Valuation Theory. Part I

Grzegorz Bancerek
Białystok Technical University
Poland

Hidetsune Kobayashi
Department of Mathematics
College of Science and Technology
Nihon University
8 Kanda Surugadai Chiyoda-ku
101-8308 Tokyo
Japan

Artur Korniłowicz
Institute of Informatics
University of Białystok
Sosnowa 64, 15-887 Białystok
Poland

Abstract

Summary. In the article we introduce a valuation function over a field [1]. Ring of non negative elements and its ideal of positive elements have been also defined.

MML identifier: FVALUAT1, version: $\underline{7.12 .014 .167 .1133}$

The notation and terminology used here have been introduced in the following papers: [11], [19], [4], [15], [20], [8], [21], [10], [9], [16], [3], [5], [7], [18], [17], [13], [14], [6], [2], and [12].

1. Extended Reals

We use the following convention: x, y, z, s are extended real numbers, i is an integer, and n, m are natural numbers.

The following propositions are true:
(1) If $x=-x$, then $x=0$.
(2) If $x+x=0$, then $x=0$.
(3) If $0 \leq x \leq y$ and $0 \leq s \leq z$, then $x \cdot s \leq y \cdot z$.
(4) If $y \neq+\infty$ and $0<x$ and $0<y$, then $0<\frac{x}{y}$.
(5) If $y \neq+\infty$ and $x<0<y$, then $\frac{x}{y}<0$.
(6) If $y \neq-\infty$ and $0<x$ and $y<0$, then $\frac{x}{y}<0$.
(7) If $x, y \in \mathbb{R}$ or $z \in \mathbb{R}$, then $\frac{x+y}{z}=\frac{x}{z}+\frac{y}{z}$.
(8) If $y \neq+\infty$ and $y \neq-\infty$ and $y \neq 0$, then $\frac{x}{y} \cdot y=x$.
(9) If $y \neq-\infty$ and $y \neq+\infty$ and $x \neq 0$ and $y \neq 0$, then $\frac{x}{y} \neq 0$.

Let x be a number. We say that x is extended integer if and only if:
(Def. 1) x is integer or $x=+\infty$.
Let us mention that every number which is extended integer is also extended real.

One can verify the following observations:

* $+\infty$ is extended integer,
* $-\infty$ is non extended integer,
* $\overline{1}$ is extended integer, positive, and real,
* every number which is integer is also extended integer, and
* every number which is real and extended integer is also integer.

Let us observe that there exists an element of $\overline{\mathbb{R}}$ which is real, extended integer, and positive and there exists an extended integer number which is positive.

An extended integer is an extended integer number.
In the sequel x, y, v denote extended integers.
One can prove the following propositions:
(10) If $x<y$, then $x+1 \leq y$.
(11) $-\infty<x$.

Let X be an extended real-membered set. Let us assume that there exists a positive extended integer i_{0} such that $i_{0} \in X$. The functor least-positive X yielding a positive extended integer is defined by:
(Def. 2) least-positive $X \in X$ and for every positive extended integer i such that $i \in X$ holds least-positive $X \leq i$.
Let f be a binary relation. We say that f is extended integer valued if and only if:
(Def. 3) For every set x such that $x \in \operatorname{rng} f$ holds x is extended integer.
Let us note that there exists a function which is extended integer valued.
Let A be a set. Note that there exists a function from A into $\overline{\mathbb{R}}$ which is extended integer valued.

Let f be an extended integer valued function and let x be a set. Note that $f(x)$ is extended integer.

2. Structures

One can prove the following proposition
(12) Let K be a distributive left unital add-associative right zeroed right complementable non empty double loop structure. Then $-1_{K} \cdot-1_{K}=1_{K}$.
Let K be a non empty double loop structure, let S be a subset of K, and let n be a natural number. The functor S^{n} yielding a subset of K is defined by:
(Def. 4)(i) $\quad S^{n}=$ the carrier of K if $n=0$,
(ii) there exists a finite sequence f of elements of $2^{\text {the carrier of } K}$ such that $S^{n}=f(\operatorname{len} f)$ and $\operatorname{len} f=n$ and $f(1)=S$ and for every natural number i such that $i, i+1 \in \operatorname{dom} f$ holds $f(i+1)=S * f_{i}$, otherwise.
In the sequel A denotes a subset of D. The following propositions are true:
(13) $A^{1}=A$.
(14) $A^{2}=A * A$.

Let R be a ring, let S be an ideal of R, and let n be a natural number. Observe that S^{n} is non empty, add closed, left ideal, and right ideal.

Let G be a non empty double loop structure, let g be an element of G, and let i be an integer. The functor g^{i} yielding an element of G is defined as follows:
(Def. 5) $\quad g^{i}=\left\{\begin{array}{l}\operatorname{power}_{G}(g,|i|), \text { if } 0 \leq i, \\ \operatorname{power}_{G}(g,|i|)^{-1}, \text { otherwise. }\end{array}\right.$
Let G be a non empty double loop structure, let g be an element of G, and let n be a natural number. Then g^{n} can be characterized by the condition:
(Def. 6) $g^{n}=\operatorname{power}_{G}(g, n)$.
In the sequel K is a field-like non degenerated associative add-associative right zeroed right complementable distributive Abelian non empty double loop structure and a, b, c are elements of K. We now state two propositions:
(15) $a^{n+m}=a^{n} \cdot a^{m}$.
(16) If $a \neq 0_{K}$, then $a^{i} \neq 0_{K}$.

3. Valuation

Let K be a double loop structure. We say that K has a valuation if and only if the condition (Def. 7) is satisfied.
(Def. 7) There exists an extended integer valued function f from K into $\overline{\mathbb{R}}$ such that
(i) $f\left(0_{K}\right)=+\infty$,
(ii) for every element a of K such that $a \neq 0_{K}$ holds $f(a) \in \mathbb{Z}$,
(iii) for all elements a, b of K holds $f(a \cdot b)=f(a)+f(b)$,
(iv) for every element a of K such that $0 \leq f(a)$ holds $0 \leq f\left(1_{K}+a\right)$, and
(v) there exists an element a of K such that $f(a) \neq 0$ and $f(a) \neq+\infty$.

Let K be a double loop structure. Let us assume that K has a valuation. An extended integer valued function from K into $\overline{\mathbb{R}}$ is said to be a valuation of K if it satisfies the conditions (Def. 8).
(Def. 8)(i) $\operatorname{It}\left(0_{K}\right)=+\infty$,
(ii) for every element a of K such that $a \neq 0_{K}$ holds it $(a) \in \mathbb{Z}$,
(iii) for all elements a, b of $K \operatorname{holds} \operatorname{it}(a \cdot b)=\operatorname{it}(a)+\operatorname{it}(b)$,
(iv) for every element a of K such that $0 \leq \operatorname{it}(a)$ holds $0 \leq \operatorname{it}\left(1_{K}+a\right)$, and
(v) there exists an element a of K such that $\operatorname{it}(a) \neq 0$ and $\operatorname{it}(a) \neq+\infty$.

In the sequel v denotes a valuation of K.
One can prove the following propositions:
(17) If K has a valuation, then $v\left(1_{K}\right)=0$.
(18) If K has a valuation and $a \neq 0_{K}$, then $v(a) \neq+\infty$.
(19) If K has a valuation, then $v\left(-1_{K}\right)=0$.
(20) If K has a valuation, then $v(-a)=v(a)$.
(21) If K has a valuation and $a \neq 0_{K}$, then $v\left(a^{-1}\right)=-v(a)$.
(22) If K has a valuation and $b \neq 0_{K}$, then $v\left(\frac{a}{b}\right)=v(a)-v(b)$.
(23) If K has a valuation and $a \neq 0_{K}$ and $b \neq 0_{K}$, then $v\left(\frac{a}{b}\right)=-v\left(\frac{b}{a}\right)$.
(24) If K has a valuation and $b \neq 0_{K}$ and $0 \leq v\left(\frac{a}{b}\right)$, then $v(b) \leq v(a)$.
(25) If K has a valuation and $a \neq 0_{K}$ and $b \neq 0_{K}$ and $v\left(\frac{a}{b}\right) \leq 0$, then $0 \leq v\left(\frac{b}{a}\right)$.
(26) If K has a valuation and $b \neq 0_{K}$ and $v\left(\frac{a}{b}\right) \leq 0$, then $v(a) \leq v(b)$.
(27) If K has a valuation, then $\min (v(a), v(b)) \leq v(a+b)$.
(28) If K has a valuation and $v(a)<v(b)$, then $v(a)=v(a+b)$.
(29) If K has a valuation and $a \neq 0_{K}$, then $v\left(a^{i}\right)=i \cdot v(a)$.
(30) If K has a valuation and $0 \leq v\left(1_{K}+a\right)$, then $0 \leq v(a)$.
(31) If K has a valuation and $0 \leq v\left(1_{K}-a\right)$, then $0 \leq v(a)$.
(32) If K has a valuation and $a \neq 0_{K}$ and $v(a) \leq v(b)$, then $0 \leq v\left(\frac{b}{a}\right)$.
(33) If K has a valuation, then $+\infty \in \operatorname{rng} v$.
(34) If $v(a)=1$, then least-positive $\operatorname{rng} v=1$.
(35) If K has a valuation, then least-positive $\operatorname{rng} v$ is integer.
(36) If K has a valuation, then for every element x of K such that $x \neq 0_{K}$ there exists an integer i such that $v(x)=i \cdot$ least-positive rng v.
Let us consider K, v. Let us assume that K has a valuation. The functor Pgenerator v yielding an element of K is defined as follows:
(Def. 9) Pgenerator $v=$ the element of v^{-1} (\{least-positive $\left.\operatorname{rng} v\right\}$).
Let us consider K, v. Let us assume that K has a valuation. The functor normal-valuation v yields a valuation of K and is defined by:
$($ Def. 10) $\quad v(a)=($ normal-valuation $v)(a) \cdot$ least-positive rng v.

We now state a number of propositions:
(37) If K has a valuation, then $v(a)=0$ iff (normal-valuation $v)(a)=0$.
(38) If K has a valuation, then $v(a)=+\infty$ iff (normal-valuation $v)(a)=+\infty$.
(39) If K has a valuation, then $v(a)=v(b)$ iff (normal-valuation $v)(a)=$ (normal-valuation $v)(b)$.
(40) If K has a valuation, then $v(a)$ is positive iff (normal-valuation $v)(a)$ is positive.
(41) If K has a valuation, then $0 \leq v(a)$ iff $0 \leq($ normal-valuation $v)(a)$.
(42) If K has a valuation, then $v(a)$ is non negative iff (normal-valuation $v)(a)$ is non negative.
(43) If K has a valuation, then (normal-valuation $v)($ Pgenerator $v)=1$.
(44) If K has a valuation and $0 \leq v(a)$, then (normal-valuation $v)(a) \leq v(a)$.
(45) If K has a valuation and $v(a)=1$, then normal-valuation $v=v$.
(46) If K has a valuation, then normal-valuation(normal-valuation v) $=$ normal-valuation v.

4. Valuation Ring

Let K be a non empty double loop structure and let v be a valuation of K. The functor NonNegElements v is defined as follows:
(Def. 11) NonNegElements $v=\{x \in K: 0 \leq v(x)\}$.
The following four propositions are true:
(47) Let K be a non empty double loop structure, v be a valuation of K, and a be an element of K. Then $a \in$ NonNegElements v if and only if $0 \leq v(a)$.
(48) For every non empty double loop structure K and for every valuation v of K holds NonNegElements $v \subseteq$ the carrier of K.
(49) For every non empty double loop structure K and for every valuation v of K such that K has a valuation holds $0_{K} \in$ NonNegElements v.
(50) If K has a valuation, then $1_{K} \in$ NonNegElements v.

Let us consider K, v. Let us assume that K has a valuation. The functor ValuatRing v yields a strict commutative non degenerated ring and is defined by the conditions (Def. 12).
(Def. 12)(i) The carrier of ValuatRing $v=$ NonNegElements v,
(ii) the addition of ValuatRing $v=($ the addition of $K) \upharpoonright($ NonNegElements $v \times$ NonNegElements v),
(iii) the multiplication of ValuatRing $v=$ (the multiplication of $K) \upharpoonright($ NonNegElements $v \times$ NonNegElements $v)$,
(iv) the zero of ValuatRing $v=0_{K}$, and
(v) the one of ValuatRing $v=1_{K}$.

The following propositions are true:
(51) If K has a valuation, then every element of ValuatRing v is an element of K.
(52) If K has a valuation, then $0 \leq v(a)$ iff a is an element of ValuatRing v.
(53) If K has a valuation, then for every subset S of ValuatRing v holds 0 is a lower bound of $v^{\circ} S$.
(54) Suppose K has a valuation. Let x, y be elements of K and x_{1}, y_{1} be elements of ValuatRing v. If $x=x_{1}$ and $y=y_{1}$, then $x+y=x_{1}+y_{1}$.
(55) Suppose K has a valuation. Let x, y be elements of K and x_{1}, y_{1} be elements of ValuatRing v. If $x=x_{1}$ and $y=y_{1}$, then $x \cdot y=x_{1} \cdot y_{1}$.
(56) If K has a valuation, then $0_{\text {ValuatRing } v}=0_{K}$.
(57) If K has a valuation, then $1_{\text {ValuatRing } v}=1_{K}$.
(58) If K has a valuation, then for every element x of K and for every element y of ValuatRing v such that $x=y$ holds $-x=-y$.
(59) If K has a valuation, then ValuatRing v is integral domain-like.
(60) If K has a valuation, then for every element y of ValuatRing v holds $\operatorname{power}_{K}(y, n)=\operatorname{power}_{\text {ValuatRing } v}(y, n)$.
Let us consider K, v. Let us assume that K has a valuation. The functor PosElements v yields an ideal of ValuatRing v and is defined as follows:
(Def. 13) PosElements $v=\{x \in K: 0<v(x)\}$.
Let us consider K, v. We introduce $\mathrm{vp} v$ as a synonym of PosElements v.
Next we state three propositions:
(61) If K has a valuation, then $a \in \operatorname{vp} v$ iff $0<v(a)$.
(62) If K has a valuation, then $0_{K} \in \operatorname{vp} v$.
(63) If K has a valuation, then $1_{K} \notin \operatorname{vp} v$.

Let us consider K, v and let S be a non empty subset of K. Let us assume that K has a valuation and S is a subset of ValuatRing v. The functor $\min (S, v)$ yielding a subset of ValuatRing v is defined as follows:
(Def. 14) $\quad \min (S, v)=v^{-1}\left(\left\{\inf \left(v^{\circ} S\right)\right\}\right) \cap S$.
The following four propositions are true:
(64) For every non empty subset S of K such that K has a valuation and S is a subset of ValuatRing v holds $\min (S, v) \subseteq S$.
(65) Let S be a non empty subset of K. Suppose K has a valuation and S is a subset of ValuatRing v. Let x be an element of K. Then $x \in \min (S, v)$ if and only if the following conditions are satisfied:
(i) $x \in S$, and
(ii) for every element y of K such that $y \in S$ holds $v(x) \leq v(y)$.
(66) Suppose K has a valuation. Let I be a non empty subset of K and x be an element of ValuatRing v. If I is an ideal of ValuatRing v and $x \in \min (I, v)$, then $I=\{x\}$-ideal.
(67) For every non empty double loop structure R holds every add closed non empty subset of R is a set closed w.r.t. the addition of R.
Let R be a ring and let P be a right ideal of R. A submodule of $\operatorname{RightMod}(R)$ is called a submodule of P if:
(Def. 15) The carrier of it $=P$.
Let R be a ring and let P be a right ideal of R. Note that there exists a submodule of P which is strict. Next we state the proposition
(68) Let R be a ring, P be an ideal of R, M be a submodule of P, a be a binary operation on P, z be an element of P, and m be a function from $P \times$ the carrier of R into P. Suppose $a=($ the addition of $R) \upharpoonright(P \times P)$ and $m=($ the multiplication of $R) \upharpoonright(P \times$ the carrier of $R)$ and $z=$ the zero of R. Then the right module structure of $M=\langle P, a, z, m\rangle$.
Let R be a ring, let M_{1}, M_{2} be right modules over R, and let h be a function from M_{1} into M_{2}. We say that h is scalar linear if and only if:
(Def. 16) For every element x of M_{1} and for every element r of R holds $h(x \cdot r)=$ $h(x) \cdot r$.
Let R be a ring, let M_{1} be a right module over R, and let M_{2} be a submodule of M_{1}. Observe that $\operatorname{incl}\left(M_{2}, M_{1}\right)$ is additive and scalar linear.

Next we state a number of propositions:
(69) If K has a valuation and b is an element of ValuatRing v, then $v(a) \leq$ $v(a)+v(b)$.
(70) If K has a valuation and a is an element of ValuatRing v, then $\operatorname{power}_{K}(a, n)$ is an element of ValuatRing v.
(71) If K has a valuation, then for every element x of ValuatRing v such that $x \neq 0_{K}$ holds power ${ }_{K}(x, n) \neq 0_{K}$.
(72) If K has a valuation and $v(a)=0$, then a is an element of ValuatRing v and a^{-1} is an element of ValuatRing v.
(73) If K has a valuation and $a \neq 0_{K}$ and a is an element of ValuatRing v and a^{-1} is an element of ValuatRing v, then $v(a)=0$.
(74) If K has a valuation and $v(a)=0$, then for every ideal I of ValuatRing v holds $a \in I$ iff $I=$ the carrier of ValuatRing v.
(75) If K has a valuation, then Pgenerator v is an element of ValuatRing v.
(76) If K has a valuation, then $\operatorname{vp} v$ is proper.
(77) If K has a valuation, then for every element x of ValuatRing v such that $x \notin \mathrm{vp} v$ holds $v(x)=0$.
(78) If K has a valuation, then $\mathrm{vp} v$ is prime.
(79) If K has a valuation, then for every proper ideal I of ValuatRing v holds $I \subseteq \operatorname{vp} v$.
(80) If K has a valuation, then $\mathrm{vp} v$ is maximal.
(81) If K has a valuation, then for every maximal ideal I of ValuatRing v holds $I=\operatorname{vp} v$.
(82) If K has a valuation, then NonNegElements normal-valuation $v=$ NonNegElements v.
(83) If K has a valuation, then ValuatRing normal-valuation $v=$ ValuatRing v.

References

[1] Emil Artin. Algebraic Numbers and Algebraic Functions. Gordon and Breach Science Publishers, 1994.
[2] Jonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller. Ring ideals. Formalized Mathematics, 9(3):565-582, 2001.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[6] Józef Białas. Properties of fields. Formalized Mathematics, 1(5):807-812, 1990.
[7] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[12] Artur Korniłowicz. Quotient rings. Formalized Mathematics, 13(4):573-576, 2005.
[13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[14] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[15] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[16] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[17] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[18] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

