Set of Points on Elliptic Curve in Projective Coordinates¹

Yuichi Futa Shinshu University Nagano, Japan Hiroyuki Okazaki Shinshu University Nagano, Japan Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this article, we formalize a set of points on an elliptic curve over $\mathbf{GF}(\mathbf{p})$. Elliptic curve cryptography [10], whose security is based on a difficulty of discrete logarithm problem of elliptic curves, is important for information security.

MML identifier: $EC_PF_1,$ version: 7.11.07 4.160.1126

The notation and terminology used here have been introduced in the following papers: [15], [1], [16], [13], [3], [8], [5], [6], [19], [18], [14], [17], [2], [12], [4], [9], [22], [23], [20], [21], [11], and [7].

1. FINITE PRIME FIELD $\mathbf{GF}(\mathbf{p})$

For simplicity, we use the following convention: x is a set, i, j are integers, n, n_1 , n_2 are natural numbers, and K, K_1 , K_2 are fields.

Let K be a field. A field is called a subfield of K if it satisfies the conditions (Def. 1).

(Def. 1)(i) The carrier of it \subseteq the carrier of K,

- (ii) the addition of it = (the addition of K) \upharpoonright (the carrier of it),
- (iii) the multiplication of it = (the multiplication of K) \upharpoonright (the carrier of it),
- (iv) $1_{it} = 1_K$, and
- $(\mathbf{v}) \quad \mathbf{0}_{\mathrm{it}} = \mathbf{0}_K.$

We now state two propositions:

C 2011 University of Białystok ISSN 1426-2630(p), 1898-9934(e)

¹This work was supported by JSPS KAKENHI 22300285.

- (1) K is a subfield of K.
- (2) Let S_1 be a non empty double loop structure. Suppose that
- (i) the carrier of S_1 is a subset of the carrier of K,
- (ii) the addition of $S_1 = ($ the addition of $K) \upharpoonright ($ the carrier of $S_1),$
- (iii) the multiplication of $S_1 = ($ the multiplication of $K) \upharpoonright ($ the carrier of $S_1),$
- (iv) $1_{(S_1)} = 1_K$,
- (v) $0_{(S_1)} = 0_K$, and
- (vi) S_1 is right complementable, commutative, almost left invertible, and non degenerated.

Then S_1 is a subfield of K.

Let K be a field. One can check that there exists a subfield of K which is strict.

In the sequel S_2 , S_3 denote subfields of K and e_1 , e_2 denote elements of K. We now state several propositions:

- (3) If K_1 is a subfield of K_2 , then for every x such that $x \in K_1$ holds $x \in K_2$.
- (4) For all strict fields K_1 , K_2 such that K_1 is a subfield of K_2 and K_2 is a subfield of K_1 holds $K_1 = K_2$.
- (5) Let K_1 , K_2 , K_3 be strict fields. Suppose K_1 is a subfield of K_2 and K_2 is a subfield of K_3 . Then K_1 is a subfield of K_3 .
- (6) S_2 is a subfield of S_3 iff the carrier of $S_2 \subseteq$ the carrier of S_3 .
- (7) S_2 is a subfield of S_3 iff for every x such that $x \in S_2$ holds $x \in S_3$.
- (8) For all strict subfields S_2 , S_3 of K holds $S_2 = S_3$ iff the carrier of S_2 = the carrier of S_3 .
- (9) For all strict subfields S_2 , S_3 of K holds $S_2 = S_3$ iff for every x holds $x \in S_2$ iff $x \in S_3$.

Let K be a finite field. Observe that there exists a subfield of K which is finite. Then $\overline{\overline{K}}$ is an element of \mathbb{N} .

Let us mention that there exists a field which is strict and finite.

Next we state the proposition

(10) For every strict finite field K and for every strict subfield S_2 of K such that $\overline{\overline{K}} = \overline{\overline{S_2}}$ holds $S_2 = K$.

Let I_1 be a field. We say that I_1 is prime if and only if:

(Def. 2) If K_1 is a strict subfield of I_1 , then $K_1 = I_1$.

Let p be a prime number. We introduce GF(p) as a synonym of $\mathbb{Z}_p^{\mathbb{R}}$. One can check that GF(p) is finite. One can check that GF(p) is prime.

One can check that there exists a field which is prime.

132

2. Arithmetic in $\mathbf{GF}(\mathbf{p})$

In the sequel b, c denote elements of GF(p) and F denotes a finite sequence of elements of GF(p).

Next we state a number of propositions:

- (11) $0 = 0_{\mathrm{GF}(p)}$.
- (12) $1 = 1_{\mathrm{GF}(p)}$.
- (13) There exists n_1 such that $a = n_1 \mod p$.
- (14) There exists a such that $a = i \mod p$.
- (15) If $a = i \mod p$ and $b = j \mod p$, then $a + b = (i + j) \mod p$.
- (16) If $a = i \mod p$, then $-a = (p i) \mod p$.
- (17) If $a = i \mod p$ and $b = j \mod p$, then $a b = (i j) \mod p$.
- (18) If $a = i \mod p$ and $b = j \mod p$, then $a \cdot b = i \cdot j \mod p$.
- (19) If $a = i \mod p$ and $i \cdot j \mod p = 1$, then $a^{-1} = j \mod p$.
- (20) $a = 0 \text{ or } b = 0 \text{ iff } a \cdot b = 0.$
- (21) $a^0 = \mathbf{1}_{\mathrm{GF}(p)}$ and $a^0 = 1$.
- (22) $a^2 = a \cdot a.$
- (23) If $a = n_1 \mod p$, then $a^n = n_1^n \mod p$.
- $(24) \quad a^{n+1} = a^n \cdot a.$
- (25) If $a \neq 0$, then $a^n \neq 0$.
- (26) Let F be an Abelian add-associative right zeroed right complementable associative commutative well unital almost left invertible distributive non empty double loop structure and x, y be elements of F. Then $x \cdot x = y \cdot y$ if and only if x = y or x = -y.
- (27) For every prime number p and for every element x of GF(p) such that 2 < p and $x + x = 0_{GF(p)}$ holds $x = 0_{GF(p)}$.
- $(28) \quad a^n \cdot b^n = (a \cdot b)^n.$
- (29) If $a \neq 0$, then $(a^{-1})^n = (a^n)^{-1}$.
- $(30) \quad a^{n_1} \cdot a^{n_2} = a^{n_1 + n_2}.$
- $(31) \quad (a^{n_1})^{n_2} = a^{n_1 \cdot n_2}.$

Let us consider p. One can verify that MultGroup(GF(p)) is cyclic. The following two propositions are true:

- (32) Let x be an element of MultGroup(GF(p)), x_1 be an element of GF(p), and n be a natural number. If $x = x_1$, then $x^n = x_1^n$.
- (33) There exists an element g of GF(p) such that for every element a of GF(p) if $a \neq 0_{GF(p)}$, then there exists a natural number n such that $a = g^n$.

3. Relation between Legendre Symbol and the Number of Roots in $\mathbf{GF}(\mathbf{p})$

Let us consider p, a. We say that a is quadratic residue if and only if:

(Def. 3) $a \neq 0$ and there exists an element x of GF(p) such that $x^2 = a$.

We say that a is not quadratic residue if and only if:

(Def. 4) $a \neq 0$ and it is not true that there exists an element x of GF(p) such that $x^2 = a$.

One can prove the following proposition

(34) If $a \neq 0$, then a^2 is quadratic residue.

Let p be a prime number. Observe that $1_{GF(p)}$ is quadratic residue.

Let us consider p, a. The functor $\text{Lege}_p a$ yields an integer and is defined as follows:

(Def. 5) Lege_p
$$a = \begin{cases} 0, \text{ if } a = 0, \\ 1, \text{ if } a \text{ is quadratic residue,} \\ -1, \text{ otherwise.} \end{cases}$$

Next we state several propositions:

- (35) a is not quadratic residue iff Lege_p a = -1.
- (36) a is quadratic residue iff Lege_p a = 1.
- (37) a = 0 iff Lege_{*p*} a = 0.
- (38) If $a \neq 0$, then $\text{Lege}_p(a^2) = 1$.
- (39) $\operatorname{Lege}_{n}(a \cdot b) = \operatorname{Lege}_{n} a \cdot \operatorname{Lege}_{n} b.$
- (40) If $a \neq 0$ and $n \mod 2 = 0$, then $\text{Lege}_p(a^n) = 1$.
- (41) If $n \mod 2 = 1$, then $\text{Lege}_p(a^n) = \text{Lege}_p a$.
- (42) If 2 < p, then $\overline{\overline{\{b : b^2 = a\}}} = 1 + \operatorname{Lege}_p a$.

4. Set of Points on an Elliptic Curve over $\mathbf{GF}(\mathbf{p})$

Let K be a field. The functor $\operatorname{ProjCo} K$ yields a non empty subset of (the carrier of K) × (the carrier of K) × (the carrier of K) and is defined by:

(Def. 6) ProjCo $K = ((\text{the carrier of } K) \times (\text{the carrier of } K) \times (\text{the carrier of } K)) \setminus \{ \langle 0_K, 0_K, 0_K \rangle \}.$

One can prove the following proposition

(43) ProjCo GF(p) = ((the carrier of GF(p)) × (the carrier of GF(p)) × (the carrier of GF(p))) \ {(0, 0, 0)}.

In the sequel P_1 , P_2 , P_3 are elements of GF(p).

Let p be a prime number and let a, b be elements of GF(p). The functor Disc(a, b, p) yields an element of GF(p) and is defined as follows:

(Def. 7) For all elements g_4 , g_{27} of GF(p) such that $g_4 = 4 \mod p$ and $g_{27} = 27 \mod p$ holds $\text{Disc}(a, b, p) = g_4 \cdot a^3 + g_{27} \cdot b^2$.

Let p be a prime number and let a, b be elements of GF(p). The functor EC WEqProjCo(a, b, p) yielding a function from (the carrier of GF(p)) × (the carrier of GF(p)) × (the carrier of GF(p)) into GF(p) is defined by the condition (Def. 8).

(Def. 8) Let P be an element of (the carrier of GF(p)) × (the carrier of GF(p)) × (the carrier of GF(p)). Then (EC WEqProjCo(a, b, p)) $(P) = (P_2)^2 \cdot P_3 - ((P_1)^3 + a \cdot P_1 \cdot (P_3)^2 + b \cdot (P_3)^3)$.

We now state the proposition

(44) For all elements X, Y, Z of GF(p) holds (EC WEqProjCo(a, b, p))($\langle X, Y, Z \rangle$) = $Y^2 \cdot Z - (X^3 + a \cdot X \cdot Z^2 + b \cdot Z^3)$.

Let p be a prime number and let a, b be elements of GF(p). The functor EC SetProjCo(a, b, p) yielding a non empty subset of ProjCoGF(p) is defined by:

(Def. 9) EC SetProjCo $(a, b, p) = \{P \in \operatorname{ProjCo} \operatorname{GF}(p) : (\operatorname{EC WEqProjCo}(a, b, p)) (P) = 0_{\operatorname{GF}(p)}\}.$

One can prove the following two propositions:

- (45) $\langle 0, 1, 0 \rangle$ is an element of EC SetProjCo(a, b, p).
- (46) Let p be a prime number and a, b, X, Y be elements of GF(p). Then $Y^2 = X^3 + a \cdot X + b$ if and only if $\langle X, Y, 1 \rangle$ is an element of EC SetProjCo(a, b, p).

Let p be a prime number and let P, Q be elements of $\operatorname{ProjCo} \operatorname{GF}(p)$. We say that P EQ Q if and only if:

- (Def. 10) There exists an element a of GF(p) such that $a \neq 0_{GF(p)}$ and $P_1 = a \cdot Q_1$ and $P_2 = a \cdot Q_2$ and $P_3 = a \cdot Q_3$.
 - Let us notice that the predicate $P \to Q Q$ is reflexive and symmetric. We now state two propositions:
 - (47) For every prime number p and for all elements P, Q, R of ProjCo GF(p) such that $P \in Q Q$ and $Q \in Q R$ holds $P \in Q R$.
 - (48) Let p be a prime number, a, b be elements of GF(p), P, Q be elements of (the carrier of GF(p))×(the carrier of GF(p))× (the carrier of GF(p)), and d be an element of GF(p). Suppose p > 3 and $Disc(a, b, p) \neq 0_{GF(p)}$ and $P \in EC$ SetProjCo(a, b, p) and $d \neq 0_{GF(p)}$ and $Q_1 = d \cdot P_1$ and $Q_2 = d \cdot P_2$ and $Q_3 = d \cdot P_3$. Then $Q \in EC$ SetProjCo(a, b, p).

Let p be a prime number. The functor \mathbb{R} -ProjCo p yielding a binary relation on ProjCo GF(p) is defined by:

(Def. 11) \mathbb{R} -ProjCo $p = \{\langle P, Q \rangle; P \text{ ranges over elements of ProjCo} GF(p), Q \text{ ranges over elements of ProjCo} GF(p) : P EQ Q \}.$

One can prove the following proposition

(49) For every prime number p and for all elements P, Q of ProjCoGF(p) holds $P \in Q Q$ iff $\langle P, Q \rangle \in \mathbb{R}$ -ProjCop.

Let p be a prime number. Note that \mathbb{R} -ProjCop is total, symmetric, and transitive.

Let p be a prime number and let a, b be elements of GF(p). The functor \mathbb{R} -EllCur(a, b, p) yielding an equivalence relation of EC SetProjCo(a, b, p) is defined as follows:

(Def. 12) \mathbb{R} -EllCur $(a, b, p) = \mathbb{R}$ -ProjCo $p \cap \nabla_{\text{EC SetProjCo}(a, b, p)}$.

Next we state a number of propositions:

- (50) Let p be a prime number, a, b be elements of GF(p), and P, Qbe elements of $\operatorname{ProjCo} GF(p)$. Suppose $\operatorname{Disc}(a, b, p) \neq 0_{GF(p)}$ and P, $Q \in \operatorname{EC} \operatorname{SetProjCo}(a, b, p)$. Then $P \in Q Q$ if and only if $\langle P, Q \rangle \in \mathbb{R}$ -Ell $\operatorname{Cur}(a, b, p)$.
- (51) Let p be a prime number, a, b be elements of GF(p), and P be an element of $\operatorname{ProjCo} GF(p)$. Suppose p > 3 and $\operatorname{Disc}(a, b, p) \neq 0_{GF(p)}$ and $P \in \operatorname{EC} \operatorname{SetProjCo}(a, b, p)$ and $P_3 \neq 0$. Then there exists an element Q of $\operatorname{ProjCo} GF(p)$ such that $Q \in \operatorname{EC} \operatorname{SetProjCo}(a, b, p)$ and $Q \in \operatorname{EQ} P$ and $Q_3 = 1$.
- (52) Let p be a prime number, a, b be elements of GF(p), and P be an element of $\operatorname{ProjCo} GF(p)$. Suppose p > 3 and $\operatorname{Disc}(a, b, p) \neq 0_{GF(p)}$ and $P \in \operatorname{EC} \operatorname{SetProjCo}(a, b, p)$ and $P_3 = 0$. Then there exists an element Q of $\operatorname{ProjCo} GF(p)$ such that $Q \in \operatorname{EC} \operatorname{SetProjCo}(a, b, p)$ and $Q \in \operatorname{EQ} P$ and $Q_1 = 0$ and $Q_2 = 1$ and $Q_3 = 0$.
- (53) Let p be a prime number, a, b be elements of GF(p), and x be a set. Suppose p > 3 and $Disc(a, b, p) \neq 0_{GF(p)}$ and $x \in Classes \mathbb{R}$ -EllCur(a, b, p). Then
 - (i) there exists an element P of $\operatorname{ProjCo} \operatorname{GF}(p)$ such that $P \in \operatorname{EC} \operatorname{SetProjCo}(a, b, p)$ and $P = \langle 0, 1, 0 \rangle$ and $x = [P]_{\mathbb{R}-\operatorname{EllCur}(a, b, p)}$, or
 - (ii) there exists an element P of $\operatorname{ProjCo} \operatorname{GF}(p)$ and there exist elements X, Y of $\operatorname{GF}(p)$ such that $P \in \operatorname{EC} \operatorname{SetProjCo}(a, b, p)$ and $P = \langle X, Y, 1 \rangle$ and $x = [P]_{\mathbb{R}-\operatorname{EllCur}(a,b,p)}$.
- (54) Let p be a prime number and a, b be elements of GF(p). Suppose p > 3 and $Disc(a, b, p) \neq 0_{GF(p)}$. Then $Classes \mathbb{R}$ -Ell $Cur(a, b, p) = \{[\langle 0, 1, 0 \rangle]_{\mathbb{R}$ -Ell $Cur(a, b, p)\} \cup \{[P]_{\mathbb{R}}$ -EllCur(a, b, p); P ranges over elements of $ProjCo GF(p) : P \in EC$ Set $ProjCo(a, b, p) \land \bigvee_{X,Y: element of GF(p)} P = \langle X, Y, 1 \rangle \}.$
- (55) Let p be a prime number and a, b, d_1 , Y_1 , d_2 , Y_2 be elements of $\operatorname{GF}(p)$. Suppose p > 3 and $\operatorname{Disc}(a, b, p) \neq 0_{\operatorname{GF}(p)}$ and $\langle d_1, Y_1, 1 \rangle$, $\langle d_2, Y_2, 1 \rangle \in \operatorname{EC}\operatorname{SetProjCo}(a, b, p)$. Then $[\langle d_1, Y_1, 1 \rangle]_{\mathbb{R}-\operatorname{EllCur}(a, b, p)} = [\langle d_2, Y_2, 1 \rangle]_{\mathbb{R}-\operatorname{EllCur}(a, b, p)}$ if and only if $d_1 = d_2$ and $Y_1 = Y_2$.

136

- (56) Let p be a prime number, a, b be elements of GF(p), and F_1 , F_2 be sets. Suppose that
 - p > 3, (i)
- (ii) $\operatorname{Disc}(a, b, p) \neq 0_{\operatorname{GF}(p)},$
- $F_1 = \{ [\langle 0, 1, 0 \rangle]_{\mathbb{R}\text{-EllCur}(a,b,p)} \}, \text{ and }$ (iii)
- $F_2 = \{ [P]_{\mathbb{R}-\text{EllCur}(a,b,p)}; P \text{ ranges over elements of } \operatorname{ProjCo} \operatorname{GF}(p) : P \in$ EC SetProjCo $(a,b,p) \land \bigvee_{X,Y: \text{ element of } \operatorname{GF}(p)} P = \langle X, Y, 1 \rangle \}.$ (iv)Then F_1 misses F_2 .
- (57) Let X be a non empty finite set, R be an equivalence relation of X, S be a Classes R-valued function, and i be a set. If $i \in \text{dom } S$, then S(i) is a finite subset of X.
- (58) Let X be a non empty set, R be an equivalence relation of X, and S be a Classes R-valued function. If S is one-to-one, then S is disjoint valued.
- (59) Let X be a non empty set, R be an equivalence relation of X, and S be a Classes *R*-valued function. If S is onto, then $\bigcup S = X$.
- (60) Let X be a non empty finite set, R be an equivalence relation of X, S be a Classes R-valued function, and L be a finite sequence of elements of N. Suppose S is one-to-one and onto and dom S = dom L and for every natural number i such that $i \in \text{dom } S$ holds $L(i) = \overline{S(i)}$. Then $\overline{\overline{X}} = \sum L$.
- (61) Let p be a prime number, a, b, d be elements of GF(p), and F, G be sets. Suppose that
 - p > 3,(i)
 - (ii)
- $Disc(a, b, p) \neq 0_{GF(p)},$ $F = \{Y \in GF(p) \colon Y^2 = d^3 + a \cdot d + b\},$ (iii)
- $F \neq \emptyset$, and (iv)
- (v) $G = \{ [\langle d, Y, 1 \rangle]_{\mathbb{R}\text{-EllCur}(a,b,p)}; Y \text{ ranges over elements of } GF(p): \langle d, Y, \rangle \}$ $1 \in EC$ SetProjCo(a, b, p)}.

Then there exists a function from F into G which is onto and one-to-one.

(62) Let p be a prime number and a, b, d be elements of GF(p). Suppose p > 3 and $\operatorname{Disc}(a, b, p) \neq 0_{\operatorname{GF}(p)}$.

Then $\overline{\{[\langle d, Y, 1 \rangle]_{\mathbb{R}-\text{EllCur}(a,b,p)}; Y \text{ ranges over elements of } GF(p):}$

 $\overline{\langle d, Y, 1 \rangle \in \text{EC SetProjCo}(a, b, p) \}} = 1 + \text{Lege}_{p}(d^{3} + a \cdot d + b).$

- (63) Let p be a prime number and a, b be elements of GF(p). Suppose p > 3 and $\operatorname{Disc}(a, b, p) \neq 0_{\operatorname{GF}(p)}$. Then there exists a finite sequence F of elements of N such that
 - len F = p,(i)
 - for every natural number n such that $n \in \text{Seg } p$ there exists an element d of (ii) GF(p) such that d = n - 1 and $F(n) = 1 + Lege_n(d^3 + a \cdot d + b)$, and
- $\overline{\{[P]_{\mathbb{R}\text{-EllCur}(a,b,p)}; P \text{ ranges over elements of } \operatorname{ProjCo} \operatorname{GF}(p) :} = \overline{P \in \operatorname{EC} \operatorname{SetProjCo}(a,b,p) \land \bigvee_{X,Y: \operatorname{element of } \operatorname{GF}(p)} P = \langle X, Y, 1 \rangle \}} = \sum F.$ (iii)

YUICHI FUTA et al.

- (64) Let p be a prime number and a, b be elements of GF(p). Suppose p > 3 and $Disc(a, b, p) \neq 0_{GF(p)}$. Then there exists a finite sequence F of elements of \mathbb{Z} such that
 - (i) $\operatorname{len} F = p$,
 - (ii) for every natural number n such that $n \in \text{Seg } p$ there exists an element d of GF(p) such that d = n 1 and $F(n) = \text{Lege}_p(d^3 + a \cdot d + b)$, and

(iii) Classes
$$\mathbb{R}$$
-EllCur $(a, b, p) = 1 + p + \sum F$.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
 [8] Anna Dama Barra Dinita esta Energy lined Mathematics 1(1):167–167, 1000.
- [8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [10] G. Seroussi I. Blake and N. Smart. *Elliptic Curves in Cryptography*. Number 265 in London Mathematical Society Lecture Note Series. Cambridge University Press, 1999.
- [11] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [12] Rafał Kwiatek. Factorial and Newton coefficients. *Formalized Mathematics*, 1(5):887–890, 1990.
- [13] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.
- [14] Christoph Schwarzweller. The ring of integers, euclidean rings and modulo integers. Formalized Mathematics, 8(1):29–34, 1999.
- [15] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559–564, 2001.
- [16] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [17] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [19] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [20] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [23] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85–89, 1990.

Received December 21, 2010

138