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Continuity of Barycentric Coordinates in
Euclidean Topological Spaces
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Poland

Summary. In this paper we present selected properties of barycentric
coordinates in the Euclidean topological space. We prove the topological corre-
spondence between a subset of an affine closed space of En and the set of vectors
created from barycentric coordinates of points of this subset.
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The terminology and notation used here have been introduced in the following
articles: [1], [3], [15], [25], [13], [18], [5], [4], [6], [12], [7], [8], [33], [21], [24], [2],
[22], [20], [17], [30], [31], [23], [10], [28], [26], [11], [16], [29], [14], [19], [27], [32],
and [9].

1. Preliminaries

For simplicity, we adopt the following rules: x denotes a set, n, m, k denote
natural numbers, r denotes a real number, V denotes a real linear space, v, w
denote vectors of V , A1 denotes a finite subset of V , and A2 denotes a finite
affinely independent subset of V .

One can prove the following propositions:

(1) For all real-valued finite sequences f1, f2 and for every real number r
holds (Intervals(f1, r)) a Intervals(f2, r) = Intervals(f1

a f2, r).

(2) Let f1, f2 be finite sequences. Then x ∈
∏

(f1
a f2) if and only if there

exist finite sequences p1, p2 such that x = p1
a p2 and p1 ∈

∏
f1 and

p2 ∈
∏
f2.
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(3) V is finite dimensional iff ΩV is finite dimensional.

Let V be a finite dimensional real linear space. One can verify that every
affinely independent subset of V is finite.

Let us consider n. One can check that EnT is add-continuous and mult-
continuous and EnT is finite dimensional.

In the sequel p3 denotes a point of EnT, A3 denotes a subset of EnT, A4 denotes
an affinely independent subset of EnT, and A5 denotes a subset of EkT.

Next we state three propositions:

(4) dim(EnT) = n.

(5) Let V be a finite dimensional real linear space and A be an affinely
independent subset of V . Then A ≤ 1 + dim(V ).

(6) Let V be a finite dimensional real linear space and A be an affinely
independent subset of V . Then A = dim(V )+1 if and only if AffinA = ΩV .

2. Open and Closed Subsets of a Subspace of the Euclidean
Topological Space

One can prove the following propositions:

(7) If k ≤ n and A3 = {v ∈ EnT: v�k ∈ A5}, then A3 is open iff A5 is open.

(8) Let A be a subset of Ek+n
T . Suppose A = {v a (n 7→ 0) : v ranges over

elements of EkT}. Let B be a subset of Ek+n
T �A. Suppose B = {v; v ranges

over points of Ek+n
T : v�k ∈ A5 ∧ v ∈ A}. Then A5 is open if and only if

B is open.

(9) For every affinely independent subset A of V and for every subset B of
V such that B ⊆ A holds convA ∩AffinB = convB.

(10) Let V be a non empty RLS structure, A be a non empty set, f be
a partial function from A to the carrier of V , and X be a set. Then
(r · f)◦X = r · f◦X.

(11) If 〈0, . . . , 0︸ ︷︷ ︸
n

〉 ∈ A3, then AffinA3 = ΩLin(A3).

Let V be a non empty additive loop structure, let A be a finite subset of V ,
and let v be an element of V . Note that v +A is finite.

Let V be a non empty RLS structure, let A be a finite subset of V , and let
us consider r. Observe that r ·A is finite.

Next we state the proposition

(12) For every subset A of V holds A = r ·A iff r 6= 0 or A is trivial.

Let V be a non empty RLS structure, let f be a finite sequence of elements
of V , and let us consider r. Note that r · f is finite sequence-like.
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3. The Vector of Barycentric Coordinates

Let X be a finite set. A one-to-one finite sequence is said to be an enumera-
tion of X if:

(Def. 1) rng it = X.

Let X be a 1-sorted structure and let A be a finite subset of X. We see that
the enumeration of A is a one-to-one finite sequence of elements of X.

In the sequel E1 denotes an enumeration of A2 and E2 denotes an enume-
ration of A4.

One can prove the following three propositions:

(13) Let V be an Abelian add-associative right zeroed right complementable
non empty additive loop structure, A be a finite subset of V , E be an
enumeration of A, and v be an element of V . Then E + A 7→ v is an
enumeration of v +A.

(14) For every enumeration E of A1 holds r ·E is an enumeration of r ·A1 iff
r 6= 0 or A1 is trivial.

(15) Let M be a matrix over RF of dimension n × m. Suppose rk(M) = n.

Let A be a finite subset of EnT and E be an enumeration of A. Then
Mx2TranM · E is an enumeration of (Mx2TranM)◦A.

Let us consider V , A1, let E be an enumeration of A1, and let us consider
x. The functor x → E yielding a finite sequence of elements of R is defined as
follows:

(Def. 2) x→ E = (x→ A1) · E.
The following propositions are true:

(16) For every enumeration E of A1 holds len(x→ E) = A1 .

(17) For every enumeration E of v + A2 such that w ∈ AffinA2 and E =
E1 + A2 7→ v holds w → E1 = v + w → E.

(18) For every enumeration r1 of r ·A2 such that v ∈ AffinA2 and r1 = r ·E1

and r 6= 0 holds v → E1 = r · v → r1.

(19) Let M be a matrix over RF of dimension n ×m. Suppose rk(M) = n. Let
M1 be an enumeration of (Mx2TranM)◦A4. If M1 = Mx2TranM ·E2, then
for every p3 such that p3 ∈ AffinA4 holds p3 → E2 = (Mx2TranM)(p3)→
M1.

(20) Let A be a subset of V . Suppose A ⊆ A2 and x ∈ AffinA2. Then
x ∈ AffinA if and only if for every set y such that y ∈ dom(x → E1)
and E1(y) /∈ A holds (x→ E1)(y) = 0.

(21) For every E1 such that x ∈ AffinA2 holds x ∈ Affin(E1
◦ Seg k) iff x →

E1 = ((x→ E1)�k) a ((A2 −′ k) 7→ 0).

(22) For every E1 such that k ≤ A2 and x ∈ AffinA2 holds x ∈ Affin(A2 \
E1
◦ Seg k) iff x→ E1 = (k 7→ 0) a ((x→ E1)�k).
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(23) Suppose 〈0, . . . , 0︸ ︷︷ ︸
n

〉 ∈ A4 and E2(lenE2) = 〈0, . . . , 0︸ ︷︷ ︸
n

〉. Then

(i) rng(E2�(A4 −′ 1)) = A4 \ {〈0, . . . , 0︸ ︷︷ ︸
n

〉}, and

(ii) for every subset A of the n-dimension vector space over RF such that
A4 = A holds E2�(A4 −′ 1) is an ordered basis of Lin(A).

(24) Let A be a subset of the n-dimension vector space over RF. Suppose
A4 = A and 〈0, . . . , 0︸ ︷︷ ︸

n

〉 ∈ A4 and E2(lenE2) = 〈0, . . . , 0︸ ︷︷ ︸
n

〉. Let B be an

ordered basis of Lin(A). If B = E2�(A4 −′ 1), then for every element v of
Lin(A) holds v → B = (v → E2)�(A4 −′ 1).

(25) For all E2, A3 such that k ≤ n and A4 = n + 1 and A3 = {p3 : (p3 →
E2)�k ∈ A5} holds A5 is open iff A3 is open.

(26) For every E2 such that k ≤ n and A4 = n + 1 and A3 = {p3 : (p3 →
E2)�k ∈ A5} holds A5 is closed iff A3 is closed.

Let us consider n. One can verify that every subset of EnT which is affine is
also closed.

In the sequel p4 denotes an element of EnT� AffinA4.

Next we state two propositions:

(27) For every E2 and for every subset B of EnT� AffinA4 such that k < A4

and B = {p4 : (p4 → E2)�k ∈ A5} holds A5 is open iff B is open.

(28) Let given E2 and B be a subset of EnT� AffinA4. Suppose k < A4 and
B = {p4 : (p4 → E2)�k ∈ A5}. Then A5 is closed if and only if B is closed.

Let us consider n and let p, q be points of EnT. Observe that halfline(p, q) is
closed.

4. Continuity of Barycentric Coordinates

Let us consider V , let A be a subset of V , and let us consider x. The functor
` (A, x) yielding a function from V into R1 is defined as follows:

(Def. 3) (` (A, x))(v) = (v → A)(x).

One can prove the following four propositions:

(29) For every subset A of V such that x /∈ A holds ` (A, x) = ΩV 7−→ 0.

(30) For every affinely independent subset A of V such that ` (A, x) =
ΩV 7−→ 0 holds x /∈ A.

(31) ` (A4, x)� AffinA4 is a continuous function from EnT� AffinA4 into R1.
(32) If A4 = n+ 1, then ` (A4, x) is continuous.

Let us consider n, A4. Note that convA4 is closed.
We now state the proposition



continuity of barycentric coordinates in . . . 143

(33) If A4 = n+ 1, then IntA4 is open.
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