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Summary. In this article, we formalize a set of points on an elliptic curve
over GF(p). Elliptic curve cryptography [10], whose security is based on a diffi-
culty of discrete logarithm problem of elliptic curves, is important for information
security.
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The notation and terminology used here have been introduced in the following
papers: [15], [1], [16], [13], [3], [8], [5], [6], [19], [18], [14], [17], [2], [12], [4], [9],
[22], [23], [20], [21], [11], and [7].

1. Finite Prime Field GF(p)

For simplicity, we use the following convention: x is a set, i, j are integers,
n, n1, n2 are natural numbers, and K, K1, K2 are fields.

Let K be a field. A field is called a subfield of K if it satisfies the conditions
(Def. 1).

(Def. 1)(i) The carrier of it ⊆ the carrier of K,
(ii) the addition of it = (the addition of K) � (the carrier of it),
(iii) the multiplication of it = (the multiplication of K) � (the carrier of it),
(iv) 1it = 1K , and
(v) 0it = 0K .

We now state two propositions:
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(1) K is a subfield of K.

(2) Let S1 be a non empty double loop structure. Suppose that
(i) the carrier of S1 is a subset of the carrier of K,

(ii) the addition of S1 = (the addition of K) � (the carrier of S1),
(iii) the multiplication of S1 = (the multiplication of K) � (the carrier of

S1),
(iv) 1(S1) = 1K ,
(v) 0(S1) = 0K , and
(vi) S1 is right complementable, commutative, almost left invertible, and

non degenerated.
Then S1 is a subfield of K.

Let K be a field. One can check that there exists a subfield of K which is
strict.

In the sequel S2, S3 denote subfields of K and e1, e2 denote elements of K.
We now state several propositions:

(3) If K1 is a subfield of K2, then for every x such that x ∈ K1 holds x ∈ K2.

(4) For all strict fields K1, K2 such that K1 is a subfield of K2 and K2 is a
subfield of K1 holds K1 = K2.

(5) Let K1, K2, K3 be strict fields. Suppose K1 is a subfield of K2 and K2

is a subfield of K3. Then K1 is a subfield of K3.

(6) S2 is a subfield of S3 iff the carrier of S2 ⊆ the carrier of S3.

(7) S2 is a subfield of S3 iff for every x such that x ∈ S2 holds x ∈ S3.

(8) For all strict subfields S2, S3 of K holds S2 = S3 iff the carrier of S2 = the
carrier of S3.

(9) For all strict subfields S2, S3 of K holds S2 = S3 iff for every x holds
x ∈ S2 iff x ∈ S3.

Let K be a finite field. Observe that there exists a subfield of K which is
finite. Then K is an element of N.

Let us mention that there exists a field which is strict and finite.
Next we state the proposition

(10) For every strict finite field K and for every strict subfield S2 of K such
that K = S2 holds S2 = K.

Let I1 be a field. We say that I1 is prime if and only if:

(Def. 2) If K1 is a strict subfield of I1, then K1 = I1.

Let p be a prime number. We introduce GF(p) as a synonym of ZR
p . One can

check that GF(p) is finite. One can check that GF(p) is prime.
One can check that there exists a field which is prime.
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2. Arithmetic in GF(p)

In the sequel b, c denote elements of GF(p) and F denotes a finite sequence
of elements of GF(p).

Next we state a number of propositions:

(11) 0 = 0GF(p).

(12) 1 = 1GF(p).

(13) There exists n1 such that a = n1 mod p.

(14) There exists a such that a = i mod p.

(15) If a = i mod p and b = j mod p, then a+ b = (i+ j) mod p.

(16) If a = i mod p, then −a = (p− i) mod p.

(17) If a = i mod p and b = j mod p, then a− b = (i− j) mod p.

(18) If a = i mod p and b = j mod p, then a · b = i · j mod p.

(19) If a = i mod p and i · j mod p = 1, then a−1 = j mod p.

(20) a = 0 or b = 0 iff a · b = 0.

(21) a0 = 1GF(p) and a0 = 1.

(22) a2 = a · a.
(23) If a = n1 mod p, then an = n1

n mod p.

(24) an+1 = an · a.
(25) If a 6= 0, then an 6= 0.

(26) Let F be an Abelian add-associative right zeroed right complementable
associative commutative well unital almost left invertible distributive non
empty double loop structure and x, y be elements of F . Then x · x = y · y
if and only if x = y or x = −y.

(27) For every prime number p and for every element x of GF(p) such that
2 < p and x+ x = 0GF(p) holds x = 0GF(p).

(28) an · bn = (a · b)n.
(29) If a 6= 0, then (a−1)n = (an)−1.

(30) an1 · an2 = an1+n2 .

(31) (an1)n2 = an1·n2 .

Let us consider p. One can verify that MultGroup(GF(p)) is cyclic.
The following two propositions are true:

(32) Let x be an element of MultGroup(GF(p)), x1 be an element of GF(p),
and n be a natural number. If x = x1, then xn = x1

n.

(33) There exists an element g of GF(p) such that for every element a of GF(p)
if a 6= 0GF(p), then there exists a natural number n such that a = gn.
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3. Relation between Legendre Symbol and the Number of Roots
in GF(p)

Let us consider p, a. We say that a is quadratic residue if and only if:

(Def. 3) a 6= 0 and there exists an element x of GF(p) such that x2 = a.

We say that a is not quadratic residue if and only if:

(Def. 4) a 6= 0 and it is not true that there exists an element x of GF(p) such
that x2 = a.

One can prove the following proposition

(34) If a 6= 0, then a2 is quadratic residue.

Let p be a prime number. Observe that 1GF(p) is quadratic residue.
Let us consider p, a. The functor Legep a yields an integer and is defined as

follows:

(Def. 5) Legep a =


0, if a = 0,
1, if a is quadratic residue,
−1, otherwise.

Next we state several propositions:

(35) a is not quadratic residue iff Legep a = −1.

(36) a is quadratic residue iff Legep a = 1.

(37) a = 0 iff Legep a = 0.

(38) If a 6= 0, then Legep(a
2) = 1.

(39) Legep(a · b) = Legep a · Legep b.

(40) If a 6= 0 and n mod 2 = 0, then Legep(a
n) = 1.

(41) If n mod 2 = 1, then Legep(a
n) = Legep a.

(42) If 2 < p, then {b : b2 = a} = 1 + Legep a.

4. Set of Points on an Elliptic Curve over GF(p)

Let K be a field. The functor ProjCoK yields a non empty subset of (the
carrier of K)× (the carrier of K)× (the carrier of K) and is defined by:

(Def. 6) ProjCoK = ((the carrier of K) × (the carrier of K) × (the carrier of
K)) \ {〈〈0K , 0K , 0K〉〉}.

One can prove the following proposition

(43) ProjCo GF(p) = ((the carrier of GF(p))× (the carrier of GF(p))× (the
carrier of GF(p))) \ {〈〈0, 0, 0〉〉}.

In the sequel P1, P2, P3 are elements of GF(p).
Let p be a prime number and let a, b be elements of GF(p). The functor

Disc(a, b, p) yields an element of GF(p) and is defined as follows:
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(Def. 7) For all elements g4, g27 of GF(p) such that g4 = 4 mod p and g27 =
27 mod p holds Disc(a, b, p) = g4 · a3 + g27 · b2.

Let p be a prime number and let a, b be elements of GF(p). The functor
EC WEqProjCo(a, b, p) yielding a function from (the carrier of GF(p)) × (the
carrier of GF(p))× (the carrier of GF(p)) into GF(p) is defined by the condition
(Def. 8).

(Def. 8) Let P be an element of (the carrier of GF(p))× (the carrier of GF(p))×
(the carrier of GF(p)). Then (EC WEqProjCo(a, b, p))(P ) = (P2)

2 · P3 −
((P1)

3 + a · P1 · (P3)2 + b · (P3)3).

We now state the proposition

(44) For all elements X, Y , Z of GF(p) holds (EC WEqProjCo(a, b, p))(〈〈X,
Y, Z〉〉) = Y 2 · Z − (X3 + a ·X · Z2 + b · Z3).

Let p be a prime number and let a, b be elements of GF(p). The functor
EC SetProjCo(a, b, p) yielding a non empty subset of ProjCo GF(p) is defined
by:

(Def. 9) EC SetProjCo(a, b, p) = {P ∈ ProjCo GF(p) : (EC WEqProjCo(a, b, p))
(P ) = 0GF(p)}.

One can prove the following two propositions:

(45) 〈〈0, 1, 0〉〉 is an element of EC SetProjCo(a, b, p).

(46) Let p be a prime number and a, b,X, Y be elements of GF(p). Then Y 2 =
X3+a·X+b if and only if 〈〈X, Y, 1〉〉 is an element of EC SetProjCo(a, b, p).

Let p be a prime number and let P , Q be elements of ProjCo GF(p). We say
that P EQ Q if and only if:

(Def. 10) There exists an element a of GF(p) such that a 6= 0GF(p) and P1 = a ·Q1
and P2 = a ·Q2 and P3 = a ·Q3.

Let us notice that the predicate P EQ Q is reflexive and symmetric.
We now state two propositions:

(47) For every prime number p and for all elements P , Q, R of ProjCo GF(p)
such that P EQ Q and Q EQ R holds P EQ R.

(48) Let p be a prime number, a, b be elements of GF(p), P , Q be elements of
(the carrier of GF(p))×(the carrier of GF(p))× (the carrier of GF(p)), and
d be an element of GF(p). Suppose p > 3 and Disc(a, b, p) 6= 0GF(p) and
P ∈ EC SetProjCo(a, b, p) and d 6= 0GF(p) and Q1 = d ·P1 and Q2 = d ·P2
and Q3 = d · P3. Then Q ∈ EC SetProjCo(a, b, p).

Let p be a prime number. The functor R-ProjCo p yielding a binary relation
on ProjCo GF(p) is defined by:

(Def. 11) R-ProjCo p = {〈〈P, Q〉〉;P ranges over elements of ProjCo GF(p), Q ran-
ges over elements of ProjCo GF(p) : P EQ Q}.

One can prove the following proposition
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(49) For every prime number p and for all elements P , Q of ProjCo GF(p)
holds P EQ Q iff 〈〈P, Q〉〉 ∈ R-ProjCo p.

Let p be a prime number. Note that R-ProjCo p is total, symmetric, and
transitive.

Let p be a prime number and let a, b be elements of GF(p). The functor
R-EllCur(a, b, p) yielding an equivalence relation of EC SetProjCo(a, b, p) is de-
fined as follows:

(Def. 12) R-EllCur(a, b, p) = R-ProjCo p ∩∇EC SetProjCo(a,b,p).

Next we state a number of propositions:

(50) Let p be a prime number, a, b be elements of GF(p), and P , Q
be elements of ProjCo GF(p). Suppose Disc(a, b, p) 6= 0GF(p) and P ,
Q ∈ EC SetProjCo(a, b, p). Then P EQ Q if and only if 〈〈P, Q〉〉 ∈
R-EllCur(a, b, p).

(51) Let p be a prime number, a, b be elements of GF(p), and P be an
element of ProjCo GF(p). Suppose p > 3 and Disc(a, b, p) 6= 0GF(p) and
P ∈ EC SetProjCo(a, b, p) and P3 6= 0. Then there exists an element Q
of ProjCo GF(p) such that Q ∈ EC SetProjCo(a, b, p) and Q EQ P and
Q3 = 1.

(52) Let p be a prime number, a, b be elements of GF(p), and P be an
element of ProjCo GF(p). Suppose p > 3 and Disc(a, b, p) 6= 0GF(p) and
P ∈ EC SetProjCo(a, b, p) and P3 = 0. Then there exists an element Q
of ProjCo GF(p) such that Q ∈ EC SetProjCo(a, b, p) and Q EQ P and
Q1 = 0 and Q2 = 1 and Q3 = 0.

(53) Let p be a prime number, a, b be elements of GF(p), and x be a set.
Suppose p > 3 and Disc(a, b, p) 6= 0GF(p) and x ∈ Classes R-EllCur(a, b, p).
Then

(i) there exists an element P of ProjCo GF(p) such that P ∈
EC SetProjCo(a, b, p) and P = 〈〈0, 1, 0〉〉 and x = [P ]R-EllCur(a,b,p), or

(ii) there exists an element P of ProjCo GF(p) and there exist elements X,
Y of GF(p) such that P ∈ EC SetProjCo(a, b, p) and P = 〈〈X, Y, 1〉〉 and
x = [P ]R-EllCur(a,b,p).

(54) Let p be a prime number and a, b be elements of GF(p). Suppo-
se p > 3 and Disc(a, b, p) 6= 0GF(p). Then Classes R-EllCur(a, b, p) =
{[〈〈0, 1, 0〉〉]R-EllCur(a,b,p)} ∪ {[P ]R-EllCur(a,b,p);P ranges over elements of
ProjCo GF(p) : P ∈ EC SetProjCo(a, b, p) ∧

∨
X,Y : element of GF(p) P =

〈〈X, Y, 1〉〉}.
(55) Let p be a prime number and a, b, d1, Y1, d2, Y2 be elements of

GF(p). Suppose p > 3 and Disc(a, b, p) 6= 0GF(p) and 〈〈d1, Y1, 1〉〉,
〈〈d2, Y2, 1〉〉 ∈ EC SetProjCo(a, b, p). Then [〈〈d1, Y1, 1〉〉]R-EllCur(a,b,p) =
[〈〈d2, Y2, 1〉〉]R-EllCur(a,b,p) if and only if d1 = d2 and Y1 = Y2.
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(56) Let p be a prime number, a, b be elements of GF(p), and F1, F2 be sets.
Suppose that

(i) p > 3,
(ii) Disc(a, b, p) 6= 0GF(p),

(iii) F1 = {[〈〈0, 1, 0〉〉]R-EllCur(a,b,p)}, and
(iv) F2 = {[P ]R-EllCur(a,b,p);P ranges over elements of ProjCo GF(p) : P ∈

EC SetProjCo(a, b, p) ∧
∨
X,Y : element of GF(p) P = 〈〈X, Y, 1〉〉}.

Then F1 misses F2.

(57) Let X be a non empty finite set, R be an equivalence relation of X, S
be a ClassesR-valued function, and i be a set. If i ∈ domS, then S(i) is a
finite subset of X.

(58) Let X be a non empty set, R be an equivalence relation of X, and S be
a ClassesR-valued function. If S is one-to-one, then S is disjoint valued.

(59) Let X be a non empty set, R be an equivalence relation of X, and S be
a ClassesR-valued function. If S is onto, then

⋃
S = X.

(60) Let X be a non empty finite set, R be an equivalence relation of X, S
be a ClassesR-valued function, and L be a finite sequence of elements of
N. Suppose S is one-to-one and onto and domS = domL and for every
natural number i such that i ∈ domS holds L(i) = S(i) . Then X =

∑
L.

(61) Let p be a prime number, a, b, d be elements of GF(p), and F , G be
sets. Suppose that

(i) p > 3,
(ii) Disc(a, b, p) 6= 0GF(p),

(iii) F = {Y ∈ GF(p): Y 2 = d3 + a · d+ b},
(iv) F 6= ∅, and
(v) G = {[〈〈d, Y, 1〉〉]R-EllCur(a,b,p);Y ranges over elements of GF(p): 〈〈d, Y,

1〉〉 ∈ EC SetProjCo(a, b, p)}.
Then there exists a function from F into G which is onto and one-to-one.

(62) Let p be a prime number and a, b, d be elements of GF(p). Suppose
p > 3 and Disc(a, b, p) 6= 0GF(p).

Then {[〈〈d, Y, 1〉〉]R-EllCur(a,b,p);Y ranges over elements of GF(p):

〈〈d, Y, 1〉〉 ∈ EC SetProjCo(a, b, p)} = 1 + Legep(d
3 + a · d+ b).

(63) Let p be a prime number and a, b be elements of GF(p). Suppose p > 3 and
Disc(a, b, p) 6= 0GF(p). Then there exists a finite sequence F of elements of N
such that

(i) lenF = p,

(ii) for every natural number n such that n ∈ Seg p there exists an element d of
GF(p) such that d = n− 1 and F (n) = 1 + Legep(d

3 + a · d+ b), and

(iii) {[P ]R-EllCur(a,b,p);P ranges over elements of ProjCo GF(p) :

P ∈ EC SetProjCo(a, b, p) ∧
∨
X,Y : element of GF(p) P = 〈〈X, Y, 1〉〉} =

∑
F.
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(64) Let p be a prime number and a, b be elements of GF(p). Suppose p > 3 and
Disc(a, b, p) 6= 0GF(p). Then there exists a finite sequence F of elements of Z
such that

(i) lenF = p,

(ii) for every natural number n such that n ∈ Seg p there exists an element d of
GF(p) such that d = n− 1 and F (n) = Legep(d

3 + a · d+ b), and

(iii) Classes R-EllCur(a, b, p) = 1 + p+
∑
F.
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