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Summary. In this article we defined mathematical morphology image pro-
cessing with set operations. First, we defined Minkowski set operations and pro-
ved their properties. Next, we defined basic image processing, dilation and erosion
proving basic fact about them [5], [8].

MML identifier: MORPH 01, version: 7.1 .0 4.1 0.11

The terminology and notation used in this paper have been introduced in the
following papers: [10], [7], [1], [2], [6], [9], [4], and [3].

1. Minkowski Set Operations

Let E be a non empty RLS structure. A binary image of E is a subset of E.
In the sequel E denotes a real linear space and A denotes a binary image of E.
Let E be a real linear space and let A, B be binary images of E. The functor

A	B yielding a binary image of E is defined as follows:

(Def. 1) A	B = {z ∈ E:
∧
b : element of E (b ∈ B ⇒ z − b ∈ A)}.

Let a be a real number, let E be a real linear space, and let A be a subset
of E. We introduce a ·A as a synonym of a�A. The following propositions are
true:

(1) Let E be a real linear space and A, B be subsets of E. If B = ∅, then
A⊕B = B and B ⊕A = B and A	B = the carrier of E.

(2) For every real linear space E and for all subsets A, B of E such that
A 6= ∅ and B = ∅ holds B 	A = B.

1The authors wants to thank Prof. Yasunari Shidama for his kind support during the course
of this work.
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(3) Let E be a real linear space and A, B be subsets of E. If B = the carrier
of E and A 6= ∅, then A⊕B = B and B ⊕A = B.

(4) For every real linear space E and for all subsets A, B of E such that
B = the carrier of E holds B 	A = B.

(5) A⊕B =
⋃
{b+A; b ranges over elements of E: b ∈ B}.

Let E be a non empty RLS structure. A binary image family of E is a family
of subsets of the carrier of E.

We follow the rules: F , G are binary image families of E and A, B, C are
non empty binary images of E. We now state four propositions:

(6) A	B =
⋂
{b+A; b ranges over elements of E: b ∈ B}.

(7) A⊕B = {v ∈ E: (v + (−1) ·B) ∩A 6= ∅}.
(8) A	B = {v ∈ E: v + (−1) ·B ⊆ A}.
(9) ((The carrier of E)\A)⊕B = (the carrier of E)\A	B and ((the carrier

of E) \A)	B = (the carrier of E) \A⊕B.
Let E be a non empty Abelian additive loop structure and let A, B be

subsets of E. Let us note that the functor A⊕B is commutative.
One can prove the following propositions:

(10) For every non empty add-associative additive loop structure E and for
all subsets A, B, C of E holds (A+B) + C = A+ (B + C).

(11) (A⊕B)⊕ C = A⊕ (B ⊕ C).

(12)
⋃
F ⊕B =

⋃
{X ⊕B;X ranges over binary images of E: X ∈ F}.

(13) A⊕
⋃
F =

⋃
{A⊕X;X ranges over binary images of E: X ∈ F}.

(14)
⋂
F ⊕B ⊆

⋂
{X ⊕B;X ranges over binary images of E: X ∈ F}.

(15) A⊕
⋂
F ⊆

⋂
{A⊕X;X ranges over binary images of E: X ∈ F}.

(16) For every non empty additive loop structure E and for all subsets A, B,
C of E such that B ⊆ C holds A+B ⊆ A+ C.

(17) (v +A)⊕B = A⊕ (v +B) and (v +A)⊕B = v +A⊕B.
(18)

⋂
F 	B =

⋂
{X 	B;X ranges over binary images of E: X ∈ F}.

(19)
⋂
{B 	X;X ranges over binary images of E: X ∈ F} ⊆ B 	

⋂
F.

(20)
⋃
{X 	B;X ranges over binary images of E: X ∈ F} ⊆

⋃
F 	B.

(21) If F 6= ∅, then B 	
⋃
F =

⋂
{B 	X;X ranges over binary images of E:

X ∈ F}.
(22) If A ⊆ B, then A	 C ⊆ B 	 C.
(23) If A ⊆ B, then C 	B ⊆ C 	A.
(24) (v +A)	B = A	 (v +B) and (v +A)	B = v +A	B.
(25) A	B 	 C = A	 (B ⊕ C).
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2. Dilation and Erosion

Let E be a real linear space and let B be a binary image of E. The functor
dilationB yields a function from 2the carrier of E into 2the carrier of E and is defined
as follows:

(Def. 2) For every binary image A of E holds (dilationB)(A) = A⊕B.
Let E be a real linear space and let B be a binary image of E. The functor

erosionB yields a function from 2the carrier of E into 2the carrier of E and is defined
by:

(Def. 3) For every binary image A of E holds (erosionB)(A) = A	B.
The following propositions are true:

(26) (dilationB)(
⋃
F ) =

⋃
{(dilationB)(X);X ranges over binary images of

E: X ∈ F}.
(27) If A ⊆ B, then (dilationC)(A) ⊆ (dilationC)(B).

(28) (dilationC)(v +A) = v + (dilationC)(A).

(29) (erosionB)(
⋂
F ) =

⋂
{(erosionB)(X);X ranges over binary images of

E: X ∈ F}.
(30) If A ⊆ B, then (erosionC)(A) ⊆ (erosionC)(B).

(31) (erosionC)(v +A) = v + (erosionC)(A).

(32) (dilationC)((the carrier of E) \A) = (the carrier of E) \ (erosionC)(A)
and (erosionC)((the carrier of E)\A) = (the carrier of E)\(dilationC)(A).

(33) (dilationC)((dilationB)(A)) = (dilation(dilationC)(B))(A) and
(erosionC)((erosionB)(A)) = (erosion(dilationC)(B))(A).
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