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Summary. This article describes definitions of subsymmetric matrix, anti-
subsymmetric matrix, central symmetric matrix, symmetry circulant matrix and
their basic properties.

MML identifier: MATRIX17, version: 7.1 .0 4.1 .11 6

The notation and terminology used here have been introduced in the following
papers: [7], [9], [13], [6], [14], [1], [3], [18], [17], [4], [2], [8], [11], [12], [16], [15],
[5], and [10].

1. Basic Properties of Subordinate Symmetric Matrices

For simplicity, we use the following convention: n denotes a natural number,
K denotes a field, a, b denote elements of K, p, q denote finite sequences of
elements of K, and M1, M2 denote square matrices over K of dimension n.

Let K be a field, let n be a natural number, and let M be a square matrix
over K of dimension n. We say that M is subsymmetric if and only if:

(Def. 1) For all natural numbers i, j, k, l such that 〈〈i, j〉〉 ∈ the indices of M and
k = (n+ 1)− j and l = (n+ 1)− i holds Mi,j = Mk,l.

Let us consider n, K, a. Note that (a)n×n is subsymmetric.
Let us consider n, K. Observe that there exists a square matrix over K of

dimension n which is subsymmetric.
1Authors thanks Andrzej Trybulec and Yatsuka Nakamura for the help during writing this

article.
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Let us consider n, K and let M be a subsymmetric square matrix over K of
dimension n. Note that −M is subsymmetric.

Let us consider n, K and let M1, M2 be subsymmetric square matrices over
K of dimension n. One can check that M1 +M2 is subsymmetric.

Let us consider n, K, a and let M be a subsymmetric square matrix over K
of dimension n. Note that a ·M is subsymmetric.

Let us consider n, K and let M1, M2 be subsymmetric square matrices over
K of dimension n. One can verify that M1 −M2 is subsymmetric.

Let us consider n, K and let M be a subsymmetric square matrix over K of
dimension n. Observe that MT is subsymmetric.

Let us consider n, K. Observe that every square matrix over K of dimension
n which is line circulant is also subsymmetric and every square matrix over K
of dimension n which is column circulant is also subsymmetric.

Let K be a field, let n be a natural number, and let M be a square matrix
over K of dimension n. We say that M is anti-subsymmetric if and only if:

(Def. 2) For all natural numbers i, j, k, l such that 〈〈i, j〉〉 ∈ the indices of M and
k = (n+ 1)− j and l = (n+ 1)− i holds Mi,j = −Mk,l.

Let us consider n, K. One can verify that there exists a square matrix over
K of dimension n which is anti-subsymmetric.

The following proposition is true

(1) Let K be a Fanoian field, n, i, j, k, l be natural numbers, and M1 be
a square matrix over K of dimension n. Suppose 〈〈i, j〉〉 ∈ the indices of
M1 and i+ j = n + 1 and k = (n + 1)− j and l = (n + 1)− i and M1 is
anti-subsymmetric. Then (M1)i,j = 0K .

Let us consider n, K and let M be an anti-subsymmetric square matrix over
K of dimension n. Note that −M is anti-subsymmetric.

Let us consider n, K and let M1, M2 be anti-subsymmetric square matrices
over K of dimension n. Observe that M1 +M2 is anti-subsymmetric.

Let us consider n, K, a and let M be an anti-subsymmetric square matrix
over K of dimension n. One can verify that a ·M is anti-subsymmetric.

Let us consider n, K and let M1, M2 be anti-subsymmetric square matrices
over K of dimension n. One can check that M1 −M2 is anti-subsymmetric.

Let us consider n, K and let M be an anti-subsymmetric square matrix over
K of dimension n. One can verify that MT is anti-subsymmetric.

2. Basic Properties of Central Symmetric Matrices

Let K be a field, let n be a natural number, and let M be a square matrix
over K of dimension n. We say that M is central symmetric if and only if:

(Def. 3) For all natural numbers i, j, k, l such that 〈〈i, j〉〉 ∈ the indices of M and
k = (n+ 1)− i and l = (n+ 1)− j holds Mi,j = Mk,l.
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Let us consider n, K, a. Note that (a)n×n is central symmetric.
Let us consider n, K. One can verify that there exists a square matrix over

K of dimension n which is central symmetric.
Let us consider n, K and let M be a central symmetric square matrix over

K of dimension n. One can verify that −M is central symmetric.
Let us consider n, K and let M1, M2 be central symmetric square matrices

over K of dimension n. One can verify that M1 +M2 is central symmetric.
Let us consider n, K, a and let M be a central symmetric square matrix

over K of dimension n. Note that a ·M is central symmetric.
Let us consider n, K and let M1, M2 be central symmetric square matrices

over K of dimension n. Observe that M1 −M2 is central symmetric.
Let us consider n, K and let M be a central symmetric square matrix over

K of dimension n. Observe that MT is central symmetric.
Let us consider n, K. Note that every square matrix over K of dimension n

which is symmetric and subsymmetric is also central symmetric.

3. Basic Properties of Symmetric Circulant Matrices

Let K be a set, let M be a matrix over K, and let p be a finite sequence. We
say that M is symmetry circulant about p if and only if the conditions (Def. 4)
are satisfied.

(Def. 4)(i) len p = widthM,

(ii) for all natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of M and
i+ j 6= len p+ 1 holds Mi,j = p(((i+ j)− 1) mod len p), and

(iii) for all natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of M and
i+ j = len p+ 1 holds Mi,j = p(len p).

The following propositions are true:

(2) (a)n×n is symmetry circulant about n 7→ a.

(3) If M1 is symmetry circulant about p, then a ·M1 is symmetry circulant
about a · p.

(4) If M1 is symmetry circulant about p, then −M1 is symmetry circulant
about −p.

(5) If M1 is symmetry circulant about p and M2 is symmetry circulant about
q, then M1 +M2 is symmetry circulant about p+ q.

Let K be a set and let M be a matrix over K. We say that M is symmetry
circulant if and only if:

(Def. 5) There exists a finite sequence p of elements of K such that len p =
widthM and M is symmetry circulant about p.

Let K be a non empty set and let p be a finite sequence of elements of K.
We say that p is first symmetry of circulant if and only if:
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(Def. 6) There exists a square matrix over K of dimension len p which is symme-
try circulant about p.

Let K be a non empty set and let p be a finite sequence of elements of K.
Let us assume that p is first symmetry of circulant. The functor SCirc p yielding
a square matrix over K of dimension len p is defined as follows:

(Def. 7) SCirc p is symmetry circulant about p.

Let us consider n, K, a. Note that (a)n×n is symmetry circulant.
Let us consider n, K. Note that there exists a square matrix over K of

dimension n which is symmetry circulant.
In the sequel D is a non empty set, t is a finite sequence of elements of D,

and A is a square matrix over D of dimension n.
We now state the proposition

(6) Let p be a finite sequence of elements of D. Suppose 0 < n and A is
symmetry circulant about p. Then AT is symmetry circulant about p.

Let us consider n, K, a and let M1 be a symmetry circulant square matrix
over K of dimension n. Note that a ·M1 is symmetry circulant.

Let us consider n, K and let M1, M2 be symmetry circulant square matrices
over K of dimension n. Note that M1 +M2 is symmetry circulant.

Let us consider n, K and let M1 be a symmetry circulant square matrix over
K of dimension n. Note that −M1 is symmetry circulant.

Let us consider n, K and let M1, M2 be symmetry circulant square matrices
over K of dimension n. Observe that M1 −M2 is symmetry circulant.

The following propositions are true:

(7) If A is symmetry circulant and n > 0, then AT is symmetry circulant.

(8) If p is first symmetry of circulant, then −p is first symmetry of circulant.

(9) If p is first symmetry of circulant, then SCirc(−p) = −SCirc p.

(10) Suppose p is first symmetry of circulant and q is first symmetry of cir-
culant and len p = len q. Then p+ q is first symmetry of circulant.

(11) If len p = len q and p is first symmetry of circulant and q is first symmetry
of circulant, then SCirc(p+ q) = SCirc p+ SCirc q.

(12) If p is first symmetry of circulant, then a·p is first symmetry of circulant.

(13) If p is first symmetry of circulant, then SCirc(a · p) = a · SCirc p.

(14) If p is first symmetry of circulant, then a·SCirc p+b·SCirc p = SCirc((a+
b) · p).

(15) If p is first symmetry of circulant and q is first symmetry of circulant
and len p = len q, then a · SCirc p+ a · SCirc q = SCirc(a · (p+ q)).

(16) Suppose p is first symmetry of circulant and q is first symmetry of cir-
culant and len p = len q. Then a · SCirc p+ b · SCirc q = SCirc(a · p+ b · q).

(17) If M1 is symmetry circulant, then M1
T = M1.
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Let us consider n, K. Note that every square matrix over K of dimension n
which is symmetry circulant is also symmetric.
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