

Differentiable Functions on Normed Linear Spaces¹

Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this article, we formalize differentiability of functions on normed linear spaces. Partial derivative, mean value theorem for vector-valued functions, continuous differentiability, etc. are formalized. As it is well known, there is no exact analog of the mean value theorem for vector-valued functions. However a certain type of generalization of the mean value theorem for vector-valued functions is obtained as follows: If $||f'(x+t\cdot h)||$ is bounded for t between 0 and 1 by some constant M, then $||f(x+t\cdot h)-f(x)|| \leq M\cdot ||h||$. This theorem is called the mean value theorem for vector-valued functions. By this theorem, the relation between the (total) derivative and the partial derivatives of a function is derived [23].

MML identifier: NDIFF_5, version: 7.12.01 4.167.1133

The notation and terminology used here have been introduced in the following papers: [28], [29], [9], [4], [30], [12], [10], [25], [11], [1], [2], [26], [7], [3], [5], [8], [17], [22], [20], [27], [21], [31], [14], [24], [18], [16], [15], [19], [13], and [6].

1. Preliminaries

In this paper r is a real number and S, T are non trivial real normed spaces. Next we state several propositions:

(1) Let R be a function from \mathbb{R} into S. Then R is rest-like if and only if for every real number r such that r > 0 there exists a real number d such that d > 0 and for every real number z such that $z \neq 0$ and |z| < d holds $|z|^{-1} \cdot ||R_z|| < r$.

¹This work was supported by JSPS KAKENHI 22300285.

- (2) Let R be a rest of S. Suppose $R_0 = 0_S$. Let e be a real number. Suppose e > 0. Then there exists a real number d such that d > 0 and for every real number h such that |h| < d holds $||R_h|| \le e \cdot |h|$.
- (3) For every rest R of S and for every bounded linear operator L from S into T holds $L \cdot R$ is a rest of T.
- (4) Let R_1 be a rest of S. Suppose $(R_1)_0 = 0_S$. Let R_2 be a rest of S, T. If $(R_2)_{0_S} = 0_T$, then for every linear L of S holds $R_2 \cdot (L + R_1)$ is a rest of T.
- (5) Let R_1 be a rest of S. Suppose $(R_1)_0 = 0_S$. Let R_2 be a rest of S, T. Suppose $(R_2)_{0_S} = 0_T$. Let L_1 be a linear of S and L_2 be a bounded linear operator from S into T. Then $L_2 \cdot R_1 + R_2 \cdot (L_1 + R_1)$ is a rest of T.
- (6) Let x_0 be an element of \mathbb{R} and g be a partial function from \mathbb{R} to the carrier of S. Suppose g is differentiable in x_0 . Let f be a partial function from the carrier of S to the carrier of T. Suppose f is differentiable in g_{x_0} . Then $f \cdot g$ is differentiable in x_0 and $(f \cdot g)'(x_0) = f'(g_{x_0})(g'(x_0))$.
- (7) Let S be a real normed space, x_1 be a finite sequence of elements of S, and y_1 be a finite sequence of elements of \mathbb{R} . Suppose $\operatorname{len} x_1 = \operatorname{len} y_1$ and for every element i of \mathbb{N} such that $i \in \operatorname{dom} x_1$ holds $y_1(i) = \|(x_1)_i\|$. Then $\|\sum x_1\| \leq \sum y_1$.
- (8) Let S be a real normed space, x be a point of S, and N_1 , N_2 be neighbourhoods of x. Then $N_1 \cap N_2$ is a neighbourhood of x.
- (9) For every non-empty finite sequence X and for every set x such that $x \in \prod X$ holds x is a finite sequence.

Let G be a real norm space sequence. One can verify that $\prod G$ is constituted finite sequences.

Let G be a real linear space sequence, let z be an element of $\prod \overline{G}$, and let j be an element of dom G. Then z(j) is an element of G(j).

One can prove the following propositions:

- (10) The carrier of $\prod G = \prod \overline{G}$.
- (11) Let i be an element of dom G, r be a set, and x be a function. If $r \in$ the carrier of G(i) and $x \in \prod \overline{G}$, then $x + (i, r) \in$ the carrier of $\prod G$.

Let G be a real norm space sequence. We say that G is nontrivial if and only if:

(Def. 1) For every element j of dom G holds G(j) is non trivial.

Let us mention that there exists a real norm space sequence which is non-trivial.

Let G be a nontrivial real norm space sequence and let i be an element of dom G. Note that G(i) is non trivial.

Let G be a nontrivial real norm space sequence. Note that $\prod G$ is non trivial. The following propositions are true:

- (12) Let G be a real norm space sequence, p, q be points of $\prod G$, and r_0 , p_0 , q_0 be elements of $\prod \overline{G}$. Suppose $p = p_0$ and $q = q_0$. Then $p + q = r_0$ if and only if for every element i of dom G holds $r_0(i) = p_0(i) + q_0(i)$.
- (13) Let G be a real norm space sequence, p be a point of $\prod G$, r be a real number, and r_0 , p_0 be elements of $\prod \overline{G}$. Suppose $p = p_0$. Then $r \cdot p = r_0$ if and only if for every element i of dom G holds $r_0(i) = r \cdot p_0(i)$.
- (14) Let G be a real norm space sequence and p_0 be an element of $\prod \overline{G}$. Then $0_{\prod G} = p_0$ if and only if for every element i of dom G holds $p_0(i) = 0_{G(i)}$.
- (15) Let G be a real norm space sequence, p, q be points of $\prod G$, and r_0 , p_0 , q_0 be elements of $\prod \overline{G}$. Suppose $p = p_0$ and $q = q_0$. Then $p q = r_0$ if and only if for every element i of dom G holds $r_0(i) = p_0(i) q_0(i)$.

2. Mean Value Theorem for Vector-Valued Functions

Let S be a real linear space and let p, q be points of S. The functor]p,q[yielding a subset of S is defined as follows:

(Def. 2) $[p,q] = \{p+t \cdot (q-p); t \text{ ranges over real numbers: } 0 < t \land t < 1\}.$

Let S be a real linear space and let p, q be points of S. We introduce [p, q] as a synonym of $\mathcal{L}(p, q)$.

Next we state several propositions:

- (16) For every real linear space S and for all points p, q of S holds $]p,q[\subseteq [p,q].$
- (17) Let T be a non trivial real normed space and R be a partial function from \mathbb{R} to T. Suppose R is total. Then R is rest-like if and only if for every real number r such that r>0 there exists a real number d such that d>0 and for every real number z such that $z\neq 0$ and |z|< d holds $\frac{\|R_z\|}{|z|}< r$.
- (18) Let R be a function from \mathbb{R} into \mathbb{R} . Then R is rest-like if and only if for every real number r such that r > 0 there exists a real number d such that d > 0 and for every real number z such that $z \neq 0$ and |z| < d holds $\frac{|R(z)|}{|z|} < r$.
- (19) Let S, T be non trivial real normed spaces, f be a partial function from S to T, p, q be points of S, and M be a real number. Suppose that
 - (i) $[p,q] \subseteq \text{dom } f$,
 - (ii) for every point x of S such that $x \in [p,q]$ holds f is continuous in x,
- (iii) for every point x of S such that $x \in]p,q[$ holds f is differentiable in x, and
- (iv) for every point x of S such that $x \in]p, q[$ holds $||f'(x)|| \leq M$. Then $||f_q - f_p|| \leq M \cdot ||q - p||$.

- (20) Let S, T be non trivial real normed spaces, f be a partial function from S to T, p, q be points of S, M be a real number, and L be a point of the real norm space of bounded linear operators from S into T. Suppose that
 - (i) $[p,q] \subseteq \operatorname{dom} f$,
 - (ii) for every point x of S such that $x \in [p,q]$ holds f is continuous in x,
- (iii) for every point x of S such that $x \in]p,q[$ holds f is differentiable in x, and
- (iv) for every point x of S such that $x \in]p, q[$ holds $||f'(x) L|| \le M$. Then $||f_q - f_p - L(q - p)|| \le M \cdot ||q - p||$.

3. Partial Derivative of a Function of Several Variables

Let G be a real norm space sequence and let i be an element of dom G. The projection onto i yielding a function from $\prod G$ into G(i) is defined by:

(Def. 3) For every element x of $\prod \overline{G}$ holds (the projection onto i)(x) = x(i).

Let G be a real norm space sequence, let i be an element of dom G, and let x be an element of $\prod G$. The functor reproj(i,x) yielding a function from G(i) into $\prod G$ is defined by:

- (Def. 4) For every element r of G(i) holds $(\operatorname{reproj}(i, x))(r) = x + (i, r)$.
 - Let G be a nontrivial real norm space sequence and let j be a set. Let us assume that $j \in \text{dom } G$. The functor modetrans(G, j) yields an element of dom G and is defined by:
- (Def. 5) modetrans(G, j) = j.

Let G be a nontrivial real norm space sequence, let F be a non trivial real normed space, let i be a set, let f be a partial function from $\prod G$ to F, and let x be an element of $\prod G$. We say that f is partially differentiable in x w.r.t. i if and only if:

(Def. 6) $f \cdot \text{reproj}(\text{modetrans}(G, i), x)$ is differentiable in (the projection onto modetrans(G, i))(x).

Let G be a nontrivial real norm space sequence, let F be a non trivial real normed space, let i be a set, let f be a partial function from $\prod G$ to F, and let x be a point of $\prod G$. The functor partdiff(f, x, i) yielding a point of the real norm space of bounded linear operators from G(modetrans(G, i)) into F is defined as follows:

(Def. 7) partdiff $(f, x, i) = (f \cdot \text{reproj}(\text{modetrans}(G, i), x))'(\text{the projection onto modetrans}(G, i))(x)).$

4. Linearity of Partial Differential Operator

For simplicity, we adopt the following rules: G denotes a nontrivial real norm space sequence, F denotes a non trivial real normed space, i denotes an element of dom G, f, f_1 , f_2 denote partial functions from $\prod G$ to F, x denotes a point of $\prod G$, and X denotes a set.

Let G be a nontrivial real norm space sequence, let F be a non trivial real normed space, let i be a set, let f be a partial function from $\prod G$ to F, and let X be a set. We say that f is partially differentiable on X w.r.t. i if and only if:

(Def. 8) $X \subseteq \text{dom } f$ and for every point x of $\prod G$ such that $x \in X$ holds $f \upharpoonright X$ is partially differentiable in x w.r.t. i.

Next we state several propositions:

- (21) For every element x_2 of G(i) holds $\|(\operatorname{reproj}(i, 0_{\prod G}))(x_2)\| = \|x_2\|$.
- (22) Let G be a nontrivial real norm space sequence, i be an element of dom G, x be a point of $\prod G$, and r be a point of G(i). Then $(\operatorname{reproj}(i,x))(r) x = (\operatorname{reproj}(i,0_{\prod G}))(r (\operatorname{the projection onto } i)(x))$ and $x (\operatorname{reproj}(i,x))(r) = (\operatorname{reproj}(i,0_{\prod G}))((\operatorname{the projection onto } i)(x) r)$.
- (23) Let G be a nontrivial real norm space sequence, i be an element of dom G, x be a point of $\prod G$, and Z be a subset of $\prod G$. Suppose Z is open and $x \in Z$. Then there exists a neighbourhood N of (the projection onto i)(x) such that for every point z of G(i) if $z \in N$, then $(\text{reproj}(i, x))(z) \in Z$.
- (24) Let G be a nontrivial real norm space sequence, T be a non trivial real normed space, i be a set, f be a partial function from $\prod G$ to T, and Z be a subset of $\prod G$. Suppose Z is open. Then f is partially differentiable on Z w.r.t. i if and only if $Z \subseteq \text{dom } f$ and for every point x of $\prod G$ such that $x \in Z$ holds f is partially differentiable in x w.r.t. i.
- (25) For every set i such that $i \in \text{dom } G$ and f is partially differentiable on X w.r.t. i holds X is a subset of $\prod G$.

Let G be a nontrivial real norm space sequence, let S be a non trivial real normed space, and let i be a set. Let us assume that $i \in \text{dom } G$. Let f be a partial function from $\prod G$ to S and let X be a set. Let us assume that f is partially differentiable on X w.r.t. i. The functor $f \upharpoonright^i X$ yields a partial function from $\prod G$ to the real norm space of bounded linear operators from G(modetrans(G,i)) into S and is defined by:

(Def. 9) $\operatorname{dom}(f \upharpoonright^{i} X) = X$ and for every point x of $\prod G$ such that $x \in X$ holds $(f \upharpoonright^{i} X)_{x} = \operatorname{partdiff}(f, x, i)$.

One can prove the following propositions:

(26) For every set i such that $i \in \text{dom } G$ holds $(f_1 + f_2) \cdot \text{reproj}(\text{modetrans}(G, i), x) = f_1 \cdot \text{reproj}(\text{modetrans}(G, i), x) + f_2 \cdot$

- reproj(modetrans(G, i), x) and $(f_1 f_2) \cdot \text{reproj}(\text{modetrans}(G, i), x) = f_1 \cdot \text{reproj}(\text{modetrans}(G, i), x) f_2 \cdot \text{reproj}(\text{modetrans}(G, i), x).$
- (27) For every set i such that $i \in \text{dom } G \text{ holds } r \cdot (f \cdot \text{reproj}(\text{modetrans}(G, i), x)) = (r \cdot f) \cdot \text{reproj}(\text{modetrans}(G, i), x).$
- (28) Let i be a set. Suppose $i \in \text{dom } G$ and f_1 is partially differentiable in x w.r.t. i and f_2 is partially differentiable in x w.r.t. i. Then f_1+f_2 is partially differentiable in x w.r.t. i and partdiff $(f_1 + f_2, x, i) = \text{partdiff}(f_1, x, i) + \text{partdiff}(f_2, x, i)$.
- (29) Let i be a set. Suppose $i \in \text{dom } G$ and f_1 is partially differentiable in x w.r.t. i and f_2 is partially differentiable in x w.r.t. i. Then $f_1 f_2$ is partially differentiable in x w.r.t. i and partdiff $(f_1 f_2, x, i) = \text{partdiff}(f_1, x, i) \text{partdiff}(f_2, x, i)$.
- (30) Let i be a set. Suppose $i \in \text{dom } G$ and f is partially differentiable in x w.r.t. i. Then $r \cdot f$ is partially differentiable in x w.r.t. i and partdiff $(r \cdot f, x, i) = r \cdot \text{partdiff}(f, x, i)$.

5. Continuous Differentiatibility of Partial Derivative

Next we state the proposition

(31) $\|(\text{the projection onto } i)(x)\| \le \|x\|.$

Let G be a nontrivial real norm space sequence. One can verify that every point of $\prod G$ is len G-element.

We now state a number of propositions:

- (32) Let G be a nontrivial real norm space sequence, T be a non trivial real normed space, i be a set, Z be a subset of $\prod G$, and f be a partial function from $\prod G$ to T. Suppose Z is open. Then f is partially differentiable on Z w.r.t. i if and only if $Z \subseteq \text{dom } f$ and for every point x of $\prod G$ such that $x \in Z$ holds f is partially differentiable in x w.r.t. i.
- (33) Let i, j be elements of dom G, x be a point of G(i), and z be an element of $\prod \overline{G}$ such that $z = (\text{reproj}(i, 0_{\prod G}))(x)$. Then
 - (i) if i = j, then z(j) = x, and
- (ii) if $i \neq j$, then $z(j) = 0_{G(j)}$.
- (34) For all points x, y of G(i) holds $(\operatorname{reproj}(i, 0_{\prod G}))(x + y) = (\operatorname{reproj}(i, 0_{\prod G}))(x) + (\operatorname{reproj}(i, 0_{\prod G}))(y)$.
- (35) Let x, y be points of $\prod G$. Then (the projection onto i)(x + y) = (the projection onto i)(x) + (the projection onto i)(y).
- (36) For all points x, y of G(i) holds $(\operatorname{reproj}(i, 0_{\prod G}))(x y) = (\operatorname{reproj}(i, 0_{\prod G}))(x) (\operatorname{reproj}(i, 0_{\prod G}))(y)$.

- (37) Let x, y be points of $\prod G$. Then (the projection onto i)(x y) = (the projection onto i)(x) (the projection onto i)(y).
- (38) For every point x of G(i) such that $x \neq 0_{G(i)}$ holds $(\operatorname{reproj}(i, 0_{\prod G}))(x) \neq 0_{\prod G}$.
- (39) For every point x of G(i) and for every element a of \mathbb{R} holds $(\operatorname{reproj}(i,0_{\prod G}))(a\cdot x)=a\cdot (\operatorname{reproj}(i,0_{\prod G}))(x).$
- (40) Let x be a point of $\prod G$ and a be an element of \mathbb{R} . Then (the projection onto i) $(a \cdot x) = a \cdot (\text{the projection onto } i)(x)$.
- (41) Let G be a nontrivial real norm space sequence, S be a non trivial real normed space, f be a partial function from $\prod G$ to S, x be a point of $\prod G$, and i be a set. Suppose f is differentiable in x. Then f is partially differentiable in x w.r.t. i and partdiff $(f, x, i) = f'(x) \cdot \text{reproj}(\text{modetrans}(G, i), 0_{\prod G})$.
- (42) Let S be a real normed space and h, g be finite sequences of elements of S. Suppose len h = len g + 1 and for every natural number i such that $i \in \text{dom } g$ holds $g_i = h_i h_{i+1}$. Then $h_1 h_{\text{len } h} = \sum g$.
- (43) Let G be a nontrivial real norm space sequence, x, y be elements of $\prod \overline{G}$, and Z be a set. Then $x+\cdot y \upharpoonright Z$ is an element of $\prod \overline{G}$.
- (44) Let G be a nontrivial real norm space sequence, x, y be points of $\prod G$, Z, x_0 be elements of $\prod \overline{G}$, and X be a set. If $Z = 0_{\prod G}$ and $x_0 = x$ and $y = Z + x_0 \upharpoonright X$, then $||y|| \leq ||x||$.
- (45) Let G be a nontrivial real norm space sequence, S be a non trivial real normed space, f be a partial function from $\prod G$ to S, and x, y be points of $\prod G$. Then there exists a finite sequence h of elements of $\prod G$ and there exists a finite sequence g of elements of S and there exist elements Z, y_0 of $\prod G$ such that $y_0 = y$ and $Z = 0_{\prod G}$ and len h = len G+1 and len g = len G and for every natural number i such that $i \in \text{dom } h$ holds $h_i = Z + y_0 \upharpoonright \text{Seg}((\text{len } G+1) f_{x+h_{i+1}})$ and for every natural number i such that $i \in \text{dom } g$ holds $g_i = f_{x+h_i} f_{x+h_{i+1}}$ and for every natural number i and for every point i of i such that $i \in \text{dom } g$ and i and i
- (46) Let G be a nontrivial real norm space sequence, i be an element of dom G, x, y be points of $\prod G$, and x_2 be a point of G(i). If $y = (\text{reproj}(i, x))(x_2)$, then (the projection onto i) $(y) = x_2$.
- (47) Let G be a nontrivial real norm space sequence, i be an element of dom G, y be a point of $\prod G$, and q be a point of G(i). If q = (the projection onto i)(y), then y = (reproj(i, y))(q).
- (48) Let G be a nontrivial real norm space sequence, i be an element of dom G, x, y be points of $\prod G$, and x_2 be a point of G(i). If $y = (\text{reproj}(i, x))(x_2)$, then reproj(i, x) = reproj(i, y).

- (49) Let G be a nontrivial real norm space sequence, i, j be elements of dom G, x, y be points of $\prod G$, and x_2 be a point of G(i). Suppose $y = (\text{reproj}(i,x))(x_2)$ and $i \neq j$. Then (the projection onto j)(x) = (the projection onto j)(y).
- (50) Let G be a nontrivial real norm space sequence, F be a non trivial real normed space, i be an element of dom G, x be a point of $\prod G$, x_2 be a point of G(i), f be a partial function from $\prod G$ to F, and g be a partial function from G(i) to F. If (the projection onto i) $(x) = x_2$ and $g = f \cdot \text{reproj}(i, x)$, then $g'(x_2) = \text{partdiff}(f, x, i)$.
- (51) Let G be a nontrivial real norm space sequence, F be a non trivial real normed space, f be a partial function from $\prod G$ to F, x be a point of $\prod G$, i be a set, M be a real number, L be a point of the real norm space of bounded linear operators from G(modetrans(G, i)) into F, and p, q be points of G(modetrans(G, i)). Suppose that
 - (i) $i \in \text{dom } G$,
 - (ii) for every point h of G(modetrans(G, i)) such that $h \in [p, q[\text{holds}]]$ $\|\text{partdiff}(f, (\text{reproj}(\text{modetrans}(G, i), x))(h), i) L\| \leq M,$
- (iii) for every point h of G(modetrans(G, i)) such that $h \in [p, q]$ holds $(\text{reproj}(\text{modetrans}(G, i), x))(h) \in \text{dom } f$, and
- (iv) for every point h of G(modetrans(G, i)) such that $h \in [p, q]$ holds f is partially differentiable in (reproj(modetrans(G, i), x))(h) w.r.t. i. Then $||f_{(\text{reproj}(\text{modetrans}(G, i), x))(q)} - f_{(\text{reproj}(\text{modetrans}(G, i), x))(p)} - L(q - p)|| \le M \cdot ||q - p||$.
- (52) Let G be a nontrivial real norm space sequence, x, y, z, w be points of $\prod G$, i be an element of dom G, d be a real number, and p, q, r be points of G(i). Suppose ||y-x|| < d and ||z-x|| < d and p = (the projection onto i)(y) and z = (reproj(i, y))(q) and $r \in [p, q]$ and w = (reproj(i, y))(r). Then ||w-x|| < d.
- (53) Let G be a nontrivial real norm space sequence, S be a non trivial real normed space, f be a partial function from $\prod G$ to S, X be a subset of $\prod G$, x, y, z be points of $\prod G$, i be a set, p, q be points of $G(\operatorname{modetrans}(G,i))$, and d, r be real numbers. Suppose that $i \in \operatorname{dom} G$ and X is open and $x \in X$ and $\|y-x\| < d$ and $\|z-x\| < d$ and $X \subseteq \operatorname{dom} f$ and for every point x of $\prod G$ such that $x \in X$ holds f is partially differentiable in x w.r.t. i and for every point $x \in X$ of $\prod G$ such that $\|x-x\| < d$ holds $x \in X$ and for every point $x \in X$ of $x \in X$ and for every point $x \in X$ and $x \in$
- (54) Let G be a nontrivial real norm space sequence, h be a finite sequence of elements of $\prod G$, y, x be points of $\prod G$, y_0 , Z be elements of $\prod \overline{G}$, and j be an element of \mathbb{N} . Suppose $y = y_0$ and $Z = 0_{\prod G}$ and

- len h = len G + 1 and $1 \leq j \leq \text{len } G$ and for every natural number i such that $i \in \text{dom } h$ holds $h_i = Z + y_0 \upharpoonright \text{Seg}((\text{len } G + 1) i)$. Then $x + h_j = (\text{reproj}(\text{modetrans}(G, (\text{len } G + 1) i), x + h_{j+1}))((\text{the projection onto modetrans}(G, (\text{len } G + 1) i))(x + y)).$
- (55) Let G be a nontrivial real norm space sequence, h be a finite sequence of elements of $\prod G$, y, x be points of $\prod G$, y_0 , Z be elements of $\prod \overline{G}$, and j be an element of \mathbb{N} . Suppose $y = y_0$ and $Z = 0_{\prod G}$ and len h = len G + 1 and $1 \leq j \leq \text{len } G$ and for every natural number i such that $i \in \text{dom } h$ holds $h_i = Z + y_0 \upharpoonright \text{Seg}((\text{len } G + 1) i)$. Then (the projection onto modetrans (G, (len G + 1) i)(x + y) (the projection onto modetrans(G, (len G + 1) i)(x + y) = (the projection onto modetrans(G, (len G + 1) i)(y).
- (56) Let G be a nontrivial real norm space sequence, S be a non trivial real normed space, f be a partial function from $\prod G$ to S, X be a subset of $\prod G$, and x be a point of $\prod G$. Suppose that
 - (i) X is open,
- (ii) $x \in X$, and
- (iii) for every set i such that $i \in \text{dom } G$ holds f is partially differentiable on X w.r.t. i and $f \mid^i X$ is continuous on X. Then
- (iv) f is differentiable in x, and
- (v) for every point h of $\prod G$ there exists a finite sequence w of elements of S such that $\operatorname{dom} w = \operatorname{dom} G$ and for every set i such that $i \in \operatorname{dom} G$ holds $w(i) = (\operatorname{partdiff}(f, x, i))((\operatorname{the projection onto modetrans}(G, i))(h))$ and $f'(x)(h) = \sum w$.
- (57) Let G be a nontrivial real norm space sequence, F be a non trivial real normed space, f be a partial function from $\prod G$ to F, and X be a subset of $\prod G$. Suppose X is open. Then for every set i such that $i \in \text{dom } G$ holds f is partially differentiable on X w.r.t. i and $f \upharpoonright^i X$ is continuous on X if and only if f is differentiable on X and $f' \upharpoonright_X$ is continuous on X.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [6] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485–492, 1996.
- [7] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.

- [9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [11] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [12] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [13] Czesław Byliński. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99–107, 2005.
- [14] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [15] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. The product space of real normed spaces and its properties. Formalized Mathematics, 15(3):81–85, 2007, doi:10.2478/v10037-007-0010-v.
- [16] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. Formalized Mathematics, 12(3):321–327, 2004.
- [17] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [18] Anna Lango and Grzegorz Bancerek. Product of families of groups and vector spaces. Formalized Mathematics, 3(2):235–240, 1992.
- [19] Hiroyuki Okazaki, Noboru Endou, Keiko Narita, and Yasunari Shidama. Differentiable functions into real normed spaces. Formalized Mathematics, 19(2):69–72, 2011, doi: 10.2478/v10037-011-0012-7.
- [20] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [21] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
- [22] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797–801, 1990.
- [23] Laurent Schwartz. Cours d'analyse, vol. 1. Hermann Paris, 1967.
- [24] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39–48, 2004.
- [25] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [26] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341–347, 2003.
- [27] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [30] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990
- [31] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171–175, 1992.

Received June 2, 2011