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Summary. We prove a number of theorems concerning various notions
used in the theory of continuity of barycentric coordinates.
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The papers [2], [9], [4], [5], [6], [14], [10], [25], [13], [16], [3], [7], [12], [1], [24],
[15], [21], [23], [19], [17], [8], [11], [22], [20], and [18] provide the terminology and
notation for this paper.

1. CORRESPONDENCE BETWEEN EUCLIDEAN TOPOLOGICAL SPACE AND
VECTOR SPACE OVER Rp

For simplicity, we follow the rules: X denotes a set, n, m, k denote natural
numbers, K denotes a field, f denotes an n-element real-valued finite sequence,
and M denotes a matrix over Ry of dimension n x m.

One can prove the following propositions:

(1) X is a linear combination of the n-dimension vector space over Ry if and
only if X is a linear combination of £F.

(2) Let Lo be a linear combination of the n-dimension vector space over Rp
and L; be a linear combination of £F. If Ly = Lo, then the support of
L1 = the support of Ls.

(3) Let F be a finite sequence of elements of £}, f1 be a function from EF.
into R, F; be a finite sequence of elements of the n-dimension vector space
over Rp, and f5 be a function from the n-dimension vector space over Rp
into Rp. If f; = fo and F = F1, then fi F = fy F7.
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(4) Let F be a finite sequence of elements of £ and F; be a finite sequence
of elements of the n-dimension vector space over Rp. If F} = F| then
SF=>F.

(5) Let Lo be a linear combination of the n-dimension vector space over Ry
and L; be a linear combination of £F. If Ly = Lo, then > Ly = )" Lo.

(6) Let A be a subset of the n-dimension vector space over Ry and A; be
a subset of &F. If Ay = Ay, then Qpiya,) = Qin(as)-

(7) Let A be a subset of the n-dimension vector space over Ry and A; be
a subset of £. Suppose Ay = A;. Then Aj is linearly independent if and
only if A is linearly independent.

(8) Let V be a vector space over K, W be a subspace of V', and L be a linear
combination of V. Then L[the carrier of W is a linear combination of W.

(9) Let V be a vector space over K, A be a linearly independent subset of V|
and Ls, L4 be linear combinations of V. Suppose the support of Ly C A
and the support of Ly C A and Y L3 =Y Ly. Then L3 = Ly.

(10) Let V be a real linear space, W be a subspace of V', and L be a linear
combination of V. Then L[the carrier of W is a linear combination of W.

(11) Let U be a subspace of the n-dimension vector space over Rp and W be
a subspace of £F. Suppose €y = Q. Then X is a linear combination of
U if and only if X is a linear combination of W.

(12) Let U be a subspace of the n-dimension vector space over Rp, W be
a subspace of £}, L5 be a linear combination of U, and Lg be a linear
combination of W. If Ly = Lg, then the support of Ls = the support of
L6 and ZL5 = ZLG-

Let us consider m, K and let A be a subset of the m-dimension vector space
over K. Note that Lin(A) is finite dimensional.

2. CORRESPONDENCE BETWEEN THE MX2TRAN OPERATOR AND
DECOMPOSITION OF A VECTOR IN BASIS

The following propositions are true:
(13) If rk(M) = n, then M is an ordered basis of Lin(lines(M)).

(14) Let V, W be vector spaces over K, T be a linear transformation from V'
to W, A be a subset of V', and L be a linear combination of A. If T'[A is
one-to-one, then T'(3. L) = S (T®L).

(15) Let S be a subset of Segn. Suppose M |S is one-to-one and rng(M[S) =
lines(M). Then there exists a linear combination L of lines(M) such
that >~ L = (Mx2Tran M)(f) and for every k such that & € S holds
L(Line(M, k)) = 3" Seq(f M~ ({Line(M, k)})).
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(16) Suppose M is without repeated line. Then there exists a linear combi-
nation L of lines(M) such that Y>> L = (Mx2Tran M)(f) and for every k
such that k € dom f holds L(Line(M, k)) = f(k).

(17) For every ordered basis B of Lin(lines(M)) such that B = M and for
every element M, of Lin(lines(M)) such that M; = (Mx2Tran M)(f) holds
M, — B=f.

(18) rng Mx2Tran M = Qpin(lines(M))-

(19) Let F be a one-to-one finite sequence of elements of £F. Suppose rng F

is linearly independent. Then there exists a square matrix M over Rp of
dimension n such that M is invertible and M [len F' = F.

(20) Let B be an ordered basis of the n-dimension vector space over Rp. If
B = MX2FinS(Ip "), then f € Lin(rng(B[k)) iff f = (flk) " ((n —"k) —
0).

(21) Let F be a one-to-one finite sequence of elements of £}. Suppose rng F
is linearly independent. Let B be an ordered basis of the n-dimension
vector space over Rg. Suppose B = MXQFinS(I[EFX"). Let M be a square
matrix over Rg of dimension n. If M is invertible and M [len F' = F, then
(MX2TI‘&H M)O(QLin(rng(B[lenF))) = QLin(rng F)-

(22) Let A, B be linearly independent subsets of £ Suppose A = B. Then
there exists a square matrix M over Rp of dimension n such that M is
invertible and (Mx2Tran M)°(Qpin4)) = Qrin(s)-

3. PRESERVATION OF LINEAR AND AFFINE INDEPENDENCE OF VECTORS BY
THE MX2TRAN OPERATOR

The following propositions are true:

(23) For every linearly independent subset A of £F such that rk(M) = n holds
(Mx2Tran M)°A is linearly independent.

(24) For every affinely independent subset A of & such that rk(M) = n holds
(Mx2Tran M )°A is affinely independent.

(25) Let A be an affinely independent subset of £F. Suppose rk(M) = n.
Let v be an element of &f. If v € Affin A, then (Mx2TranM)(v) €
Affin((Mx2Tran M)°A) and for every f holds (v — A)( =
((Mx2Tran M)(v) — (Mx2Tran M )°A)((Mx2Tran M)(f)).

(26) For every linearly independent subset A of & such that rk(M) = n
holds (Mx2Tran M)~!(A) is linearly independent.

(27) For every affinely independent subset A of &' such that rk(M) = n
holds (Mx2Tran M)~!(A) is affinely independent.



112

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
21]
22]
23]
[24]
[25]

KAROL PAK

REFERENCES

Jesse Alama. The rank+nullity theorem. Formalized Mathematics, 15(3):137-142, 2007,
doi:10.2478 /v10037-007-0015-6.

Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.
Czestaw Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

Czestaw Bylifiski. The sum and product of finite sequences of real numbers. Formalized
Mathematics, 1(4):661-668, 1990.

Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics,
2(4):475-480, 1991.

Fugeniusz Kusak, Wojciech Leonczuk, and Michat Muzalewski. Abelian groups, fields
and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.

Anna Lango and Grzegorz Bancerek. Product of families of groups and vector spaces.
Formalized Mathematics, 3(2):235-240, 1992.

Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339—
345, 1996.

Karol Pak. Basic properties of the rank of matrices over a field. Formalized Mathematics,
15(4):199-211, 2007, doi:10.2478/v10037-007-0024-5.

Karol Pak. Affine independence in vector spaces. Formalized Mathematics, 18(1):87-93,
2010, doi: 10.2478/v10037-010-0012-z.

Karol Pak. Linear transformations of Euclidean topological spaces. Formalized Mathe-
matics, 19(2):103-108, 2011, doi: 10.2478/v10037-011-0016-3.

Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850,

1990.
Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885,

1990.
Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics,

1(3):581-588, 1990.

Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics,
1(5):877-882, 1990.

Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized
Mathematics, 1(2):297-301, 1990.

Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized
Mathematics, 1(5):865-870, 1990.

Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296,

1990.
Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186,

1990.
Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matri-

ces. Formalized Mathematics, 13(4):541-547, 2005.

Received October 26, 2010



