Differentiable Functions into Real Normed Spaces

Hiroyuki Okazaki Shinshu University Nagano, Japan Noboru Endou Nagano National College of Technology Nagano, Japan

Keiko Narita Hirosaki-city Aomori, Japan Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this article, we formalize the differentiability of functions from the set of real numbers into a normed vector space [14].

MML identifier: $NDIFF_3$, version: 7.11.07 4.156.1112

The notation and terminology used here have been introduced in the following papers: [12], [2], [3], [7], [9], [11], [1], [4], [10], [13], [6], [17], [18], [15], [8], [16], [19], and [5].

For simplicity, we adopt the following rules: F denotes a non trivial real normed space, G denotes a real normed space, X denotes a set, x, x_0 , r, pdenote real numbers, n, k denote elements of \mathbb{N} , Y denotes a subset of \mathbb{R} , Zdenotes an open subset of \mathbb{R} , s_1 denotes a sequence of real numbers, s_2 denotes a sequence of G, f, f_1 , f_2 denote partial functions from \mathbb{R} to the carrier of F, h denotes a convergent to 0 sequence of real numbers, and c denotes a constant sequence of real numbers.

We now state two propositions:

- (1) If for every *n* holds $||s_2(n)|| \le s_1(n)$ and s_1 is convergent and $\lim s_1 = 0$, then s_2 is convergent and $\lim s_2 = 0_G$.
- (2) $(s_1 \uparrow k) (s_2 \uparrow k) = (s_1 s_2) \uparrow k.$

Let us consider F and let I_1 be a partial function from \mathbb{R} to the carrier of F. We say that I_1 is rest-like if and only if:

C 2011 University of Białystok ISSN 1426-2630(p), 1898-9934(e) (Def. 1) I_1 is total and for every h holds $h^{-1}(I_{1*}h)$ is convergent and $\lim(h^{-1}(I_{1*}h)) = 0_F$.

Let us consider F. One can check that there exists a partial function from \mathbb{R} to the carrier of F which is rest-like. Let us consider F. A rest of F is a rest-like partial function from \mathbb{R} to the carrier of F. Let us consider F and let I_1 be a function from \mathbb{R} into the carrier of F. We say that I_1 is linear if and only if:

(Def. 2) There exists a point r of F such that for every real number p holds $I_1(p) = p \cdot r$.

Let us consider F. Note that there exists a function from \mathbb{R} into the carrier of F which is linear. Let us consider F. A linear of F is a linear function from \mathbb{R} into the carrier of F.

We use the following convention: R, R_1 , R_2 denote rests of F and L, L_1 , L_2 denote linears of F.

The following propositions are true:

- (3) $L_1 + L_2$ is a linear of F and $L_1 L_2$ is a linear of F.
- (4) rL is a linear of F.
- (5) Let h_1 , h_2 be partial functions from \mathbb{R} to the carrier of F and s_2 be a sequence of real numbers. If $\operatorname{rng} s_2 \subseteq \operatorname{dom} h_1 \cap \operatorname{dom} h_2$, then $(h_1 + h_2)_* s_2 = (h_{1*}s_2) + (h_{2*}s_2)$ and $(h_1 h_2)_* s_2 = (h_{1*}s_2) (h_{2*}s_2)$.
- (6) Let h_1 , h_2 be partial functions from \mathbb{R} to the carrier of F and s_2 be a sequence of real numbers. If h_1 is total and h_2 is total, then $(h_1 + h_2)_* s_2 = (h_{1*}s_2) + (h_{2*}s_2)$ and $(h_1 h_2)_* s_2 = (h_{1*}s_2) (h_{2*}s_2)$.
- (7) $R_1 + R_2$ is a rest of F and $R_1 R_2$ is a rest of F.
- (8) r R is a rest of F.

Let us consider F, f and let x_0 be a real number. We say that f is differentiable in x_0 if and only if:

(Def. 3) There exists a neighbourhood N of x_0 such that $N \subseteq \text{dom } f$ and there exist L, R such that for every x such that $x \in N$ holds $f_x - f_{x_0} = L(x - x_0) + R_{x-x_0}$.

Let us consider F, f and let x_0 be a real number. Let us assume that f is differentiable in x_0 . The functor $f'(x_0)$ yielding a point of F is defined by the condition (Def. 4).

(Def. 4) There exists a neighbourhood N of x_0 such that $N \subseteq \text{dom } f$ and there exist L, R such that $f'(x_0) = L(1)$ and for every x such that $x \in N$ holds $f_x - f_{x_0} = L(x - x_0) + R_{x - x_0}$.

Let us consider F, f, X. We say that f is differentiable on X if and only if:

(Def. 5) $X \subseteq \text{dom } f$ and for every x such that $x \in X$ holds $f \upharpoonright X$ is differentiable in x.

The following propositions are true:

- (9) If f is differentiable on X, then X is a subset of \mathbb{R} .
- (10) f is differentiable on Z iff $Z \subseteq \text{dom } f$ and for every x such that $x \in Z$ holds f is differentiable in x.
- (11) If f is differentiable on Y, then Y is open.

Let us consider F, f, X. Let us assume that f is differentiable on X. The functor $f'_{\uparrow X}$ yields a partial function from \mathbb{R} to the carrier of F and is defined by:

- (Def. 6) dom $(f'_{\uparrow X}) = X$ and for every x such that $x \in X$ holds $f'_{\uparrow X}(x) = f'(x)$. Next we state a number of propositions:
 - (12) Suppose $Z \subseteq \text{dom } f$ and there exists a point r of F such that $\text{rng } f = \{r\}$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $(f'_{\uparrow Z})_x = 0_F$.
 - (13) Let x_0 be a real number and N be a neighbourhood of x_0 . Suppose f is differentiable in x_0 and $N \subseteq \text{dom } f$. Let given h, c. Suppose $\text{rng } c = \{x_0\}$ and $\text{rng}(h+c) \subseteq N$. Then $h^{-1}((f_*(h+c)) (f_*c))$ is convergent and $f'(x_0) = \lim(h^{-1}((f_*(h+c)) (f_*c))).$
 - (14) If f_1 is differentiable in x_0 and f_2 is differentiable in x_0 , then $f_1 + f_2$ is differentiable in x_0 and $(f_1 + f_2)'(x_0) = f_1'(x_0) + f_2'(x_0)$.
 - (15) If f_1 is differentiable in x_0 and f_2 is differentiable in x_0 , then $f_1 f_2$ is differentiable in x_0 and $(f_1 f_2)'(x_0) = f_1'(x_0) f_2'(x_0)$.
 - (16) For every real number r such that f is differentiable in x_0 holds r f is differentiable in x_0 and $(r f)'(x_0) = r \cdot f'(x_0)$.
 - (17) Suppose $Z \subseteq \text{dom}(f_1 + f_2)$ and f_1 is differentiable on Z and f_2 is differentiable on Z. Then $f_1 + f_2$ is differentiable on Z and for every x such that $x \in Z$ holds $(f_1 + f_2)'_{1Z}(x) = f_1'(x) + f_2'(x)$.
 - (18) Suppose $Z \subseteq \text{dom}(f_1 f_2)$ and f_1 is differentiable on Z and f_2 is differentiable on Z. Then $f_1 f_2$ is differentiable on Z and for every x such that $x \in Z$ holds $(f_1 f_2)'_{\uparrow Z}(x) = f_1'(x) f_2'(x)$.
 - (19) Suppose $Z \subseteq \text{dom}(r f)$ and f is differentiable on Z. Then r f is differentiable on Z and for every x such that $x \in Z$ holds $(r f)'_{\uparrow Z}(x) = r \cdot f'(x)$.
 - (20) If $Z \subseteq \text{dom } f$ and $f \upharpoonright Z$ is constant, then f is differentiable on Z and for every x such that $x \in Z$ holds $f'_{\upharpoonright Z}(x) = 0_F$.
 - (21) Let r, p be points of F and given Z, f. Suppose $Z \subseteq \text{dom } f$ and for every x such that $x \in Z$ holds $f_x = x \cdot r + p$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $f'_{\downarrow Z}(x) = r$.
 - (22) For every real number x_0 such that f is differentiable in x_0 holds f is continuous in x_0 .
 - (23) If f is differentiable on X, then $f \upharpoonright X$ is continuous.
 - (24) If f is differentiable on X and $Z \subseteq X$, then f is differentiable on Z.

(25) There exists a rest R of F such that $R_0 = 0_F$ and R is continuous in 0. Let us consider F and let f be a partial function from \mathbb{R} to the carrier of F.

We say that f is differentiable if and only if:

(Def. 7) f is differentiable on dom f.

Let us consider F. One can check that there exists a function from \mathbb{R} into the carrier of F which is differentiable. We now state the proposition

(26) Let f be a differentiable partial function from \mathbb{R} to the carrier of F. If $Z \subseteq \text{dom } f$, then f is differentiable on Z.

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153–164, 1990.
- [4] Čzesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [7] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. *Formalized Mathematics*, 12(3):321–327, 2004.
- [8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. More on continuous functions on normed linear spaces. Formalized Mathematics, 19(1):45–49, 2011, doi: 10.2478/v10037-011-0008-3.
- [10] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [11] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
- [12] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797–801, 1990.
- [13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Formalized Mathematics*, 1(4):777-780, 1990.
- [14] Laurent Schwartz. Cours d'analyse, vol. 1. Hermann Paris, 1967.
- [15] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [18] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181–186, 1990.
- [19] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171–175, 1992.

Received October 13, 2010