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Summary. In this article we prove the Brouwer fixed point theorem for
an arbitrary simplex which is the convex hull of its n + 1 affinely indepedent
vertices of En. First we introduce the Lebesgue number, which for an arbitrary
open cover of a compact metric space M is a positive real number so that any
ball of about such radius must be completely contained in a member of the cover.
Then we introduce the notion of a bounded simplicial complex and the diame-
ter of a bounded simplicial complex. We also prove the estimation of diameter
decrease which is connected with the barycentric subdivision. Finally, we prove
the Brouwer fixed point theorem and compute the small inductive dimension of
En. This article is based on [16].

MML identifier: SIMPLEX2, version: 7.11.07 4.160.1126

The papers [7], [31], [1], [8], [11], [17], [30], [14], [20], [4], [13], [9], [32], [21], [5],
[19], [2], [3], [6], [22], [24], [18], [35], [26], [29], [33], [23], [27], [28], [34], [15], [25],
[12], and [10] provide the terminology and notation for this paper.

1. The Lebesgue Number

In this paper M is a non empty metric space and F , G are open families of
subsets of Mtop.

Let us consider M . Let us assume that Mtop is compact. Let F be a family
of subsets of Mtop. Let us assume that F is open and F is a cover of Mtop. A
positive real number is said to be a Lebesgue number of F if:

(Def. 1) For every point p of M there exists a subset A of Mtop such that A ∈ F
and Ball(p, it) ⊆ A.
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In the sequel L denotes a Lebesgue number of F .
Next we state three propositions:

(1) If Mtop is compact and F is a cover of Mtop and F ⊆ G, then L is a
Lebesgue number of G.

(2) If Mtop is compact and F is a cover of Mtop and finer than G, then L is
a Lebesgue number of G.

(3) Let L1 be a positive real number. Suppose Mtop is compact and F is a
cover of Mtop and L1 ≤ L. Then L1 is a Lebesgue number of F .

2. Bounded Simplicial Complexes

In the sequel n, k denote natural numbers, X denotes a set, and K denotes
a simplicial complex structure.

Let us consider M . One can check that every subset of M which is finite is
also bounded.

Next we state the proposition

(4) For every finite non empty subset S of M there exist points p, q of M
such that p, q ∈ S and ρ(p, q) = ∅S.

Let us consider M , K. We say that K is M -bounded if and only if:

(Def. 2) There exists r such that for every A such that A ∈ the topology of K
holds A is bounded and ∅A ≤ r.

The following proposition is true

(5) Let K be a non void simplicial complex structure. If K is M -bounded
and A is a simplex of K, then A is bounded.

Let us consider M , X. Note that there exists a simplicial complex of X
which is M -bounded and non void.

Let us consider M . Note that there exists a simplicial complex structure
which is M -bounded, non void, subset-closed, and finite-membered.

Let us consider M , X and let K be an M -bounded simplicial complex str of
X. Note that every sub simplicial complex of K is M -bounded.

Let us consider M , X, let K be an M -bounded subset-closed simplicial
complex str of X, and let i be an integer. One can verify that the skeleton of K
and i is M -bounded.

The following proposition is true

(6) If K is finite-vertices, then K is M -bounded.
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3. The Diameter of a Bounded Simplicial Complex

Let us consider M and let K be a simplicial complex structure. Let us assume
that K is M -bounded. The functor diameter(M,K) yielding a real number is
defined by:

(Def. 3)(i) For every A such that A ∈ the topology of K holds ∅A ≤
diameter(M,K) and for every r such that for every A such that A ∈ the
topology of K holds ∅A ≤ r holds r ≥ diameter(M,K) if the topology of
K meets 2ΩM ,

(ii) diameter(M,K) = 0, otherwise.

One can prove the following three propositions:

(7) If K is M -bounded, then 0 ≤ diameter(M,K).

(8) For every M -bounded simplicial complex str K of X and for every sub
simplicial complex K1 of K holds diameter(M,K1) ≤ diameter(M,K).

(9) Let K be an M -bounded subset-closed simplicial complex str of X
and i be an integer. Then diameter(M, the skeleton of K and i) ≤
diameter(M,K).

Let us consider M and let K be an M -bounded non void subset-closed
simplicial complex structure. Then diameter(M,K) is a real number and it can
be characterized by the condition:

(Def. 4)(i) For every A such that A is a simplex of K holds ∅A ≤
diameter(M,K), and

(ii) for every r such that for every A such that A is a simplex of K holds
∅A ≤ r holds r ≥ diameter(M,K).

Next we state the proposition

(10) For every finite subset S of M holds diameter(M, the complex of {S}) =
∅S.

Let us consider n and let K be a simplicial complex str of EnT. We say that
K is bounded if and only if:

(Def. 5) K is En-bounded.

The functor ∅K yielding a real number is defined as follows:

(Def. 6) ∅K = diameter(En,K).

Let us consider n. One can verify the following observations:

∗ every simplicial complex str of EnT which is bounded is also En-bounded,

∗ there exists a simplicial complex of EnT which is bounded, affinely inde-
pendent, simplex-join-closed, non void, finite-degree, and total, and

∗ every simplicial complex str of EnT which is finite-vertices is also bounded.
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4. The Estimation of Diameter of the Barycentric Subdivision

In the sequel V is a real linear space.
The following two propositions are true:

(11) Let S be a simplex of BCSK2 and F be a ⊆-linear finite finite-membered
family of subsets of V . Suppose S = (the center of mass V )◦F and

⋃
F

is a simplex of K2. Let a1, a2 be vectors of V . Suppose a1, a2 ∈ S. Then
there exist vectors b1, b2 of V and there exists a real number r such
that b1 ∈ Vertices BCS (the complex of {

⋃
F}) and b2 ∈ Vertices BCS (the

complex of {
⋃
F}) and a1 − a2 = r · (b1 − b2) and 0 ≤ r ≤

⋃
F −1⋃
F
.

(12) Let A be an affinely independent subset of EnT and E be an enumeration
of A. If domE \X is non empty, then convE◦X =

⋂
{convA \ {E(k)}; k

ranges over elements of N: k ∈ domE \X}.
In the sequel A denotes a subset of EnT.
The following three propositions are true:

(13) For every bounded subset a of En such that a = A and for every point
p of En such that p ∈ convA holds convA ⊆ Ball(p,∅a).

(14) A is Bounded iff convA is Bounded.

(15) For all bounded subsets a, c1 of En such that c1 = convA and a = A

holds ∅a = ∅c1.

Let us consider n and let K be a bounded simplicial complex str of EnT.
Observe that every subdivision str of K is bounded.

The following propositions are true:

(16) For every bounded finite-degree non void simplicial complex K of EnT
such that |K| ⊆ ΩK holds ∅ BCSK ≤ degree(K)

degree(K)+1 ·∅K.
(17) For every bounded finite-degree non void simplicial complex K of EnT

such that |K| ⊆ ΩK holds ∅ BCS(k,K) ≤ ( degree(K)
degree(K)+1)

k
·∅K.

(18) Let K be a bounded finite-degree non void simplicial complex of EnT.
If |K| ⊆ ΩK , then for every r such that r > 0 there exists k such that
∅ BCS(k,K) < r.

(19) Let i, j be elements of N. Then there exists a function f from E iT × E
j
T

into E i+jT such that f is homeomorphism and for every element f1 of E iT
and for every element f2 of EjT holds f(f1, f2) = f1

a f2.

(20) Let i, j be elements of N and f be a function from E iT × E
j
T into E i+jT .

Suppose that for every element f1 of E iT and for every element f2 of EjT
holds f(f1, f2) = f1

af2. Let given r, f1 be a point of E i, f2 be a point of Ej ,
and f3 be a point of E i+j . If f3 = f1

a f2, then f◦(OpenHypercube(f1, r)×
OpenHypercube(f2, r)) = OpenHypercube(f3, r).
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(21) A is Bounded iff there exists a point p of En and there exists r such that
A ⊆ OpenHypercube(p, r).

Let us consider n. Observe that every subset of EnT which is closed and
Bounded is also compact.

Let us consider n and let A be an affinely independent subset of EnT. One
can verify that convA is compact.

5. Main Theorems

Next we state the proposition

(22) Let A be a non empty affinely independent subset of EnT, E be an enume-
ration of A, and F be a finite sequence of elements of 2the carrier of EnT� convA.
Suppose lenF = A and rngF is closed and for every subset S of domF

holds convE◦S ⊆
⋃

(F ◦S). Then
⋂

rngF is non empty.

In the sequel A denotes an affinely independent subset of EnT.
Next we state four propositions:

(23) Let given A. Suppose A = n + 1. Let f be a continuous function from
EnT� convA into EnT� convA. Then there exists a point p of EnT such that
p ∈ dom f and f(p) = p.

(24) For every A such that A = n+ 1 holds every continuous function from
EnT� convA into EnT� convA has a fixpoint.

(25) If A = n+ 1, then ind convA = n.

(26) ind(EnT) = n.
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