6(4):449–454, 1997.
- [16] Adam Grabowski. On the subcontinua of a real line. Formalized Mathematics, 11(3):313–322, 2003.
- [17] Jarosław Gryko. Injective spaces. Formalized Mathematics, 7(1):57–62, 1998.
- [18] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.
- [19] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [20] Kanchun, Hiroshi Yamazaki, and Yatsuka Nakamura. Cross products and tripple vector products in 3-dimensional Euclidean space. Formalized Mathematics, 11(4):381–383, 2003.
- [21] Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets. Formalized Mathematics, 17(1):43–60, 2009, doi:10.2478/v10037-009-0005-y.
- [22] Artur Korniłowicz. On the continuity of some functions. Formalized Mathematics, 18(3):175–183, 2010, doi: 10.2478/v10037-010-0020-z.
- [23] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in $\mathcal{E}_{\mathrm{T}}^n$. Formalized Mathematics, 12(3):301–306, 2004.
- [24] Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. Formalized Mathematics, 13(1):117–124, 2005.
- [25] Artur Korniłowicz, Yasunari Shidama, and Adam Grabowski. The fundamental group. Formalized Mathematics, 12(3):261–268, 2004.
- [26] Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidian topological space. Formalized Mathematics, 11(3):281–287, 2003.
- [27] Adam Naumowicz and Grzegorz Bancerek. Homeomorphisms of Jordan curves. Formalized Mathematics, 13(4):477–480, 2005.
- [28] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
- [29] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [30] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787–791, 1990.
- [31] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [32] Marco Riccardi and Artur Kornilowicz. Fundamental group of n-sphere for $n \ge 2$. Formalized Mathematics, 20(2):97-104, 2012, doi: 10.2478/v10037-012-0013-1.
- [33] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335–338, 1997.
- [34] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [35] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
- [36] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535–545, 1991.
- [37] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [38] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [39] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [40] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [41] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [42] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [43] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255–263, 1998.

Received September 20, 2011