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Summary. We prove a number of theorems concerning various notions
used in the theory of continuity of barycentric coordinates.
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The papers [2], [9], [4], [5], [6], [14], [10], [25], [13], [16], [3], [7], [12], [1], [24],
[15], [21], [23], [19], [17], [8], [11], [22], [20], and [18] provide the terminology and
notation for this paper.

1. Correspondence Between Euclidean Topological Space and
Vector Space over RF

For simplicity, we follow the rules: X denotes a set, n, m, k denote natural
numbers, K denotes a field, f denotes an n-element real-valued finite sequence,
and M denotes a matrix over RF of dimension n × m.

One can prove the following propositions:

(1) X is a linear combination of the n-dimension vector space over RF if and
only if X is a linear combination of EnT.

(2) Let L2 be a linear combination of the n-dimension vector space over RF
and L1 be a linear combination of EnT. If L1 = L2, then the support of
L1 = the support of L2.

(3) Let F be a finite sequence of elements of EnT, f1 be a function from EnT
into R, F1 be a finite sequence of elements of the n-dimension vector space
over RF, and f2 be a function from the n-dimension vector space over RF
into RF. If f1 = f2 and F = F1, then f1 F = f2 F1.
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(4) Let F be a finite sequence of elements of EnT and F1 be a finite sequence
of elements of the n-dimension vector space over RF. If F1 = F, then∑
F =

∑
F1.

(5) Let L2 be a linear combination of the n-dimension vector space over RF
and L1 be a linear combination of EnT. If L1 = L2, then

∑
L1 =

∑
L2.

(6) Let A2 be a subset of the n-dimension vector space over RF and A1 be
a subset of EnT. If A2 = A1, then ΩLin(A1) = ΩLin(A2).

(7) Let A2 be a subset of the n-dimension vector space over RF and A1 be
a subset of EnT. Suppose A2 = A1. Then A2 is linearly independent if and
only if A1 is linearly independent.

(8) Let V be a vector space over K, W be a subspace of V , and L be a linear
combination of V . Then L�the carrier of W is a linear combination of W .

(9) Let V be a vector space over K, A be a linearly independent subset of V ,
and L3, L4 be linear combinations of V . Suppose the support of L3 ⊆ A

and the support of L4 ⊆ A and
∑
L3 =

∑
L4. Then L3 = L4.

(10) Let V be a real linear space, W be a subspace of V , and L be a linear
combination of V . Then L�the carrier of W is a linear combination of W .

(11) Let U be a subspace of the n-dimension vector space over RF and W be
a subspace of EnT. Suppose ΩU = ΩW . Then X is a linear combination of
U if and only if X is a linear combination of W .

(12) Let U be a subspace of the n-dimension vector space over RF, W be
a subspace of EnT, L5 be a linear combination of U , and L6 be a linear
combination of W . If L5 = L6, then the support of L5 = the support of
L6 and

∑
L5 =

∑
L6.

Let us consider m, K and let A be a subset of the m-dimension vector space
over K. Note that Lin(A) is finite dimensional.

2. Correspondence Between the Mx2Tran Operator and
Decomposition of a Vector in Basis

The following propositions are true:

(13) If rk(M) = n, then M is an ordered basis of Lin(lines(M)).

(14) Let V , W be vector spaces over K, T be a linear transformation from V

to W , A be a subset of V , and L be a linear combination of A. If T �A is
one-to-one, then T (

∑
L) =

∑
(T@L).

(15) Let S be a subset of Seg n. Suppose M�S is one-to-one and rng(M�S) =
lines(M). Then there exists a linear combination L of lines(M) such
that

∑
L = (Mx2TranM)(f) and for every k such that k ∈ S holds

L(Line(M,k)) =
∑

Seq(f�M−1({Line(M,k)})).
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(16) Suppose M is without repeated line. Then there exists a linear combi-
nation L of lines(M) such that

∑
L = (Mx2TranM)(f) and for every k

such that k ∈ dom f holds L(Line(M,k)) = f(k).

(17) For every ordered basis B of Lin(lines(M)) such that B = M and for
every element M1 of Lin(lines(M)) such that M1 = (Mx2TranM)(f) holds
M1 → B = f.

(18) rng Mx2TranM = ΩLin(lines(M)).

(19) Let F be a one-to-one finite sequence of elements of EnT. Suppose rngF
is linearly independent. Then there exists a square matrix M over RF of
dimension n such that M is invertible and M� lenF = F.

(20) Let B be an ordered basis of the n-dimension vector space over RF. If
B = MX2FinS(In×nRF ), then f ∈ Lin(rng(B�k)) iff f = (f�k) a ((n−′ k) 7→
0).

(21) Let F be a one-to-one finite sequence of elements of EnT. Suppose rngF
is linearly independent. Let B be an ordered basis of the n-dimension
vector space over RF. Suppose B = MX2FinS(In×nRF ). Let M be a square
matrix over RF of dimension n. If M is invertible and M� lenF = F, then
(Mx2TranM)◦(ΩLin(rng(B� lenF ))) = ΩLin(rngF ).

(22) Let A, B be linearly independent subsets of EnT. Suppose A = B. Then
there exists a square matrix M over RF of dimension n such that M is
invertible and (Mx2TranM)◦(ΩLin(A)) = ΩLin(B).

3. Preservation of Linear and Affine Independence of Vectors by
the Mx2Tran Operator

The following propositions are true:

(23) For every linearly independent subset A of EnT such that rk(M) = n holds
(Mx2TranM)◦A is linearly independent.

(24) For every affinely independent subset A of EnT such that rk(M) = n holds
(Mx2TranM)◦A is affinely independent.

(25) Let A be an affinely independent subset of EnT. Suppose rk(M) = n.

Let v be an element of EnT. If v ∈ AffinA, then (Mx2TranM)(v) ∈
Affin((Mx2TranM)◦A) and for every f holds (v → A)(f) =
((Mx2TranM)(v)→ (Mx2TranM)◦A)((Mx2TranM)(f)).

(26) For every linearly independent subset A of EmT such that rk(M) = n

holds (Mx2TranM)−1(A) is linearly independent.

(27) For every affinely independent subset A of EmT such that rk(M) = n

holds (Mx2TranM)−1(A) is affinely independent.
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